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Abstract: Interconnected systems are widespread in modern technological systems. Designing a re-
liable control strategy requires modeling and analysis of the system, which can be a complicated,
or even impossible, task in some cases. However, current technological developments in data sensing,
processing, and storage make data-driven control techniques an appealing alternative solution. In this
work, a design methodology of a decentralized control strategy is developed for interconnected sys-
tems based only on local and interconnection time series. Then, the optimization problem associated
with the predictive control design is defined. Finally, an extension to interconnected systems coupled
through their input signals is discussed. Simulations of two coupled Duffing oscillators, a bipedal
locomotion model, and a four water tank system show the effectiveness of the approach.

Keywords: Koopman operator; extended dynamic mode decomposition; data-driven control;
model predictive control; coupled dynamic systems

1. Introduction

Many problems in engineering involve coupled dynamics, and designing a reliable
control strategy for these systems requires an adequate understanding of the underlying
dynamics. Interconnected systems are present in several areas of science and technology,
from robotics to power grids and social systems [1–3]. In these examples, there may be
several subsystems that are interconnected in one way or another, and handling the inter-
connections presents significant challenges in the analysis and design of control strategies.
Traditionally, the derivation of state equations comes from applying physical principles
to generate control-oriented models. However, due to the complexity of the system, model-
ing its interactions is a difficult, or even impossible, task in some cases.

Nevertheless, current technological developments in data sensing, processing, and
storage, together with the large amount of information available, make data-driven con-
trol techniques an appealing alternative solution [4]. Early approaches to address the
control synthesis of systems with unknown dynamical coupling relied on the framework
of adaptive control. In [5], the authors presented a decentralized adaptive control for es-
timating dynamical couplings among subsystems. This adaptive approach dealt with
a class of nonlinear systems, and it was able to compensate the interconnection with only
local measurements. The assumption of a matching condition was relaxed, transforming
the systems into a strict feedback form and validating the boundedness of the tracking error
through classical Lyapunov techniques. Similarly, in [6], the authors proposed parameter
estimation in the feedback control to compensate dynamical interactions. Adaptivity was
based on radial basis neural networks, and a guarantee on the asymptotic tracking error
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was provided without knowledge of bounds on coupling dynamics. In [7], the authors
considered time delay in a model reference adaptive control scheme.

However, most of the aforementioned approaches require satisfying the condition of per-
sistent excitation and also detailed knowledge of the interconnection structure, which can be
difficult in practice. On the other hand, taking advantage of a data-driven approach is appealing,
and the Koopman operator has gained attention for its ability to evolve nonlinear dynamics
in a function-space (lifted space of observables) in a linear form. The main issue with this
approach is that the lifted dynamics act in an infinite-dimensional space [8]. Some form of trun-
cation will therefore be required, implying a compromise between accuracy and dimensionality.
Recently, the extended dynamic mode decomposition algorithm (EDMD) has been shown to be
successful in obtaining a finite approximation of linear operators on the subspace spanned by
a set of basis functions. Therefore, traditional techniques for the control synthesis have been
extended to the Koopman operator framework [9]. Additionally, the Koopman theory provides
solutions for dynamical systems that include coupled dynamics. For instance, the authors of [10]
presented a methodology for reduced-order modeling using the Koopman theory in stochas-
tic nonlinear coupled dynamical systems. The authors developed an empirical data-driven
methodology to reduce the system. Alternatively, the authors in [3] presented a model reduction
of agent-based systems using the Koopman generator. An interesting example of the data-
driven Koopman operator identification and its relation with networked systems was
presented in [11]. The authors used the operator generator to approximate the vector field
of a network with nonlinear couplings, providing in turn the network structure. Continuing
with the relationship between the Koopman operator and network topology, in [12,13],
the authors used the dynamic mode decomposition (DMD) algorithm to make an approx-
imation of the underlying topology. Others variants for high-dimensional systems are
focused on efficient computation. For example, reference [14] investigated the EDMD based
on Cholesky decomposition for dealing with high-dimensional systems and evaluated its
performance with a network of coupled oscillators and a large-scale power system.

To date (and to the best of our knowledge), Koopman-based lifting techniques have
not been developed yet to control coupled nonlinear systems. The objective of this study is,
therefore, to present a methodology to design a decentralized control for interconnected
systems based on local and interconnection data time series (experimental measurements
or simulation of an existing simulator in any format). The main contributions of this work
are threefold: (a) a local control-oriented model is developed based on data without knowl-
edge of local dynamics or interconnection, (b) the optimization problem associated with
the predictive control design is formulated, and (c) an identification procedure for systems,
which are coupled through their inputs, is proposed.

