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Abstract: Detecting the faults in hydraulic systems in advance is difficult owing to the complexity
associated with such systems. Hence, it is necessary to investigate the different fault modes and
analyze the system reliability in order to establish a method for improving the reliability and security
of hydraulic systems. To this end, this paper proposes a novel one-dimensional multichannel
convolution neural network (1DMCCNN) for diagnosing fault modes. In this work, a landing gear
hydraulic system was constructed with a normal model and a fault model; five types of faults were
considered. Pressure signals were extracted from this hydraulic system, and the extracted signals were
subsequently input into the convolution neural network (CNN) as multichannel data. Thereafter, the
data were subjected to a one-dimensional convolution filter. The differences between channels were
used to enhance features. The features obtained in this manner were compared for fault diagnoses.
Furthermore, this proposed method was verified via simulations; the simulation results indicated
that the precision of the 1DMCCNN was considerably higher than that of conventional machine
learning algorithms.

Keywords: aircraft hydraulic system; convolution neural network; one-dimensional multichannel
convolution neural network algorithm; fault diagnosis

1. Introduction

The hydraulic system of the landing gear is one of the most important components
of the hydraulic systems in aircraft. Notably, the reliability of the hydraulic system has a
significant influence over the safety of an aircraft. As reported previously, approximately
30% of all mechanical failures in an aircraft stem from issues in the hydraulic system.
Accordingly, maintenance operations related to hydraulic systems account for one-third of
the entire mechanical maintenance work [1]. However, identifying the causes of failures
in hydraulic systems remains difficult [2]. Unlike other systems, all the components and
the oil in hydraulic systems operate within a closed circuit; hence, fault diagnoses for such
systems are not intuitive.

In an aircraft, hydraulic control systems are often accompanied by backup systems; to
guarantee the safety of an aircraft, ensuring the reliability of these systems is essential. In
this regard, monitoring the condition of hydraulic systems is significantly important in both
academic and industrial fields [3–5]. Evidently, to ensure the safe and reliable operation of
aircrafts’ hydraulic system, fault diagnoses of the hydraulic system are crucial [6–8]. Hence,
it is desirable to develop fault diagnosis schemes that can identify abnormal conditions in
hydraulic systems.

Fault diagnoses for aircrafts’ hydraulic systems involve four stepped stages: subjec-
tive diagnoses by technicians, measurement-based diagnoses using simple instruments,
diagnoses using model analysis, and intelligent fault diagnoses [9–11]. Currently, measure-
ments and diagnoses using simple instruments are mainly used for aircrafts’ hydraulic
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systems. With regard to intelligent fault diagnoses, the commonly used approaches entail
analyzing the pressure signals of aircrafts’ hydraulic systems via wavelet packet decom-
position or the information entropy method, followed by extracting important features
into neural networks or support vector machines (SVM) models for fault diagnoses and
classification [12–14].

Thus far, several studies have been devoted toward fault diagnoses in hydraulic sys-
tems. For instance, Dao et al. [15] designed an active fault-tolerant control (FTC) system
for an n-degree-of-freedom (n-DOF) hydraulic manipulator with internal leakage faults
and mismatched matched lumped disturbances; this active FTC system achieved suitable
position tracking performance under conditions involving single faults and multiple si-
multaneous faults. Jin et al. [16] reported that the piston seal wear in hydraulic cylinders
is a primary factor resulting in internal leakages; they applied a wavelet transform as a
feature extractor to transform raw oil pressure data into feature vectors comprising the
wavelet packet energy, energy entropy, energy variance, and the root mean square of the
wavelet detailed coefficient. They proposed a fault detection and identification scheme that
was, based on leakage experiments and simulation data, capable of effectively detecting
faults. Maddahi et al. [17] introduced a multiscale analysis, which included measures
for the correlation entropy and wavelet detail coefficients, for the detection of internal
leakages in electro-hydrostatic actuators. Many types of faults may occur in hydraulic
systems; these include actuator faults caused by internal leakages, external leakages, and a
reduction in the supply pressure and sensor faults caused by issues in the pressure and
position sensors [18,19]. The aforementioned methods achieved suitable results; however,
considering faults at the system level, these previous methods may not afford good results
owing to the difficulties associated with preprocessing and feature extraction at the system
level. Therefore, other scholars and researchers have studied the fault diagnosis of an
aircraft’s hydraulic system [20–23].

