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Abstract: A scheme for modelling and controlling a two-dimensional positioning system with a
topology-optimized compliant mechanism is presented. The system is designed to ensure a relatively
large workspace and exhibit robustness against system nonlinearities. A detailed design procedure
based on topology optimization is presented, and a nonlinear description of the designed mechanism
is developed as a starting point for further precise position control. The theoretical model is shown
to be suitable for a considerably larger working range without losing consistency. A backstepping
controller is employed to manipulate the nonlinearities in the model resulting from the geometrical
and material nonlinearity of the mechanical structure. The hysteresis of the piezoelectric actuator
is also taken into consideration. An experimental verification of the controller demonstrates that
the proposed design approach improves the performance of compliant mechanism and satisfies the
needs for precision positioning.
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Integrated Development of a Compliant mechanisms [1,2] have been widely used over the last few decades as

a promising routine for transforming motions [3], forces [4], or energy [5,6] from input
to output. Unlike rigid-body mechanisms, compliant mechanisms are monolithic and
gain their mobility from the deflection of flexible members rather than movable joints.
This offers increased precision and reliability combined with reduced wear, eliminating
Academic Editor: Eniko T. Enikov the need for lubrication. Such systems are often designed with certain aims, not only at
the macro-scale, such as large-input displacement amplification [7] or sufficiently high
output stiffness [8,9], but also at the micro-scale, such as micro-electromechanical systems
(MEMS) [10] and surgical applications [11]. As design problems become more complicated,
the continuum topology optimization (TO) freeform design methodology has also become
a popular routine for such mechanisms [4,12-16]. In TO, the traditional trial-and-error
design approach is replaced by an automated iterative design approach, which determines
the optimal material distribution in a finite-element model while minimizing a given cost
function [17,18]. This allows for the design of components or systems based on prescribed

® loads and boundary conditions, which harness rigorous optimization and simulation
schemes to achieve superior performance.

Piezoelectric-actuated compliant mechanisms composed of piezoelectric actuators
(PEA) and TO compliant mechanisms (CM) are one of the promising applications in
This article is an open access article  PT€cision positioning, owing to the fast response and extreme positioning resolution of
distributed under the terms and ~ PEAS. These systems also gain flexibility in applications from the TO method because,
conditions of the Creative Commons  theoretically, they can take arbitrary design domains and boundary conditions.
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nonlinear and complicated. This drawback of the TO method, together with the inherent
hysteresis nonlinearity of PEAs and system uncertainties, leads to challenges in controlling
such topology-optimized CMs, consequently limiting their practical applications. Further,
although researchers have made significant advancements in topology-optimized CM design
with multiple conditions, constraints, or output ports to composite motion [23-25] or to gener-
ate paths [26], the design of an optimization objective for maximum output workspace, which
is a crucial attribute for multi-axis positioning stages, remains undone.

In this study, we aim to develop an integrated effective design and control scheme for
multi-DOF positioning stage based on topology-optimized compliance mechanisms with a
novel TO objective function designed for large output workspace. Firstly, the TO process is
performed based on a nonlinear finite-element analysis. Secondly, a reduced spring-mass
model with nonlinear disturbances is developed to cover the dynamics of the designed
CM. Then, a MIMO backstepping robust controller is employed to achieve a high trajectory
tracking performance. The output motions are not deliberately decoupled in the TO process;
rather, the CM gains the ability to composite motions by tangent space modeling of the
controller. The controller design process starts from the bounded-input-bounded-output
PEA systems, which then serve as an ideal input for a new controller that stabilizes the
subsequent compliant mechanism, making up a robust backstepping controller [27]. An
experiment verification process is also given afterwards. The resulting system is intended
to greatly extend the capabilities of such TO compliant mechanisms.

2. Topology Optimization

The topology optimization process in this study is based on the solid isotropic material
with penalization (SIMP) [28,29] approach. The basic idea is that each finite element
is associated with a fictitious pseudo-density variable p, such that 0 < p < 1, which
parameterizes the topology optimization procedure. The general algorithm is shown in
Algorithm 1, and in this section, we will follow the design steps.

Algorithm 1 SIMP algorithm for topology optimization. SIMP Algorithm

Initialization:

Generate mesh and boundary conditions, define material properties, initialize
pseudo-density

Main iteration loop:

While not convergent do

Finite element analysis

Objective and constraints evaluation

Update density

End while

Evaluation of results

2.1. Boundary Conditions and Model Specifications

The first thing to do is to specify the boundary conditions of the design domain.
Consider a standard compact setup from previous research [30,31] for a piezoelectric-
actuated compliance mechanism as the input unit of the design domain, as shown in
Figure la, and assume the specifications of the PEAs, as shown in Table 1. The total
dynamics of a thus-designed PEA set can be described as a single-DOF spring—-mass
mechanical system, given by:

MinXiy = Fiy — f— Fres, (1)

where m;,, is the mass of the output blocking plate; F;, is the input force produced by the
PEA unit; Fes (xl-n, J'cin) ~ Kiyxiy + CinXjy, is the lumped restraint force with Kj, and C;,
the spring stiffness and the damping coefficient of the flexure blocking plate, respectively;
and f is the output force of the total set, which is the opposite direction of the force to be
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applied on the compliant mechanism. The force F;,, generated by the PEA can be modeled
by a compressive spring according to the following:

Fy = era - 0x, ()

where Kpgu is the stiffness of the PEA and dx is the difference between the nominal load-free
output x,0, and the actual output x;,,. Substituting Equation (2) into Equation (1) yields
the total dynamic model of a single PEA set, as follows:

MinXiy = eru - (Xpom — Xin) — f = Fres (xin/ Jkin)- 3)
(a) (b)
Fires
—
Fin f

—>
|
|
il |
.
=
Dhinge 1 Xip !

Figure 1. (a) Schematic illustration of a single PEA set; (b) Design parameters and simplified model
of the output port.

Table 1. Specifications of the PEAs.

Symbol Quantity Value
Kpea Stiffness 250 [N/ pm]

max Xuom Max stroke @ 60 [pm]
fotock Blocking force 1.5 x 10* [N]
Rhinge Hinge radius 0.75 [mm]
Dhinge Hinge thickness 0.5 [mm]

2 The max stroke is the maximum of the nominal output x;,,,; of a given PEA.

In this work, we focus on the study of a simplified 2-DOF positioning application.
This process can be easily generalized to higher DOF and higher dimensional designs [32],
and the basic ideas are similar. The whole setup is shown in Figure 2a.

The input forces applied to the design space are equal in magnitude but opposite in
direction to the reaction force of the compliant mechanism. Because the two PEAs are fixed
to the platform bed and the output of the PEAs are most likely to be horizontal, the inputs to
the design domain can be assumed as forces parallel to the x-axis on roll supports, as shown
in Figure 2b. In addition, we make the following assumptions concerning the input forces
and the reaction forces (f;s) of the compliant mechanism to simplify further discussions:
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Figure 2. (a) Schematic illustration of a 2-DOF compliance set; (b) Simplification of the design domain
and boundary conditions.