The remainder of this paper is structured as follows: Section 2 introduces the Koopman
operator and its finite dimensional approximation. In Section 3, the local control-oriented
model of interconnected systems is derived, while a decentralized predictive control strat-
egy is developed in Section 4. In Section 5, the control strategy is applied to three represen-
tative case studies, and the simulations results are discussed. Finally, Section 6 concludes
the work and presents some future directions.

2. Preliminaries

This section presents a brief description of the general framework of the Koopman
operator for data-driven control, followed by its finite numerical approximation.

2.1. The Koopman Operator for Control Systems

Consider a discrete-time dynamical system

x(t + 1) = T(x(t), u(t)), (1)

where x(t) ∈ Rn and u(t) ∈ Rm, T : Rn × Rm → Rn is assumed to be at least C1, and
t ∈ Z≥0. The Koopman operator has gained attention for its ability to evolve nonlin-
ear dynamics in a function-space, i.e., the lifted space of observables, in a linear form.
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Given the vector space of measurement functions called observables F with observ-
able functions ψ ∈ F , we can define the Koopman operator for the system with inputs
K : F → F as

[Kψ](x(t), u(t)) = ψ(T(x(t), u(t)), u(t + 1)). (2)

As mentioned above, the Koopman operator is a linear representation of nonlinear
dynamics in a lifted space, with the compromise that it is infinite-dimensional, making
it intractable to implement directly in an engineering application. Hence, it is necessary
to obtain a finite-dimensional approximation. The next section briefly presents the method
to obtain the finite dimensional approximation.

2.2. Finite Dimensional Approximation

In line with the data-driven nature of the algorithm, it is assumed that enough snapshot
pairs of data are available for the computation, where each pair corresponds to y = T(x, u) with

X = [x0, . . . , xM], Y = [y0, . . . , yM], (3)

and the vector of data inputs is denoted by U = [u1, · · · , uM]. The objective is to build
a linear model in lifted space as follows,

Ψy = AΨx + BU, (4)

where Ψ(·) are basis functions, A ∈ RK×K, B ∈ RK×m. It is, therefore, possible to deter-
mine the linear operators A and B that best fit the evolution of observables by solving
the following optimization problem

min
A,B
‖Ψy − AΨx − BU‖F (5)

where F stands for the Frobenius norm [15,16]. The minimization problem gives a linear
solution in the lifted space, where the evolution of the lifted state Ψy = [ψ1(y), . . . , ψK(y)]>,
is the lifted state, i.e., Ψx = [ψ1(x), . . . , ψK(x)]>, weighted by the linear operator A plus
the effect of the input. To retrieve the original states from the lifted space, we solve the least
square problem as follows

min
C
‖X− CΨx‖F (6)

where C ∈ Rn×K; alternatively, C may be computed explicitly as

C = XΨ†
x, (7)

where † denotes the Pseudo-inverse. The selection of a set of basis functions can be arbitrary but
the optimal choice to approximate the Koopman operator associated with complex systems is
still a challenge. Possible choices are sets of orthogonal polynomials [17], orthogonal polynomials
with functional embeddings [18], and radial-basis functions [11], among others. In the following,
radial basis functions are selected in view of their performance in predicting the states, which is
crucial in the MPC approach. For practical purposes, the observable functions may also contain
the state variables; therefore, the solution to matrix C can be obtained in the form C = [I, 0].

3. Problem Statement

It is assumed that the composite system (1) can be decomposed as

xi(t + 1) = fi(xi(t)) + Biui(t) + ∑
j∈Ni

gij(xj(t)), (8)

where fi and gij are nonlinear maps for local and interconnected dynamics,Ni are the neigh-
boring systems that exchange energy with the local system, and B is the local input matrix.
Let xi ∈ Rni be the local states, xj ∈ Rnj the states of a particular neighbor, ui ∈ Rmi control



Actuators 2022, 11, 151 4 of 12

input, n = ∑i ni, and m = ∑i mi. The models of the component systems are unknown,
but sets of measurements of inputs and local and coupled states are available. Our goal is
to design a control strategy that considers the nonlinear dynamics with only the available
data. The Koopman operator framework is used to find a local and finite linear approxima-
tion to model the nonlinear dynamics. Additionally, it is assumed that the linearization
of each subsystem is controllable, and the coupling dynamics are Lipschitz bounded.
Under the previous considerations, a linear representation in the lifted space is obtained
with the following structure

Ψxi(t+1) = KiΨxi(t) + BiUi(t) + zj(t) (9)

zj(t) = ∑
j∈Nj

KijΨxj(t) (10)

where zj represents the lifted state of the interconnection dynamics. In the next section,
the construction of the linear representation is detailed.