To address this problem, this paper proposes a novel method for diagnosing faults in
aircrafts’ hydraulic systems, based on a one-dimensional multichannel convolution neural
network (1DMCCNN). In the proposed method, pressure signals of the hydraulic system
are extracted via simple normalization and directly input into the CNN. Notably, this
approach does not entail complex data preprocessing and feature extraction to ascertain the
end-to-end fault-diagnosis mode. Owing to the structure of the CNN, the pressure signals
acquired from multiple sensors located at different positions in the aircraft’s hydraulic
system can be directly input into the network as multichannel input signals to achieve
multisensor fusion; furthermore, the differences between the sensor results can be used
to enhance features. More importantly, simulation results reveal that the precision of the
proposed method is significantly better than that of conventional methods.

The remainder of this paper is organized as follows. Section 2 presents the improved
1DMCCNN algorithm for the fault diagnosis of hydraulic systems. Section 3 describes
the hydraulic systems built using AMESIM, including the normal and fault modes; the
simulation results used to verify the proposed 1DMCCNN method are also presented.
Section 4 explains the analyses of the simulation results and also presents a comparison
between the 1DMCCNN method and other conventional machine learning algorithms; as
discussed in this section, the proposed algorithm shows good performance in terms of the
training time, model size, and other aspects. Lastly, the conclusions of this work and the
scope of future research are outlined in Section 5.

2. Fault Diagnoses Based on Improved 1DMCCNN Algorithm

LeNet5, the first CNN model, was proposed by Le et al. [24,25]. This network com-
prised classical CNN structures such as the convolution layer, pooling layer, and full
connection (FC) layer. Thereafter, Krizevsky et al. introduced Alex Net [26] in 2012; since
winning the image classification contest involving ImageNet, a large image database, deep
learning models based on the CNN structure have undergone rapid developments [27–29].
CNNs do not require complex and tedious data preprocessing and feature extraction pro-
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cesses; consequently, they are significantly advantageous for high-dimensional data such
as images and long time-series signals.

2.1. One-Dimensional Convolution

Unlike ordinary neural networks, CNNs feature a convolution layer structure with
weight sharing [24]. Let Hl be the input feature graph of the convolution layer; in this case,
the original feature graph is H0, S is the result of the convolution operation, Hl+1 is the
output feature graph of the convolution layer, K is the convolution core, i is the index of the
feature graph, p is the index on the convolution core, b is the offset, and f(x) is the activation
function. Thus, the one-dimensional convolution operation can be expressed as follows:

S(i) = ∑p Hl(i + p)K(p) (1)

Hl+1 = f (S + b) (2)

2.2. One-Dimensional Pooling

Pooling, also known as downsampling [30], is typically employed after the convolution
layer to reduce dimensionality and extract effective features. Pooling operations can be
divided into maximum pooling and mean pooling. Let layer l be the pooling layer, k
be the size of the pooling window, and p be the index on the pooling window. Thus,
the operation formulas for maximum pooling and mean pooling can be expressed as in
Equations (3) and (4), respectively:

Hl+1(i) = max
p∈K

Hl(i + p) (3)

Hl+1(i) =
1
k ∑p Hl(i + p) (4)

2.3. Fault Diagnosis with CNN

CNN-based fault diagnosis is a data-driven, supervised learning classification problem.
First, data pertaining to different states of the system are collected through experiments
or simulations; these data are then classified and normalized. Subsequently, the data are
resampled, that is, multiple subsets with the same length (samples) are intercepted using
a sliding window of a long time-series signal; as the subsets can be repeated, resampling
can help enhance the data set. These samples are divided into the training and test sets.
The training set is used to train the CNN model and help the network learn the fault
classification information contained in the data, whereas the test set is used to verify the
generalization ability of the trained network. Fault diagnosis results can then be obtained
by inputting the signals to be diagnosed into the trained network. The corresponding
flowchart for a CNN-based fault diagnosis is depicted in Figure 1.