Assumption 1. The input forces to the design domain are balanced by the internal residual forces
at the corresponding input nodes.

In other words, f;s can be represented by the deformations and accelerations of the
compliance mechanism. We will return to this assumption in the next subsection.

Assumption 2. The resonance frequency of the design domain is much higher than the input
frequency; therefore, the dynamics of the PEAs and the designed compliant mechanism can be
separated without loss of generality.

Suppose that the output vector u,,; is decomposed into orthogonal vectors x,,; and
Y,,; along the x-axis and y-axis, respectively, and that the PEAs are almost identical with
only minor differences. Typical working conditions, as shown in Table 2, summarize the
relationship between the PEA stroke direction (— or <—, i.e., along or against the direction
of the positive x-axis) and the output y,,.

Table 2. Typical working conditions.

Working Conditions PEA1 Stroke x;,; PEA2 Stroke x;;,»

. . Maximum — —

Regular configuration - Yout
Minimumy,,, — —
. . Maximum — -

Reversed configuration o Yout
Minimum y,,, — —

The reversed configuration assumes that y,,, is along the negative y-axis under compressive inputs, useful when
design domain width w is limited.

2.2. Topology Optimization Process

Consider the 2D design problem of compliant mechanisms to maximize the positioning
workspace, which occurs when the mechanism is used for precision positioning [33,34],
and the whole process is performed in a static sense. The selection of optimization and
material parameters is given in Table 3 [35].
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Table 3. Algorithm and material specifications for the TO method.

Penalty p 3
N e Max iteration 1000
Optimization specifications
Pseudo density lower bound ppin 1x107°
Discretized steps p, 40
Length 1 12 [cm]
idth
Mesh specifications Width w 6 [em]
Thickness t 1 [em]
Discretization n; X ny = 120 x 60
Young’s modulus E 73 [GPa]
Min modulus Ej, 2 1 [kPa]
Poisson ratio v 0.33

Material properties

Material density pg 2.71 x 103 [kg/m?]

Initial hyper — elastic coefficient ¢; 1 x 1075E [GPa]

Hyper — elastic strain threshold e* 0.5

2 A minimum modulus for the design domain material is assigned to void regions to prevent the stiffness matrix
from becoming singular.

Suppose that the inputs given as in the previous section can be discretized into p;, steps
and can simultaneously satisfy the extreme working conditions listed in Table 2. Then, each
pair of inputs at step p yields a specific output vector, as shown in the schematic illustration
in Figure 3. The aim of maximizing a reachable set of the mechanism is equivalently
turned into maximizing the interior area bounded by the static trajectory, which is, in
general, an irregular polygon. The area of the polygon is given by the g-determinant of the
individual output vectors uoj, j = 1,2,..., pm at each sampled step along the perimeter of
the workspace, as the following [36]:

1 Pm
] = gdet(un,- . -ruopm) = > Zuoj X Uojt1, 4)
j

where the summation is cyclic, such that u,,, 11 := #o1.

Maximal area

Theoretical Input

40— — — 60 y
! has ! max ; 23D
M A A A [l o
— [ -o—Xlnl ) — p
g 20f p § 30t
3 1 & —
= 11 ’ =
3 Or 11 ,l - 0
= 11 S = ‘
g" 11 ’ 8‘ N
— 20k 11 8 30F
1
U 7 N
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: b steps -60 -30 0~ Vinin 30 60
m L Output x/[um]

Figure 3. Proposed discretized input in this study and the corresponding L, output vectors on the

perimeter of the workspace.

The constraints for the optimization process are imposed on both the input dis-
placements and the total strain energy: the maximum stroke of the PEAs is limited to
max X;; = 60 um, and the stroke is smaller in practice because of the assembly error; the
strain energy, L, is also constrained, with a coarse upper bound, Xy, in a manner similar
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to that described in previous research [37,38] to avoid fatigue failures. As a result, the TO
problem of maximizing | can be formulated as follows:

max |
p

Pm
s.t. Z|P]—R](u],p])’ =0
j : ®)
<X
Uiy < MaXx Xpomi, 1=1,2
0< Pmin < p <1

In that the summation element |P; — R;(uj, p;)| in the first constraint of the above
Equation (5) is always positive, the following holds for all independent variables u; and p;:

The above Equation (6) is a nonlinear ordinary differential equation system for the
unknown displacement field # and design parameter p within the calculation domain. The
solution of this differential equation system is usually not analytical, and a conventional
way is to approximate the displacement field by performing iterative Newton—-Raphson
method on the spatial discretization of the design domain [39,40]. A brief introduction
of the nonlinear finite element synthesis including the additive hyper-elastic element
modification to suppress instability during the optimization process [41] can be found in
Appendix A.

Now consider the discretized finite element expression of the design domain. A vector
LI consisting of all zeros but 1 at the index of the output nodes can be used to select the
desired output nodes from the discretized displacement field i, represented by:

i, = Ll (7)

Since the following derivations will be mainly on this discretized representation, we
will drop the hat representing the discretization process for simplicity. Thus, the sensitivity
of the objective function can be represented by the summation of the sensitivities of the
individual cross products, as follows:

887] _ lpzma(uojxuojﬂ). ®)
[ i pe

By introducing a set of vectors of the Lagrangian multipliers Aj, i=12,...,pm for
each output u,, and assuming that the solution of Equation (6) has already been found via
the Newton-Raphson method, the term A]-T (R;(u;) — P;) is equal to zero and can be added
to the displacement vector without changing the result, yielding:

9J; _ la[(u”f+AJT<Rf_Pf)) x (”OJ'H +)‘]‘T+1(Rj+1 _Pj+l))}

9
dp. 2 9pe ©)

We define the total residual for the jth load step as follows:

§R](u],p) = P]‘ — Rj (uj,p). (10)
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Then, the sensitivity of this modified function can be given by:

3; duj IR, du; T
e = ’(LOJ A (au 3. +3 e )) X (“0j+1 +/\j+1§R/'+1)

IR du; IR
+5 (o + AT aej)x(Lo]«H AJTH( LS 4 a;e“)).

(11)

I
“Ope

in accordance with Ref. [42]. By doing some arithmetic and transformations, and introduc-
ing the tangent stiffness matrix Kt as the linearized approximation of / , we have:
ijg = <(L0]+/\ )dpl +)\j Wj) x (”0j+1+/\j+1§Rj+l)+

1 T Ry duj T Ry

Z(MOJ‘JF)"?RJ‘) x (<L0j+1 +/\]+1 au]H) di)g /\]+1 aée )
du; oR;

%((LO] +A; KT]) o +)\]T 9pe ) X (uoj+1+/\]'T+1§Rj+l)+

d R
1(”01+A ER) (<L01+1+/\/+1KT1) St ’\JTH 8/)?)