3.1. EDMD for Interconnected Systems

In order to build the linear representation, it is assumed that data are available
from the inputs to the local system, the measurements of the local state, and the value
of the neighboring system states, which are interconnected with the local system. The no-
tation for this data tuple is {xn

i , yn
i , xn

j , yn
j , un

i }M
n=1. The data in the lifted space is given by

Ψxi = [ψ1(xi), . . . , ψk(xi)]>, Ψyi = [ψ1(yi), . . . , ψk(yi)]>, Ψxj = [ψ1(xj), . . . , ψk(xj)]>, and
the input matrix U defined in Section 2.2. The operator approximation matrices come
from the solution of the following least-squares problem

min
Ki Kij Bi

‖Ψyi −KiΨxi − ∑
j∈Nj

KijΨxj − BiUi‖F, (11)

with the explicit solution determined by

[Ki, Kij, Bi] = Ψyi [Ψxi , Ψxj , Ui]
†. (12)

Sometimes the time-series may be affected by noise, and the least-square optimization
problem is solved with regularized terms as

min
Ki KijBi

‖Ψyi −KiΨxi − ∑
j∈Nj

KijΨxj − BiUi‖F + α1‖Ki‖1 + α2‖Kij‖1 (13)

where α1,2 are tuning parameters. With the main concepts of the Koopman operator and its
finite-dimensional approximation, we have the basis to develop the data-driven control
design in the next section.

4. Data-Driven Koopman-Based Control Design

In this section, a data-driven control design is developed based on the approximation
of the Koopman operator. Hence, the linear representation is used for prediction and
a decentralized model predictive control problem is solved.

Consider the following cost function

Ji(zi(k), ui(k)) =
Hp−1

∑
k=1

(‖Czi(k)‖2
Q+‖ui(k)‖2

R), (14)

where Hp is the time horizon. The operator ‖·‖2
Q denotes the weighted Eucledian norm

defined for any vector z and weighting matrix Q as ‖z‖2
Q = z>Qz, and Q and R denote
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the positive definite weighting matrices for the lifted state and input vectors, respectively.
Next, the optimal control problem is defined as

min
ui ,zi

Ji(zi(k), ui(k)) (15)

s.t zi(k + 1) = Kizi(k) + Biui(k) + zj(k) (16)

zj(k) = ∑
Nj

Kijzj(k)

umin
i ≤ ui(k) ≤ umax

i (17)

xmin
i ≤ Czi(k) ≤ xmax

i (18)

zi(0) = Ψxi (xi(0))

zj(0) = Ψxj(xj(0)),

where the constraints (16)–(18) are defined for all k ∈ {0, · · · , Hp − 1}, and the finite-
dimensional approximation of the Koopman operator based on matrices (12) is used.
The control signals are defined as ui = (ui(0), · · · , ui(Hp − 1)) and the lifted state variables
as zi = (zi(0), · · · , zi(Hp − 1)).

In Figure 1, the structure of interconnection of each subsystem and the feedback control
are depicted. It should be noticed that the coupling among subsystems is physical and
not through the optimization cost. The control strategy is summarized in Algorithm 1,
which consists of a first step with the initialization of the lifted data by the observables
and parameters such as the time horizon Hp. Then, the finite-dimensional approximation
of the Koopman operator is obtained using the method presented in Section 3.1 using
(11) and (12). Finally, the optimal control signal u∗i (k) is applied to system (8) in the original
state variables by means of the matrix C obtained in (7).

Subsytem

fi(xi) fj(xj)

MPCi MPCj

gij/gji

input ui

Coupling

MPCn

fn(xn)

Figure 1. Control schematic for interconnected subsystems.
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Algorithm 1: Decentralized MPC
Result: Optimal control signals u∗i
Set Hp,Q, R, Ψxi , Ψxj .
for k = 0, 1, . . . , Hp − 1 do

zi(0) = Ψxi (xi(0)) and zj(0) = Ψxj(xj(0))
Compute Ki, Kij, Bi from (11) and (12)
Solve (15)
Apply u∗i (k) to system (8)

end

Interconnection through the Input

Another important interconnection configuration is now considered, where the cou-
pling among subsystems is also given by the input control. Specifically, we consider
the class of systems described by

xi(t + 1) = fi(xi(t)) + Biui(t) + ∑
j∈Ni

Bij(uj(t)), (19)

where it is observed that the interaction or coupling between subsystems is through the con-
trol signals of the other subsystems. The data driven-linear representation of this structure
is the following

zi(t + 1) = Kizi(t) + Biui(t) + wj(t) (20)

wj(t) = ∑
j∈Nj

BijΨuj(t) (21)