In this network, one-dimensional convolution is used to process one-dimensional
time-series signals, while the multisensor fusion is realized via multichannel convolution.

2.4. Multisensor Fusion

CNNs can directly receive gray images from multiple channels during training. Thus,
the pressure signals collected by sensors at different locations can be directly input into the
CNN through different channels simultaneously, to achieve multisensor fusion [26]. Let c
be the index on the channel scale and Hl(i + p, c) be the feature graph corresponding to c;
then, the multichannel, one-dimensional convolution formula can be expressed as follows:

S(i) = ∑c ∑p Hl(i + p, c)K(p) (5)

Considering the common fault forms in aircrafts’ hydraulic systems, the signals from
three sensors—pump outlet pressure sensor, oil filter outlet pressure sensor, and actuator
pressure sensor—can be employed as the three-channel input for the CNN (hereinafter, this
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model is denoted as 1DMCCNN-v1). Further analyses reveal that the difference between
the pressure values provided by the pump outlet pressure sensor and the oil filter outlet
pressure sensor can offer additional information, as shown in Figure 2.
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Figure 2. 1DMCCNN-v1 and 1DMCCNN-v2.

Similarly, the differences between the pressure values provided by the oil filter outlet
pressure sensor and the rodless chamber pressure sensor of the actuator barrel can be
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made, so that the information of five channels can be obtained (hereinafter denoted as
1DMCCNN-v2).

2.5. Structural Design and Improvement of 1DMCCNN

Two pairs of convolution pooling layers were connected with two FC layers and one
softmax layer, as shown in Figure 3. The convolution layer was responsible for feature
extraction, whereas the pooling layer (where maximum pooling was used) was responsible
for dimensionality reduction. The softmax layer and the FC layer classified the feature
maps extracted via convolution pooling. Typically, the size and step size of the convolution
pooling are initially determined based on experience; thereafter, optimal values were
determined using the parameters. The input layer was linked to a fully connected layer
having 1800 nodes. The output of the fully connected layer was transformed into 6 classes
of faults by the reshape function. The fully connected layer was followed by 2 consecutive
two-dimensional deconvolutional layers and 2 poolings. The parameters of each layer
are presented in the Figure 3. For 1DMCCNN-v2, it was necessary to ensure a difference
between the input features such that the input feature size could be changed to 1 × 600 × 5,
while the other parameters remained unchanged.
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Figure 3. Structure of 1DMCCNN.

3. Simulations

The simulation model for the LG hydraulic system was built using LMS AMESIM,
AMESIM is a modular modeling and simulation software. Considering the aircraft’s
landing gear’s (LG) hydraulic system as the research object, during operation, high-pressure
oil from the oil supply system enters the lock cylinder, hydraulic lock, and actuating cylinder
to facilitate the retraction and lowering of the LG. Using AMESIM, a simulation model of the
working loop of the LG’s hydraulic cylinder was built, based on the working principle of the
hydraulic cylinder and the hydraulic library and design library for hydraulic components,
as shown in Figure 4. In Figure 4, there are 3 subsystems which are oil supply system, servo-
actuation system and power transfer unit(PTU). The oil supply system can be seperated to
three part, system 1 and system 2 are working system, and system 3 is emergency system,
it will not work, untial system 1 and system 2 break down. Servo-actuation system includ
the landing gear system, and other hydraulic working systems which are not considered in
this paper. The four dotted lines(red) in Figure 4 means the servo-actuation system and the
three oil supply systems.
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3.1. Normal Model