(12)

Notice that the Lagrange multiplier A;s can be chosen freely, such that Lo; + AT Ky; = 0

is easily satisfied, then the coefficient term before Ccll’;: can be eliminated immediately. As a

result, we can write the sensitivity of the optimization objective regarding working area |
in the following form:

1 Pm

3 o IR
G ;(A]T % (o1 + AT Ry ) + (o + ATRy) < AT, TE) (13)

Since the evaluation of the gradients only requires the accuracy of a tangent space
]
approximation [37], the approx1mated ! can be given by the following:

oR;

apg] = —ppb ' (Eo— Epin)Krjtt;. (14)

The design parameter is updated using the multi-criterion method of asymptotes
(MMA) [35,43], in which case the sensitivities of the constraint functions are also needed.
In this study, the input displacement sensitivity is almost identical to the expression given
by Equation (13) [17], except that the selecting vector is changed to L;, which is defined
for the input nodes in a similar sense to Equation (7). The total strain energy is given by
the following:

T = u'R(u) ~ pPa’ Krit. (15)

The sensitivity of Equation (15) is approximated by its linear part in the tangent space,
determined elementwise [44] as follows:

0Xe
ope

-1 . N
= *PPE ueTKeTue~ (16)

By performing the iterative optimization process as given in Algorithm 1, the results
of the TO are given in Figure 4. The initial calculated boundary of the output workspace is
indicated by the dark blue parallelograms, and the final optimization results are indicated
by the red parallelograms. The area of the viable output region is enlarged by a factor of
over two with respect to the initial configuration. This intermediate result gives us an initial
perspective on how the designed compliant reacts to certain input loads and will serve as
the start point of the order reduction and controller design process in the following sections.
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Figure 4. (a) TO results with extreme points set in accordance with the normal configuration in
Table 2, and (b) TO results with a tilted output region w.r.t (a), and the calculated output workspace
distribution evolution during the iterative optimization process.

3. System Modeling and Controller Design

The basic idea of the controller design for the whole positioning system can be outlined
by simultaneously suppressing the influence of the PEA units and the nonlinearities of the
designed CM. Considering the cascade nature of the system, i.e., the output displacement of
a single PEA is first described as a reacting force on the output plate of the unit, which then
serve as the input load to the CM, a robust backstepping controller is a suitable candidate
for the controller structure design; by applying such controllers, the dynamics of the PEA
and the passive CM part can be treated separately.

3.1. Inverse Multiplicative Compensation Scheme for PEA

By a careful selection of the compensation controller, the outputs of the PEA units
can be seen as ideal displacement sources. Feedforward control is a common approach to
compensate for the hysteresis effect [45,46]. The Prandtl-Ishlinskii, Duhem, and Bouc-Wen
models were developed to describe the hysteresis effect, which is then used to construct the
inverse controller for compensation of effects of hysteresis [47-50]. These nonlinear models
motivated researchers to develop robust feedback controllers such as the sliding-mode
controller [51,52], damping controller [53], disturbance observer [31], and adaptive robust
controller [54,55]. In these control approaches, the hysteresis nonlinearity is treated as
a disturbance to the tangent space systems. Specifically, in this section, an asymmetric
Bouc-Wen model [49,56] is chosen to simulate the nonlinear hysteresis of the PEAs.

The Bouc-Wen model is based on an artificial state variable /. The model represents the
hysteresis relationship between an excitation F and the state &, according to the following
differential equation:

dh _ dF
dar — Abwﬁ - Bhw

9=t = Ty S I + 8y F s (5F),

1, x>0 (17)
sgn(-)&=¢ 0, x=0,
-1, x<0
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where Ay, is the amplitude of the restoring force, By, and I'y,, control the shape of the
hysteresis loop, n controls the smoothness of the transition from elastic-to-plastic response,
and ¢ is the non-symmetrical factor.

For PEAs, the excitation input F in Equation (17) is replaced by the applied voltage U,
and # is set to 1 in accordance with the conventional practice. As a result, the Bouc-Wen
model for PEAs can be expressed as follows:

{ Xpom (£) = dpU(t) — h(t

(
18
dh = Abwdiu C(ITIZI (18)

)
dr dar _Bhw ’h_rbw%‘h‘ +5bwu sgn(%[) ’

where X0, is the displacement output. The parameter d, represents the piezoelectric
coefficient and is strictly positive. A detailed parameter identification process of the
involved parameters for the PEAs used in this study can be found in Appendix B; a list of
the estimation results is also given.

The output of the PEA unit can be compensated separately following the inverse
multiplicative scheme given by previous research [31,57,58]. Note that the state variable &
can be rewritten as:

h=H(U), (19)

where H(U) is a nonlinear operator characterized by the second equation in Equation (18).
Then, the Bouc—Wen model can be reduced to the following;:

Xpom = dpU — H(U). (20)

Suppose that we have a desired reference x,omm,. Extracting the value of U that meets
the reference yields the following:

u (xnomd + H(U)) . (21)

1
dp
An outline of the total inverse multiplicative compensation diagram is given in Figure 5.
Thus, in the following designing process, the output of the PEA units will be simplified to ideal
displacement sources with bounded disturbances and uncertainties, which can be addressed
suitably by a robust controller.

Xnom 4

i U d anm

H(e)

Inverse multiplicative compensator

Figure 5. Inverse multiplicative hysteresis compensation diagram for the PEAs.

3.2. Controller Design

The controller design process is based on the total system dynamics considering both
the PEA units and the TO designed compliant mechanism. Since the PEA units can be
treated as ideal displacement sources with bounded disturbances, the discussion of this
subsection will be focused on the dynamics of the compliant mechanism and the deduction
of the actual form of the robust controller.
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3.2.1. Reduced Order System Dynamics

Although there are handy controllers designed for finite element models considering
fuzzy logic [57] or for set-invariance under uncertain constraints [58], it is more straightfor-
ward to consider the tangent space of the compliant mechanism and regard the bounded
nonlinearities as disturbances and deviations.

Take the second result in Figure 4 as an example, we denote by e = T(0) [?] the
2

cosf  sind
—sinf cosf
depicted in Figure 6a. We intuitively guess the geometric relation between the input
displacement x;, = }_; x;,,;E;, the output compliant mechanism deformation u, = }_; uy;E;,
and the actual output g = }; g;e; in a static sense. The actual output is then represented as

local basis of a tilted output configuration with T(0) = { ] the rotation matrix

Loy )
a vector sum of the moving spatial frame x = {2 (¥in1 (;_ xl"Z)] and the system deformation
u, as follows:
Lo .
g=x+u, = [2 (¥imt +uxl:2) * “01] . (22)
0
(€)) (®)
Nl foz
“ | qul
— -
g % M
\"+, ' Ying K Xiny
e) TEz o1
€1 K
—— = — = = —p— - — 9o
xinl -\ El xinz

Figure 6. Schematic illustrations of (a) The 2nd-order spring-mass model of the compliant mechanism
and (b) The tilted output configuration with rotation angle of 6.