The implementation of the methodology developed in Section 3.1 is straightforward.
The buffer of neighbor’s input data {un

i , un
j }M

n=1, and the vector of observables are required,
and the optimization problem (13) can be solved.

In the next section, several simulation cases are presented to illustrate the theoretical
results introduced in this section.

5. Simulations

This section presents numerical examples using the data-driven predictive control based
on the Koopman operator framework and its finite-dimensional representation. All the simu-
lations codes were run using MATLAB ® on a computer with 16 GB of RAM and a 3.8 GHz
Intel Core i7 processor. The optimization problems were solved by qpOASES [19]. For
the finite-dimensional approximation of the linear control-oriented model, 100 thin plate
spline radial basis functions with centers generated randomly with uniform distribution
at xi were used. Each radial basis function was defined by Ψx = [ψ1(x), . . . , ψK(x)]>, where
ψi(x) =‖ x− xi ‖2 log(|x− xi|). Three different numerical examples are presented to illustrate
the proposed decentralized MPC in problems of diverse complexity and nonlinearity.

5.1. Two Duffing Oscillators

As a first numerical example, consider an interconnection of two duffing oscillators,
where the parameters yield a dynamic behavior with two basins of attraction. The free-
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body diagram of a mechanical duffing oscillator is depicted in Figure 2, and the differential
equations that describe this system are given by,

ẋ11 =x12 (22)

ẋ12 =− δ1x12 − β1x11 − α1x3
11 + η21x21 + B1u1 (23)

ẋ21 =x22 (24)

ẋ22 =− δ2x22 − β2x21 − α2x3
21 + η12x11 + B2u2 (25)

where xi1, xi2 are the position and velocity of the mass i. The viscosity damping is denoted
by δi, and βi, αi are both constants representing the stiffness of the spring, respectively.
The local input of each system is given by ui = Fi(t), more detail for an ideal interconnection
can be found in [20].

m

F1(t) F2(t)

B1
B2

m
x11

x21

δ1 δ2
β1 + α1x

2

11 β2 + α2x
2

21

η12

η21

Figure 2. Free body scheme representation of two interconnected mechanical oscillators.

In this example, δi = 0.5, βi = −1, αi = 1, and the interconnection parameter ηi = 0.5.
To obtain the local linear representation, we used one-step time-series data with 105 ran-
dom initial conditions uniformly distributed in the domain [−0.8, 0.8]× [−0.8, 0.8] with
sample time Ts = 0.01. The input matrix was approximated using 104 random inputs
over the interval [−1, 1]. Notice that each subsystem required neighborhood state measure-
ments to identify the coupling dynamics. The radial basis function centers were uniformly
distributed in the domain. To evaluate the performance of the interconnected model, we
compared the uncontrolled system states using an input ui = 0.5 cos(t). The compari-
son between the linear representation and the original system for the initial condition
x0 = [0.31, −0.34, −0.33, 0.31] is shown in Figure 3. It is apparent that including the cou-
pling term in the model improved the prediction capacity. The objective of the control
problem was to stabilize the system in the origin. The cost function weights were chosen
as Q = I, Hp = 50, and R = 0.01, and the input constraint was −1 ≤ u ≤ 1 for the two
subsystems. The closed-loop local phase-plane and input signals are presented in Figure 4.
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Figure 3. Comparison between the linear predictor and the original system—subsystem 1 (top) and
subsystem 2 (bottom).
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-0.4
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0.4
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0

0.5

1

Figure 4. Closed-loop local phase-plane and inputs of the Duffing system.