In this work, the hydraulic system of the A320 large passenger aircraft was adopted
as the simulation object, and LMS AMESIM was employed to build the hydraulic system
model, as shown in Figure 2. The hydraulic system of the A320 passenger aircraft is
composed of three relatively independent systems: the green system (system 1), blue
system (system 3), and yellow system (system 2). The green system is powered by the
left engine drive pump (EDP); the blue system is powered by the electric pump (EMP)
under normal conditions and by the ram air turbine (RAT) in the case of emergencies.
Furthermore, the yellow system is powered by the right EDP and an electric pump. The
main parameters used in the simulation are listed in Table 1. The number column in Table 1
represents the hydraulic components in Figure 4. A linear model was selected for the
simulations; all nonlinear problems were neglected. The normal simulation model was
built considering stable conditions for the system. Under these normal operating conditions
for the system, supply system 1 (Figure 2) and actuator 9 (Figure 2) were employed for the
normal-mode LG’s hydraulic system in the simulations and analyses.

Table 1. Simulation parameters for the A320 hydraulic system.

Number AMESIM
Element Key Parameter Value Meaning

1 signal03 Output 5000
Set the shaft speed to 5000 r/min, that
is, the zero-flow pressure of the pump

is 3000 psi.

3 accumulator_2 Gas precharge pressure (psi)
Accumulator volume (L)

1885
2.62

Accumulator reduces pressure pulses,
as an emergency pressure source.

4 presscontol01 Relief valve cracking pressure (psi) 3436 Pressure relief valve for
system discharge.



Actuators 2022, 11, 182 7 of 12

Table 1. Cont.

Number AMESIM
Element Key Parameter Value Meaning

5 tank01 Tank pressure (psi) 50 Booster tank, preboost to 50 psi.
7 pump13 Nominal shaft speed (r·min−1) 5000 Left engine drive pump (EDP).

11–14 pump13 Nominal shaft speed (r·min−1)
5000
4166

Right EDP, yellow system EMP, blue
system EMP, RAT. Rated pressure of

RAT is 2500 psi.

10 constant_3 Constant value 34.4738
PTU opens when the pressure

difference between green and yellow
systems is 34.4738 bar.

3.2. Fault Mode

The fault model was built according to the normal model, while considering five
different common fault modes: pump leakage (PL), filter block (FB), actuator inner leakage
(AL), servo valve block (SVB), and oil pollution (OP). The corresponding fault-mode
parameters are listed in Table 2. The specific parameter settings of the components in
this table were referred from a previous study [31]. Thus, the common faults of hydraulic
systems can be simulated by varying the parameters of the components.

Table 2. Fault simulation in the A320 hydraulic system.

Number Fault Category and
Category Number Key Parameter Normal Value Fault Value

6 Pump leakage—1 Equivalent orifice diameter (mm) 0.1–0.3 1–2
2 Filter blockage—2 Equivalent orifice diameter (mm) 5–7 3–4

9 Actuating Cylinder inner
leakage—3 Leakage coefficient (L·min−1·bar−1) 0–0.01 0.03–0.05

10 Servo valve blockage—4 Equivalent orifice diameter (mm) 5–7 3–4
8 Oil pollution—5 Air content (%) 0.1–0.3 5–15

This simulation model was built according to the pump leak model, considering
the oil leakage coefficient. To further understand the impact of the support fault mode
on system stability, different values were adopted, while keeping the other parameters
constant. Notably, pump leakage was selected as the fault mode, the normal value was
approximately 0.1 mm, and the failure value was 0.8 mm.