Consider the geometric properties of the compliant mechanism setup, the output g
reaches its extreme value when the input boundary displacements satisfy x;,,1 = —xj;2. In
this case, the theoretical output along the x-axis of the spatial frame also vanishes, and the
output u, = [Uo1, 2] T canbe approximated by its discretized tangent space approximation
in accordance with the solution of Equation (6). Consequently, the original load P can also
be replaced by a complementary displacement constraint [59,60], satisfying:

P KT KT u
p— [Pr ]~ [Krss fS} { f}, 23
|:Ps :| |:KTsf KTss Us ( )

where the matrices Kt liL Ky fsr Kr, fr and Krss are partitions of the original tangent stiffness
K7 introduced in Equation (11). Specifically, K¢ is the restrained structural stiffness
matrix, which is square and symmetric, Kt ¢, and Ky are the off-diagonal submatrices
relating to the known nodal displacement us to the unknown reaction forces P on the
free nodes. Then, the output deformation of the compliant mechanism can be written
as follows:

2x1

sl =402 L0<|f A (N-2)x(N-2) [ 1(N-2)
2x(N-2 1 (N=2)x(N-2 N—-2)x2 %
= [Lo|f] [(KT)ffl} [Kfs} [xin}z ! (24)
— [DC]ZXle‘n,
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where L,| f is the selection vector given in Equation (7) restricted to the subset uy C u,

o= {0411 X12

&1 &2
of finite elements of the design domain (including the elements with p, ~ 0), and s = 2
corresponding to the two input displacements in our case. Thus, the elementary form of
Equation (24) is given as follows:

] is the transfer matrix from the input to the output, N is the total number

Upl = X11Xin1 + X12Xin2

} (25)
Upgp = K21 Xjn1 + X202 Xin2

We consider the following conditions:

i Xin1 = Xin2, NO compressive force exists, and u, = 0;
ii.  Xjy1 = —Xin2, the spatial frame x = 0, and u, = ¢q,,.

When the output displacement reaches a maximum, the angle between u, and the
y-axis is presumed to be 6, in which case Z—Z; = tan . We then have the following two sets
of linear equations:

{ X11Xin1 + @12Xi1 = 0 N { a1 = —aq

K21 Xiu1 + &22Xiu1 = 0 K] = —a&2) 26)
K11max x; — X1oMmaxX X; =
{ 11 inl — &12 in2 = o1 _, a1 = — tan Oy .
&p1max Xjuy1 — &ppMaX Xju2 = (o2

This result indicates that the actual value of the matrix szz can be represented by
a single value of ayy. Thus, we can conclude the static relation between the input and the
output by an approximation of a;, which is given by the ratio of the maximum output and
the maximum compressive input as follows:

K=y R Max o2 = Max fo2 ’ (27)
max(Xjy1 — Xjp2)  2Max X1
yielding
tanfx —tanfa
a(0) ~ { N ﬂx } . (28)

This result is especially useful when the full systematic model is unknown, so that one
can quickly provide an initial guess to the system’s kinematic properties. We provide an
approximation of the actual output of our application in the following form:

q:= | = A0, (29)
H

where A(0) = .

When the system is working dynamically, i.e., tracking a certain output trajectory,
the whole compliant mechanism can be reduced to a dynamic spring-mass system in
correspondence with Equation (29) and Assumption 1, given by:

% + tan 6 % — tan@rx}

Mgy = 2Ky, (41 = Go1) +2Cy,, (ql - q,1) + cross terms (30)
Mi,» = Ky, (92 — Go2) + Cyoy (45 — §,2) + cross terms

where K;0;5 and Cy,;s are the lumped stiffness and damping coefficients of the spring-mass
system along the direction of g,;, i = 1,2, respectively, M is the mass of the system, and
the cross terms denote the influence of the spring between the two output directions. An
illustration of this reduced system is given in Figure 6b. We can treat the cross terms

1(902)
92(q01)

in Equation (30) as a disturbance term in the form of A; = [ } , and we leave the
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structural analysis of the cross terms for future research. For simplicity, we now consider
the normal configuration, where tan § = 0. The expansion of Equation (29) yields a direct
tangent space approximation of the relation between the input x;, and the system output
4o as follows:

M, & = A, + K(Agxiy — 4,) + C(Aokin — 4,), (31)
where
M 0 _ [2Kg, O
m=1o <=M o]
2Cy, 0 T (32)
— [} — — |2 2
=[G o a=a0= 2]

By including the developed model for the PEA units, we denote by f the interactive
force between the inputs x;,;,i = 1,2, and the output g, as follows:

Fe fl} _ [anl(xinl = q01) + Cgoy (¥in1 — 701)} . 33)
2 K%l (xi?lz - qol) + quz (xin2 - %1)

For the two PEA sets, we already have the matrix form of Equation (3):

Xin = M 'KpeaXpom — M- ' Kipxiy, — M ' Ci;
i
Xin n peaXnom in BNinXin in “intin

_ _ . (34)
+Min1Kin,qqo + Minl Cin,l]qor
where
o — inl :|,x _ |: Xnom1 ]
" l: Xin2 o Xnom2
_ Min1 0 _ eral 0
Min = [ 0 My ]'Kpm { 0 Kpea
K, + Kin1 + Kpeat
K. — Jo1 in pea 35
" [ 0 qu + Kinz + eraz ( )
c. — | G +Cinm 0
" 0 Cgor + Cin2

K, O C 0
Kin, = [ fo1 ]/ Cin, = |: ot :|
1 Ky O d Csr O
are the actual output vectors, mass matrix, stiffness matrices, and damping coefficient

matrices, respectively.
Thus, the total system dynamics can be written as a combination of Equations (31) and (34),

based on Assumption 2. Denoting the state variable vector by z = [% d, Xin J'cl-n] T and

the input vector u = [xnoml Xnom 2] T, we obtain the following linearized state-space form
of the total system dynamics:

. 0
z=Bz+ {D}quA, (36)

where B and D are the corresponding system matrices, whose details can be found in
Appendix C,and A = [A,  A¢] " is the model error, attributable mainly to the following;:

i finite-element modelling error erg
ii.  piezoelectric modelling error epg
iii. asymmetric modelling error € 45y m
iv.  systematic noise ngys

V.  measurement error .

Additional uncertainties, such as assembly error and manufacturing defects, are also
possible in practice. In this study, we only treat these errors as bounded (i.e., || Al < d7),
matched, and Gaussian for simplicity.
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3.2.2. Backstepping Robust Controller

In a practical setup, not all state variables in Equation (36) are measurable. In our case,
specifically, only the output g is measured. To build an explicit control scheme, estimates of
the state variables are essential. Therefore, we utilize K-filters [27] to provide exponentially
convergent estimates of the unmeasured states. We design the observer to obtain the
estimate Z as follows:

& = Bo2+ ko121 + kepzo +bu+ A (37)
!/:[21 22 },
where
Byp=B—kn[l 0 --:]—kep[0 1 0 -],
(38)

v [2).