5.2. Bipedal Robot Locomotion Model

As a second example, consider the thigh and knee dynamics of a walking bipedal
robot locomotion modeled through three coupled Van der Pol oscillators [21].
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θ̈1 = 0.1(1− 5.25θ2
1)θ̇1 − θ1 + u1 (26)

θ̈2 = 0.01(1− 6070(θ2 − θ2e)
2)θ̇2 − 4(θ2 − θ2e)

+ 0.057θ1θ̇1 + 0.1(θ̇2 − θ̇3) + u2 (27)

θ̈3 = 0.01(1− 192(θ3 − θ3e)
2)θ̇3 − 4(θ3 − θ3e)

+ 0.057θ1θ̇1 + 0.1(θ̇3 − θ̇3) + u3 (28)

where θi and θ̇i are the angle (rad) and angular velocity (rad/s), respectively. The states
of each subsystem are denoted xi = θi − θie, and ui is the control input. A diagram which
represents the interconnection in the state space is depicted in Figure 5. In this example,
we used locally one-step time-series data with 104 random initial conditions uniformly
distributed in the domain [−π/2, π/2]× [−1, 1] with sample time Ts = 0.01. The input
matrix was approximated using 103 random inputs over the interval [−1, 1]. The radial
basis function centers were again uniformly distributed in the domain. The control design
was subject to the following constraints −π

2 ≤ θi − θie ≤ π
2 and |ui| ≤ 1. The desired

constant angles for i ∈ {1, 2, 3} were θ1e = 0, θ2e = −π/12, and θ3e = π/6. The parameters
for each decentralized local control were Q = I, Hp = 100, R = 0.1. The effectiveness
of the control algorithm can be observed in Figure 6, where the angles achieved the desired
values, and the input constraints were satisfied.

θ1

θ2 θ3

u1

u2 u3

Figure 5. Topology of the interconnection of the bipedal robot locomotion system.

0 2 4 6

-0.4

-0.2

0

0.2

0.4

0.6

0 2 4 6

-0.4

-0.3

-0.2

-0.1

0

0.1

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

Figure 6. Angle, angular velocity, and input of the bipedal locomotor.
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5.3. Four Water Tanks

Finally, the four water tank control benchmark, illustrated in Figure 7, where two
subsystems are coupled by means of the input, is considered. The coupled dynamics is
modeled as

ẋ11 = − a1

S
√

2gx11 +
a3

S
√

2gx12 +
γ1

S
q1 (29)

ẋ12 = − a3

S
√

2gx12 +
1− γ2

S
q2 (30)

ẋ21 = − a2

S
√

2gx21 +
a4

S
√

2gx22 +
γ2

S
q2 (31)

ẋ22 = − a4

S
√

2gx22 +
1− γ1

S
q1 (32)

where S is the cross-section area, and ai is the discharge constant of each tank. Let qi and γi
with i ∈ {1, 2} denote the flow and the ratio of the three-way valve of pump i, respectively,
and g the gravitational acceleration. The system parameters can be found in [22]. In this
example, we used one-step time-series data with 104 random initial conditions uniformly
distributed in the domain [0, 1]× [0, 1] with sample time Ts = 0.001. The local input matrix
was approximated using 105 random inputs over the interval [−1, 1] and 103 random points
of neighbor’s input. In this control problem, level tracking had to be achieved. The objective
function in the data-driven predictive control is defined by

Ji(zi(k), ui(k)) =
Hp−1

∑
k=1

(‖Czi(k)− Refi‖2
Q+‖ui(k)‖2

R), (33)

where the matrix C selects only the first state. The cost function weights were chosen
as Q = I, Hp = 100, R = 0.001, the level constraint was 0.1 ≤ xi1 ≤ 1, and the flow
maximum was qi = 0.5 for the two subsystems. The results of the simulation are shown
in Figure 8. The decentralized data-driven controller was able to regulate the system
to the given set-points while guaranteeing that the state and input constraints were satisfied.

x11

x12

x21

x22

γ1 γ2

q1 q2

Subsystem 1 Subsystem 2

Figure 7. Water tanks with two subsystems interconnected by the input.
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Figure 8. Level control of the four-tank benchmark.

6. Conclusions

Based on the framework of the Koopman operator and the extended dynamic mode
decomposition, we proposed a method to design a model-free and decentralized control
for interconnected systems. The method uses only local and interconnection series-time
of synthetic data or measurements. No prior knowledge of local dynamics or interconnec-
tion is required. We have shown how to construct the optimization problem associated
with the predictive control design, and an extension to systems coupled through their
inputs was developed. Some simulation results were shown to illustrate the effectiveness
of the proposed approach. Future work will focus on more complex systems involving more
subsystems and on testing different basis functions in order to improve the performance
of the linear predictor model.
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8. Budišić, M.; Mohr, R.; Mezić, I. Applied Koopmanism. Chaos Interdiscip. J. Nonlinear Sci. 2012, 22, 47510. [CrossRef]
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