3.3. Simulation Results

Using oil supply system 1 (Figure 4) as the simulation system, a single actuator
(element 9 in Figure 4) was simulated and analyzed. The simulation time was 18 s, with
the actuator closed for 0–2 s, opened for 2–8 s, closed for 8–10 s, opened for 10–16 s, and
closed for 16–18 s, after which the simulation was halted. Pressure sensors were installed
at the pump outlet (Figure 5(a)), oil filter outlet (Figure 5(b)), and rodless chamber of the
actuator (Figure 5(c)). Considering pump leakage as an example, the pressure signal curves
obtained from the three sensors under the fault and normal conditions are depicted in
Figure 5.

Furthermore, considering oil filter blockage as an example, Figure 6 shows the curve
representing the differences in the pressures at the oil filter outlet and pump outlet under
normal and fault conditions.

More evident differences were noted between the normal signals and the fault signals
in the new feature map after making a difference. Hence, adding the original feature
map to increase the number of effective features is more conducive to fault diagnoses
and classification.
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4. Analyses and Comparison
4.1. Data Collection and Processing

For a sampling period of 0.01 s, 1800 data points can be collected within 18 s for a
curve; in this manner, three curves can be obtained using three sensors located at different
positions. For multiple simulations, normal and fault classes can be used to enhance
datasets by fine-tuning the parameters of the appropriate-range classes. These data were
processed according to the flow chart shown in Figure 4. Each sample contained three
curves (i.e., three sensors) with a length of 6 s. To simulate the collected signals under actual
situations, original signals were added to the dataset after including a certain amount of
uniform-distribution noise and normal-distribution noise. In this study, 80% of all the
samples were used as the training set for the CNN, and the remaining 20% were used as
the test set to verify the generalization effect of the network.

4.2. Analysis of Fault Diagnosis Results

The confusion matrices of 1DMCCNN-v1 and 1DMCCNN-v2 for the test set are
shown in Tables 3 and 4, respectively. The lower right corner of the table represents the
total accuracy. Owing to the difference between the feature diagrams, under certain fault
categories, the precision and recall of the v2 network are markedly higher than those of the
v1 network; the overall precision is also improved.

Table 5 lists the optimal values for the network parameters, where lr is the learning
rate, and batch size refers to the number of batch samples. The dropout rate refers to the
random resetting of the neuron output to zero with a certain probability during training,
which can help reduce overfitting. The optimal parameter was obtained by an actual
simulation of the aircraft’s hydraulic system and multiple experiments.
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Table 3. Confusion matrix for 1DMCCNN-v1.

Real

Prediction
0 1 2 3 4 5 Recall /%

0 351 0 0 1 1 1 99.2
1 0 61 0 0 0 0 100
2 1 0 75 1 1 0 96.2
3 1 0 0 59 0 1 96.7
4 1 0 1 1 54 0 94.7
5 2 0 0 0 0 77 97.5

Precision /% 98.7 100 98.7 95.2 96.4 97.5 98.2

Table 4. Confusion matrix for 1DMCCNN-v2.

Real

Prediction
0 1 2 3 4 5 Recall /%

0 383 0 0 0 1 0 99.7
1 0 61 0 0 0 0 100
2 0 0 78 0 0 0 100
3 0 0 0 61 0 0 100
4 2 0 0 0 55 0 96.5
5 1 0 0 0 0 78 98.7

Precision /% 99.2 100 100 100 98.2 100 99.4

Table 5. Optimal parameter values for 1DMCCNN.

Parameter Name Value

Convolution kernel size (1 × 100, 1 × 20)
Convolution step length (5, 2)

Pooling filter size (1 × 2, 1 × 2)
Pooling step length (2, 2)

Initial learning rate (lr) 0.001
lr decaying lr = lr × 0.9/epoch
batch size 128

FC layer dropout rate 0.4
Training epochs 20

Optimizer AdamOptimizer

To demonstrate the effect of the multichannel convolution in the multisensor fusion,
fault diagnoses were conducted using the pump outlet and oil filter outlet sensors, without
the actuator rod cavity. The input layer of the CNN was changed to accept one-channel
data, rather than three-channel data; the other parameters remained unchanged. Figure 7
shows the results of the fault diagnosis and classification using different sensor pressure
signals. A, B, and C represent the sensors located at different positions.