By choosing a suitable k,,, we maintain the stability of observer matrix By. Thus, there
exists a symmetric and positive definite matrix P such that:

PBy+BlP=-1, P=P" >0. (39)

Following the design procedure in [27,61], the K-filters are given by:

5=7+0Q', (40)
where _
¢ = Bol + ke1z1 + ke2zp
- T d 0 | |upe (41)
_ T 11 1€7
Q0 =B+ { 0 dzz] [Hzes]'

and where e; denotes the ith standard basis vector. The state-estimation error e = z — Z is
readily shown to satisfy the following:

¢ = Bye, (42)

and will decay exponentially to zero.
Equation (33) can be modified into a state-space form representing a cascaded connec-

tion of two subsystems by selecting the state variables as # = [zl Zo Z3 Z4 Z5 26] T
and = [z7 zs]T.
7= Bun +Bned +4y,

. (43)
¢=Du+Beny+Beel+ Az
We use the following nonlinear input transformation:
u=D""! |:— <B£ﬂ’7 + ngé‘) + U] ’ (44)

where Bz, and Bg; are the estimation of the coefficient matrices of Bz, and Bg; evaluated

atstates § = [z1 zp 23 24 Zs 26]T and & = [27 28]T. All the unmeasured state
variables, i.e., Z;s, are replaced by their estimations for the controller input calculations.
Since the estimators are designed to converge asymptotically to the real value of the

state variables, we will drop the hat above the state variables # and Z unless specifically
mentioned. To reduce Equation (43) to the pure integrator from the new input v to g,
such that: .

=, (45)
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we must introduce an stabilizing control law a(#) such that the subsystems in Equation (43)
can be stabilized within finite time, as suggested in ref. [27]. The idea behind the selection
of this intermediate control law is straightforward:

i.  ¢isthe actual input of the first subsystem in Equation (43) and is controlled by v; a is
the desired input control law of the first subsystem in Equation (43). Therefore, if we
can find some v such that ¢ is able to track a very closely, then the first subsystem in
Equation (43) is automatically stabilized.

ii.  The same for the second subsystem in Equation (43), where the problem turns into
finding u from the same v based on the relation given in Equation (44).

Therefore, the ultimate goal is to find this specific v satisfying both conditions. How-
ever, before that, we need to solve for the exact form of the ideal control law a(y). We
denote €; = 5; — n15; = z;j — z4;, i = 1,2, the tracking error between the output node #; = z;,
and the desired trajectory #4; = z;;. The relative degree of the total system is 2 [62]. A
selection of the feedback error term s = € + kce yields the total error dynamic in the
form of:

si\7,a(n), ¢ 1a | + D1
s = . , (46)
sa\ n,a(n),6,ma ) + Do

where a(#) is the desired input for the subsystem in Equation (43), as discussed; the 5 is
used specifically to avoid ambiguity that considers the control Lyapunov function (CLF):

1

V(n) = 5 { 2| (47)
2]

The path derivative of the CLF with respect to the solution #(t) is as follows:

5151

5262 (48)

i) = |

The desired controller output a can be determined further as the combination of a
linear feedback term a,;, that expresses exponential suppression of the tracking errors and a
robust term as to compensate for the systematic errors, in the form of:

a = ay + as- (49)

This kind of separation gives us additional flexibility to adjust the control law for better
performance. Thus, the expression of a can be deduced by solving the inequality assuming
that V(57) < 0 always holds in Equation (48), satisfying the Lyapunov stability criterion.

Note that there is also a deviation between the actual input ¢ and its desired value a;
let €, be this deviation:

€ =¢C—a. (50)

Augmenting Equation (47) with a quadratic term of the error variable €,, we obtain a
CLF for the whole system:

1

2
Vol §) =V + 5|7 61

The path derivative of V, is computed as follows:

' ' €a1€a1
Vo=V S 52
N (11) * |:€a2€oc2] 2)

Again, we choose to separate the controller input v into two parts, such that:

U = Uy + Us. (53)
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where, same as Equation (49), v, is the proportional feedback stabilizing controller input
and v; is a robust controller that eliminates the effects of the modelling errors. The expres-
sion can also be deduced by assuming that Equation (52) always holds. We denote the
approximation of the calculation of the system input as & = v, + vs. The system input fol-
lows from Equation (44) and this completes the design of a backstepping robust controller
for the simplified spring-mass model that was developed for the compliant mechanism.
A schematic illustration of the whole closed-loop system with the backstepping robust
control law is shown in Figure 7. A detailed deduction process for the controller design can
be found in Appendix D.
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Figure 7. Schematic illustration of the total closed-loop system. The controller consists of a general
state feedback controller to suppress the tracking errors and a robust controller to compensate for the

nonlinearities occurring in the system.

4. Experimental Results
4.1. Experimental Setup

Experiments were carried out on a 2-DOF compliant setup, as shown in Figure 8.
The compliant mechanism was manufactured using a wire-cutting method and made
of aluminum alloy 6061. The PEA set output plates were made of spring steel. Initial
guesses of the material property values are the same as those listed in Table 3. The adopted
PEAs have a stroke of more than 60 [um]. Other specifications are listed in Table 1. To
accomplish the full cycle shown in Figure 4, the PEA sets were preloaded with a biased
input voltage yielding a nominal output displacement of £30 [um]. The drivers of the PEAs
were linear amplifiers (Type E-472.20, PI Inc.). The position sensors of the output were two
capacitive distance sensors, one with a resolution of 7.5 [nm| and one with a resolution of
10 [nm]. The velocity signal was obtained from the difference between two consecutive
position measurements, and the horizontal output displacement was derived by vector
decomposition using the Pythagorean theorem. Note that in this setup the deformation of
the joint will affect the precision of the measurement results, and so the control system is
actually following a “nominal” trajectory with some minor differences to the actual desired
displacement. This has little effect on a proof-of-principal experiment which mainly aims
to show the efficiency of the control system. The measuring devices were connected to
a data acquisition card via a noise-shielding I/O junction box with a sample time of less
than 0.1 [ps]. The real-time codes of the control algorithm were explicitly implemented in
computational software. The sampling period was set to 0.1[ms].
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Figure 8. Image showing the experimental setup of the system. Two capacitance displacement
sensors were used to measure the coupled output trajectory.

4.2. Experimental Results and Discussion

The values of the parameters of the system described by Equation (35) were estimated
using an online least-squares estimator provided by the System Identification Toolbox in
Simulink. The systems described by Equations (31) and (34) were discretized in time to
make use of the estimators. The parameters to be evaluated, their corresponding regressors,
and the reference outputs are given by the following:

R AAOJACinU—TS) —q,(t—Ts)
P& = Ao[xin<t) _xin(t_igs()t]__’l[gf(t) _qo(t_ZTS)] , (54)

_[&in(t) - JACin(iL - ZTS)]

T2M~'K
EM-Ic
M, 'K;, |’
Tsag—1
7Min Ci”

qo(t) _Zqo(t_ TS) +qo(t_2T51) (56)
&in(t) — Ziin(t — Ts) +JAC,'n(t — 2T5) —u +Mi71 Kz-nx,-n(t — TS) !