As is evident from the graph, the precision when using a single sensor is considerably
lower than that when using multisensor fusion. Moreover, the errors caused by the sensors
located at different positions exhibit a clear tendency. For instance, the precision for leakage
in the pump remains at 100% when using the pressure sensor at the pump outlet alone.
This is because the pressure signal from the sensor contains sufficient information for
diagnosing faults. However, the precision for a servo valve blockage and oil filter blockage
are significantly lower; this is because these sensors do not offer sufficient information
pertaining to these two faults.
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4.3. Comparison of Proposed Method and Conventional Machine Learning Algorithms

One-dimensional data of 1 × 1800 can be obtained via transverse stitching of the
pressure signals from three sensors, which can then be input into the backpropagation (BP)
neural network and converted into a three-channel 2D map of 20× 30× 3; this can be input
into the 2DCNN. Figure 8 presents the decline in the loss during the training process for
1DMCCNN-v1, 2DCNN, and the BP neural network. It is evident from the figure that the
results of 2DCNN are slightly worse than those of 1DMCCNN-v1; further, the expression
ability of the BP neural network is clearly inadequate.
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Table 6 compares the 1DMCCNN-v1, 1DMCCNN-v2 algorithms with several common
machine learning algorithms. As can be seen, the test set precision of 1DMCCNN-v2 is
the highest; its training speed is only second to that of the BP neural network, with regard
to algorithms that need to be trained. Furthermore, the model is smaller than most other
models, with the exception of the linear SVM.

Table 6. Comparison of common machine learning algorithms.

Algorithm Training
Precision Test Precision Training Time /s Model Size /MB

1DMCCNN-v1 0.990 0.982 16 4.52
1DMCCNN-v2 0.998 0.994 16 4.66

2DCNN 0.986 0.957 24 15.5
BP 0.649 0.647 7 6.83

SVM 0.902 0.732 46 0.084
KNN 1 0.903 needless 82.6
LSTM 0.952 0.943 36 8.46
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5. Conclusions

In this paper, an improved 1DMCCNN-based design method for hydraulic systems
was proposed. A new hydraulic system was built using AMESIM; this model was used to
simulate the LG’s hydraulic system of an aircraft under normal and fault conditions; the
fault model of the system involved five types of faults.

In this work, an improved 1DMCCNN method was employed to diagnose hydraulic
system faults. Under this approach, pressure signals were extracted from sensors located at
different positions in the aircraft’s hydraulic system; these signals were normalized as mul-
tichannel data and input into the 1DMCCNN via one-dimensional convolution operations.
The simulation results proved the effectiveness of the improved 1DMCCNN method.

Notably, differences between the sensor signals can strengthen effective features and
improve the precision of fault diagnoses. Further, a multichannel convolution structure
can help realize multisensor fusion, which, in turn, can effectively improve the precision of
fault diagnoses, as compared with that when using a single sensor. Moreover, compared
with conventional machine learning algorithms, the proposed algorithm achieved the
highest accuracy and exhibited good performance in terms of training time, model size,
and other aspects.

Although the method in this paper achieved good results, it is worth pointing out that
the 1DMCCNN method is a data-driven fault-diagnosis method, which suffers from data
imbalance in the process of data acquisition. Moreover, under the actual working status of
the aircraft’s hydraulic system, the fault data and normal data are seriously imbalanced,
and the time under the normal flight status is much greater than that under the fault
status. In other words, in most cases, researchers encounter a fault data imbalance, which
decreases the accuracy of fault diagnosis. In future work, the authors will pay attention
to the data imbalance problem and find a way to provide an effective solution to the data
imbalance between the fault data and normal data of the aircraft hydraulic system.
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