0& = (55)

u, =

where T; represents the sampling period of the controller, and was set to 1 x 107# [s] in
our case. Note that some of the parameters were not evaluated. The masses were weighed
on an electronic scale. The amplification ratio was approximated using the maximum as
shown in Equation (27). The values of parameters that only appear in the additional terms,
such as Kpeq;s in Kj;;, were calculated algebraically from the estimated Kj,;s and Kg, . Initial
guesses of the model parameters, as well as their final estimations, are provided in Table 4.
The state estimator gain and feedback loop gain in the controller design process are also
given in Table 4.

Lissajous curves with specified ratios of 3 and 2 were chosen as the desired output
trajectories. Specifically, Figure 9a shows the time-domain performance of the designed
system tracking a ratio-3 Lissajous curve without compensating for the nonlinearities by a
robust controller, as a comparison. This is realized by aborting the robust feedback output
in the block diagram of Figure 8. Figure 9b shows the performance of the complete system
tracking the same desired ratio-3 Lissajous trajectory. The tracking of a ratio-2 curve is
given in Figure 10a; a circular trajectory was also performed, as shown in Figure 10b. A
two-dimensional plot for the space-domain trajectories is shown in Figure 11, for all four
different experiments.
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Table 4. Evaluated system parameters and controller design specifications.

Part Quantity Guess Estimate

Horizontal stiffness

Kqo1 % 106 [N/m] > 378
CM Vertical stiffness
Kqo2 % 10% [N/m] > 403
Mass M [kg] 0.046 —a
Amplification ratio « 1.012 -
PZT1 stiffness 25 _
Kpea1 x 108 [N/m] '
PZT?2 stiffness
PZT set Kpea 108 IN/m] 2.5 -
Input plate stiffness
Kin1 % 10° [N/m] ! 092
Input plate stiffness
Kina x 10° [N/m] ! 089
Input plate mass Mjp; [kg] 0.042 -
. Estimator gain ke, s
State Estimator Estimator gain ke, 1x10
Error gain k¢, 2 x 10*
Error gain k 1.5 x 10%
. b & €
Controller design Feedback gain kg 1.2 x 10*
Feedback gain kj 1.2 x 103

2 The masses in this table were measured on an electronic scale and were assumed to remain constant throughout
the experiments. ® The functionalities of the gains in the controller design can be found in Appendix C.
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Figure 9. Experiment result showing a comparison between (a) Tracking of 3:1 Lissajous curve
without the robust controller and (b) Tracking of 3:1 Lissajous curve with the robust controller.
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Figure 10. Experiment result showing the CM tracking (a) A 2:1 Lissajous curve and (b) A
circular trajectory.
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Figure 11. Two-dimensional plot of the results from Figures 9 and 10, showing the actual trajectory
of the closed-loop CM.

In general, the results shown in Figures 9 and 10 indicate that despite the errors in
the physical parameters, i.e., the vibration at the very beginning of the error signals, the
controller achieves boundedness and guaranteed transient performance for error signals.
As a comparison, as shown in Figure 9a, the non-robust controller suffers from higher noise
levels and a larger overall tracking error amplitude. Further, the maximum linear feedback
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gain of the non-robust controller is also lower than the robust one due to uncompensated
noises and disturbances, resulting in a slower response to fast variating input signals.

On the other hand, however, although the proposed method outperforms the non-
robust one to some degree, the deduction for the robust controller is cumbersome and
varies in accordance with different system designs. In addition, the nonlinearity in our
system is suppressed by a robust controller with knowledge of only a part of the nonlinear
deformation denoted by du. The whole modeling and controller design process is per-
formed in the corresponding tangent space, which is a major limitation to final performance.
Work on larger deformations and more profound nonlinearities remains to be conducted.

5. Conclusions

In this paper, we developed an integrated design and control scheme for a large
workspace topology-optimized compliant mechanism. The scheme takes the noisy sensors,
system distortions, and nonlinearities of the PEAs into consideration. The system model
is based on a simplification of a spring-mass system with fully coupled inputs x;,. The
controller described in this study was designed without deliberately trying to decouple the
input-output relationship, which is usually unavailable. The proposed controller employs
a backstepping procedure with a robust part and an output feedback part. The theoretical
analysis was verified through experimental studies.

Future work will be conducted on controller design using full finite-element models
or reduced-order modal analysis to achieve better tracking performance. The error analysis
mentioned in Section 3.2.1 is also a potential area of future research. The development
of an adaptive controller is also a potential research topic, since in the current study,
dynamic response and convergence efficiency is limited due to ignorance of the online
parameter variations.
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Appendix A. Nonlinear Finite-Element Method Synthesis

The spatial discretization of the design domain, with element alignment, node con-
nectivity, and DOF indexing, is shown in Figure Ala, which is in accordance with [44]. In
general, there are two main contributors to the nonlinearity of the system design [40]. The
first one is geometric nonlinearity, which appears in the form of higher-order terms H' H
in the Green-Lagrange strain tensor, when we take large deformations in the elements

into consideration: ,

2

where H = V 1, the displacement gradient when the displacement vector #(X, t) is intro-
duced. A detailed iso-parametric mapping of the deformation of a finite element, (), is

E (H +H + HTH), (A1)
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depicted in the lower part of Figure Ala: The unit square reference configuration, (), is
first transformed into the initial configuration, ()., with the coordinates X,;, I = 1,2,3,4 by
the Jacobian J,. The initial configuration, (),, is then transformed into the current config-
uration, ¢(Q)), with coordinates x,;, I = 1,2,3,4 via a deformation gradient F, = H, + I,
where I is the identity matrix.

(@ (b
11/5 |- P
216 |-
37 _ le
+18 ] ’ / Z 1 |
s
/)% //% 717 I
nX; W AL A Rw ||
/
o ¢ Feo [ R(u) I
X P(Q)|¢ i L
1 U X I Auy , Au, | | u
e n (1,1 Uy ul: u, ujl
Qg f u i ou i
(-1,-1)

Figure A1. (a) Schematic illustration of the design domain discretization and elemental deformation;
(b) Newton—-Raphson method for nonlinear finite element analysis.

The second main contributor to the nonlinearity of the system is the material nonlin-
earity, which occurs when the relation between the stress and strain is not linear. Material
nonlinearities are usually neglected in the finite-element analysis of TO. However, in our
case, the use of an additive hyper-elastic element will suppress the numerical instability in
the low-stiffness region and is thus an effective way to achieve global convergence [41,63].
The basic idea is to add a soft hyper-elastic material with a strain energy function in accor-
dance with the Yeoh model to the low-density elements that are at risk of instability. The
additive stiffness energy function of the eth element (), is of the following form:

Fo(h) = (1- ) (cre(h = 3) + 2 = 3)°), (a2)

where I; = tr(¢&,) is the first invariant of the right Cauchy—Green strain tensor &, p.
is the elemental density, p is the penalization factor used in the SIMP approach, and
c1e > 0,c9, > 0 are the material constants of the additive hyper-elastic material for the eth
element. In general, ¢, is assumed to be small to sustain a convergent result under little
strain, whereas cy, is relatively larger to suppress the instability at larger deformations.
These coefficients are updated elementwise in each iteration of the SIMP in accordance
with the following [41]:

P

— pminEO
Cle = 76—
D) _ Ceék) W, iy <1 (A3)
e k) ()N e (k)
Cen (we ),1f176 >1
(k) _ e
Ne " = e 7

where the superscript (k) represents the iteration step of the optimization process, ¢, is the
average von Mises strain of the eth element, and ¢* is the specified threshold.
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The second Piola—Kirchhoff stress & of the additive element is the derivative of the
strain energy function with respect to the Gauss-Lagrange strain tensor E:

29Y
S, & = ¢

oE ~~  oc¢

a
e’

=2(1- ') (e10 + 2¢2(h — 3)) (A4)

Notice that the associated nonlinearity of the additive hyper-elastic material only
benefits the convergence procedure during the TO iterations and is not included in the
actual nonlinear dynamic analysis.

Returning to the spatially discretized design domain with square elements as shown
in Figure Ala, the finite-element formulations of the weak form in the initial configuration
for the residuum and both boundary loads P; and body force P, within a single element
), in the SIMP method are obtained as follows [39]:

Re(tte, 0, P)| = [, B(u)" <Se + Gg) detJ, dJ,
P{| = [ NT#T, (A5)
P, | = fQS Popebd (),

where u, : (X,t) — RN denotes the displacement vector from the original configuration X,
to the current configuration x,. Further, B denotes the strain—-displacement matrix, whereas
Se = peDE is the Piola—Kirchhoff stress of the original elastic material in the SIMP, and
N is the shape function used in the evaluation of the deformations. All variables and
matrices are evaluated within element (), and are related to the initial configuration. The
approximated integration is carried out with Gauss integration due to its efficiency.

The assembly operators for the residual forces and mass are the same and denoted
by Uce, where {e}, -+ is the index set for the interior elements. The boundary loads are
assembly operators acting on I', C 0(), denoted by U,e, where {r}re {e} is the index set
for the boundary elements to be considered. The global matrices are expressed as shown
below with the assistance of the assembly operators:

R = O [Re(we) !
e:l ( A6)
[P]2N><1 — Lj [Pr]8><1,

e=r
where N is the total number of nodes in the discretized design domain. Therefore, 2N is the
total number of DOF in the two-dimensional setup for all of the nodes, and 7, and #n, are
the number of total elements and number of boundary elements, respectively. A detailed
assembly algorithm was followed, as presented in previous research [40,64].

The above derivations lead to a compact nonlinear system of ordinary differential

equations of the following form:

R(u) —P =0. (A7)

We usually denote by Kt = g—ﬁ L= U,¢ K.t the assembly of the elementary tangent

stiffness matrix K,1 = % at the state u(u.), as shown in Figure Alb. The approx-
¢ lu

imated solution u of the nonlinear dynamic system in Equation (A7) is obtained via a
modified Newton-Raphson method.

Appendix B. Identifying the Hysteresis Model of the PEAs

Various previous studies have reported on the identification procedure for the PEA
coefficients [2,48,56]. In this study, we used recursive least-squares estimation to estimate
the model parameters. We rewrote Equation (18) in the form of a state-space representation.

Suppose that X, represents the predicted output vector of the model. By selecting
the parameter vector 6 = [& By, Ty 5hw]T, where & = d, — Ay, is a combined
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. : . 1T
intermediate parameter, and the state variables ¢ = {LI ‘U’h Ulh| —Usgn ( U)} ,a
time derivative of the first formula in Equation (18) yields the following:

Tnom (£, 8) = (t)76. (A8)

A covariance matrix for the recursive least square estimation process can be given as
follows [27,64]:

-1
Coo(t) = [iq)(i)W(t,i)(p(i)T] € RP*P, (A9)
i=1

where W(t, i) represents the weighting matrices, in the form of:
W(t,n)= [ Af(m)Wo. (A10)

The A (k) in the above expression is the forgetting factor, applied to improve the real-
time performance against system disturbances, and Wy € R"*" is an arbitrary constant
weighting matrix. We obtain the following recursive formula for least-squares estimation
based on the parameter estimate 8(t — 1) and covariance matrix Cov(t — 1) obtained in the
previous step:

3 O] () TT(0)} A

The intermediate adaptation rate matrix I'(t) is introduced for notational simplicity
and efficiency of computation. €° is normally called the a priori prediction error. The
dp in the combined intermediate variable a is estimated by a simultaneous process with
a structure identical to the one given in Equation (A11), where ¢(t) = U(t) and h(t) is
updated via a forward Euler algorithm, in accordance with the first formula in Equation (18).
Choose another set of parameter vector ¢, = [dp —1]T and state variable vector
0,0m = [U h] , the parallel RLSE process can be formulated as follows:

Lrom (t,0) = @0, (1) Brom. (A12)

Thus, by fixing the constant —1 in the ¢, the value of d,, can be estimated via an
integrated process based on U and h. Meanwhile, the value of the parameter Ay, = dp — «
can also be calculated at every time step of the identification procedure. Details of the
algorithm are given in Algorithm A1, and the estimation results are given in Figure A2 and
Table Al.

Algorithm A1 Parallel recursive least square algorithm for online parameter estimation.
Parallel RLSE Algorithm

Initialization:

Make an initial guess of the coefficients, compute corresponding initial values of © and ¢
Main loop:

While PEA is working do

Do process (A11) for regressor Equation (A8)

Update state variable h

Do process (A11) for regressor Equation (A12)

Update dp and Ayp,,

End while
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Figure A2. Parameter identification process for one of the PEAs and the corresponding hysteresis
curve for both.

Table Al. Estimation results of characteristic coefficients of the PEAs.

Estimates

Symbol Initial Guess PEA1 PEA2
dp 0 ~ 62 %1072 ~65x1072
Apw 0 ~12x1072 ~25x 102
Bhw 0 1.9 x 1073 1.8 x 1073
Thw 0 1.6 x 1073 53 x 1073
5 0 5.015 x 1074 1.973 x 10~*

Appendix C. The State-Space Representation of the System Dynamics

Following the steps given in Section 3.2.1, the elementary form of the total system
dynamics can be given as follows:

21225
22226
Z3=Z7
24:28

8
z5 = Z,BSZ'ZZ'
i=1
8
Z6 =) Beii
i=1
8

z7 = dyyuy +dppup + 2/371‘21'
i=1
8
zg = dyuy +dppuy + Y _Psizi
i=1

(A13)
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This linear differential equation system can be modified into the state-space form as

Equation (36), whose coefficient matrices B = [,Bi]-]gxg and D = [dij]2X2 are detailed below:
[,551 /352} _ [—21(15101 0 ] {/353 ﬁ54] _ ST
Be1  Pe2 0 S| B Pes _“’;Zoz _“1;202_ ’
[ﬁ55 ,356] _ [—23,1"”1 0 ] {/%7 ,358] _ S Ly
Bes  Pes 0 —Se2|" [Ber Pes _”‘anz ,'XCTM_ ’
[,371 ,372} _ % 0] ,
Por Pr) |3 0 (A14)
Bss Psa 0 fW ’
[,375 [376] _ [Az,ﬂill 0], [,377 [378] _ [—w . 0 1
Bss  Pse et 0] LBs7 Pss 0 _%niﬂ“
Bu dlz} _ [sz}fﬂ KO ]
21 dn 0 =

Appendix D. Deduction of the Backstepping Controller

Recall that a(17) = [a1,a]" represents the ideal control law for the inputs [x;,1, Xjy2] T

according to Equation (A13), the notation that z = [qo qd, Xin xm] T, and the subsystem
Equation (43a) in terms of a is given as follows:

N =15=0
Ny = e i= 2
3 = §1
’74 =0
6 ‘ , : (A15)
5 = 2551'771' + Bs7G1 + PssGa + A
1
6

e = Eﬁéiﬂi + Berly + Besla + A2
i

When denoting €; = 1; — 174; = z; — z4;, i = 1,2, the tracking error between the
output node #; = z;, and the desired trajectory #;; = z4;, a selection of the feedback error
s = € + kee yields the total error dynamic:

S_l _ —Zqulﬂl + K%l a + K%l ay + '8575 4 ,358é _17 1 _|_k€1 (;75 —17 1) + A 1 (A16)
M M M 1 2 d ™
5o = ==+ a2 0y — a—"2a; + By + Pesla — H2 +kea (16 — 12) + Aya. (A7)

M M M
Consider the control Lyapunov function (CLF) Equations (47) and (48):

Vip) =5

$2

1

2] . (A18)
52
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The path derivative of the CLF with respect to the solution #(t) is as follows:
: 515
V(y) = [; 1} (A19)
252

Next, we choose a specific a such that V(1) < 0, satisfying the Lyapunov stability
criterion. Substituting Equations (A16) and (A17) into Equation (A19) and considering the
inequalities, we have

an 1

s1 (a1 +az —2m1) — ijg1 +ke1 (115 — 1741) + (Bs7&1 + Bssla) + Ay1 | <O

(A20)

(XKq02

so| 2 (a1 — a2 — ) —ij 0 + kea (16 — 1142) + + (Ber&y + Bests) + Ay ) <0

The desired controller output a as a combination of a,, and as from Equation (49)
satisfies the following:

Kgo .
;\]/Il (ﬂm] + amZ) - Z5 (’71/ M1, él) = _<k771 - 1)51

aKy

A ’ (A21)
M (@m1 — am2) — Zs (771,771,61> = —(ky2 —1)s,

qu 1 A m 2 A 1 22
{ ]\/I1 (u"ll ’”2) n < (El 1 + Am ) maX| U { 1 (A )
K, 0 a l
“AqAZ(a a 2)+A7]2 < T( m aﬂlZ) IILax’A772| 2

where k;; > 1,7 = 1,2 are the linear feedback gains and can be chosen freely, and

Zs (171,771/(';‘1) = Wlﬂl + (g1 —ker(ns —1141)) — (135731 + ﬁSSéZ)/

. X s : (A23)
Zg (’72/ Uy 52)& = 12+ (12 —ke2 (16 — 12)) — (/36751 + ﬁes@z)-

By solving Equations (A21) and (A22), we get the following expressions for the ideal
control law a:

-1
o [qul/M Kgo1/M } ({—(k”1—1)51+Z5]> (A24)
m aquz/M —Dchgz/M — (k'12 — 1)52 +Zg| )’
-1
= {qul/M qul/M ] {—max]A”ﬂ —51:|‘ (A25)
wKgoo /M —aKgo2/ M —max|Ayp| — $2
Let €, be the deviation from Equation (50):

€ =C—a. (A26)

. . T. .
The total system in the new error coordinates [s €,] " is then given by:

s— ky1s1
ky2s2

N 97, A27
e {qul/M Kgo1/M ] Uy (R = 1)51 + 2520 s (A27)
a zquoz/M —Oéquz/M qu (k ”— 1)5 + 826( ) €

where the error term A is derived from Equation (43b), such that A, = Ag.
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The CLF for the whole system in accordance with Equation (51) can be given as follows:

Valn, &) = Vi) + 5

2
€a]
. 21. (A28)
a2

The path derivative of the above Equation (A28) along the solutions of Equation (43a)
can be calculated by substituting the expression of s in Equation (A27) into Equation (52),
in the following form:

n_wﬂ+ﬁﬁﬂ (A29)
—k,ﬂS% €x2€a2

The term ey€, can further be written as a linear combination of input v. Denoting
61 6] = [% %] , we have the following total system formulation for
Equation (A29):

szl = —k,ﬂS% + él + Hll (?Jl - le) + €x1le1
) A , (A30)
Var = —kyas3 + (& + a1 ) (02 — TTa2) + €x18e2

where
_ (maX|Ar/2|*Z6+k,,zsz)91+a(max|A,ﬂ|7zs+k”151)92
[T = 200,0, s
(kﬂz(k72*1)sz+W)el+ﬂ(Slkql(kql—1)+aza57ﬂ('7>>92 7
le - 20(9192
— (maX|Ar12‘—Z6+qusz)91—zx(max|A,’1|_2592+k}7151)92
=~ 20,0, .
(ky2(kya=1)s2+ 2260 ) 0y —a (kyr (Kyn—1)s1+ 52 Yo, -
sz - 211(9192

The task is to choose inputs v;s such that Vai, i = 1,2 are negative definite, in which
case the whole system is Lyapunov stable. Suppose that our controller input is of the
following form:

(A33)

Um1 + 0
O +Us — ml s1 ,
Um2 + Us2

and notice that —k,ﬁslz < 0 always holds. The values of v;,;s are then chosen such that:

& +TTn ) (om1 —TThe) = —ki€ar

. , (A34)
Co+ 1101 | (vm2 —Tlan) = —ko€a2

where k = [k; k| > 0is the feedback gain, thus yielding:

kiea
Om1 = — = 4+ T
¢1+IIn (A35)
_ koeqn ’
Ump = —= +11x
G+ In

The system nonlinearity is overcome by the robust controller vg;s, satisfying the
following relationships:

‘51 + 1T )vs1 + €a1Be1 < (&1 +T111)vs1 + max|exiAer| = —€a1
, (A36)

& + 1T |52 + €naBer < (&2 4 TTo1 ) vs2 + max|eaAea| = —€ar
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and the expression of the vs;s can be solved as follows:

_ max|exiAct|+€ar

Us1 = =

51 +H11 (A37)
Vo = _maxlfaZAEZ‘J"eaZ )

Go 2

We can also choose identical feedback gains such that k; = k;;; = k. The final design
of the controller input, Equation (A33), as a combination of Equations (A35) and (A37), is

simplified to:
U] = — ?kleal _ maxlfalAel‘J"eal _|_H12
G+ G+ (A38)
Uy = — ¢k2€az _ maxlfa2A€2‘+€a2 + H22
So+ o1 G+ o1

Also, all the coefficients are calculated with respect to estimation of the state varia.
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