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Abstract: Machine learning algorithms are effective in realizing the programming of robots that
behave autonomously for various tasks. For example, reinforcement learning (RL) does not require
supervision or data sets; the RL agent explores solutions by itself. However, RL requires a long
learning time, particularly for actual robot learning situations. Transfer learning (TL) in RL has
been proposed to address this limitation. TL realizes fast adaptation and decreases the problem-
solving time by utilizing the knowledge of the policy, value function, and Q-function from RL. Taylor
proposed TL using inter-task mapping that defines the correspondence between the state and action
between the source and target domains. Inter-task mapping is defined based on human intuition and
experience; therefore, the effect of TL may not be obtained. The difference in robot shapes for TL is
similar to the cognition in the modification of human body composition, and automatic inter-task
mapping can be performed by referring to the body representation that is assumed to be stored in
the human brain. In this paper, body calibration is proposed, which refers to the physical expression
in the human brain. It realizes automatic inter-task mapping by acquiring data modeled on a body
diagram that illustrates human body composition and posture. The proposed method is evaluated in
a TL situation from a computer simulation of RL to actual robot control with a multi-legged robot.

Keywords: reinforcement learning; transfer learning; inter-task mapping; autonomous transfer; body
representation; body diagram

1. Introduction

Owing to the declining birth rate, aging population, and declining working popu-
lation in recent times, intelligent robots will be deployed in the real world in the future.
In intelligent robots such as autonomous robots, it is important to realize and implement
not only hand-coding rules but also machine learning theory and the corresponding ar-
chitecture. Among machine learning techniques, reinforcement learning (RL) has been
attracting attention as it can actively search for solutions [1,2]. An optimal solution can
be found through trial and error based on rewards. However, RL needs to be lengthy or
include many trials. Transfer learning (TL) in RL is proposed for solving this problem [3,4].
TL is a method of improving the efficiency of current learning by reusing the knowledge
acquired in the past. In TL for RL, the agent of the target task can improve the learning
speed and adaptive performance of the target task by reusing the knowledge (e.g., policy,
value-function) acquired by the agent of the source task. In the agents of the source task
and target task, the effects of the physical composition and behavior on the environment
need to be similar. If the agents’ configurations are different (but similar) in the source task
and target task, they are described by inter-task mapping.
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Inter-task mapping is defined by a human operator based on experience and intuition.
The importance of mapping in the TL in RL is that it can directly change the performance
of the TL, even if appropriate knowledge is transferred. A method using an ontology that
supports the design of inter-task mapping has been proposed [5]. In addition, a method
for learning inter-task mapping using a neural network has also been proposed [6–8].
These studies are limited to verification by simple computer simulation and the use of
robots with low-DOF control, which are not automated. Automation of inter-task mapping
between robots with multiple degrees of freedom (DOF) such as multi-legged robots has
not been achieved.

In order to realize TL in RL in practical use, it is important to integrate it with other
research areas and domains. DQN, which combines Q-learning and deep learning, has
achieved explosive performance improvement [9]. Evolutionary TL in RL, inspired by
Darwin’s theory, has also been studied [10]. A four-legged walking robot that imitates and
learns the movements of animals is being studied [11]. There are also studies that apply
the findings of cognitive psychology to TL in RL [12]. As mentioned above, it is possible
to solve new problems by fusing with technologies and theories other than TL and RL.
For the automated acquisition of inter-task mapping with high DOF, it is important to
consider not only the trial-and-error process but also the embodiment of the robot and the
relationships between robots. Ota investigated the mechanism of the human brain as it
adapts to changes in bodily function for rehabilitation [13]. Humans have an internal model
of the body in the brain called a body representation, and it has been shown that active
human movements with goal-oriented and achievement feedback influence the updating
of the body representation in the human brain [14]. If the functions or structures of the
body are changed, the body representation is also changed to represent the actual state, in
the long term. Focusing on the transformation of the human body representation, the aim
of this research is to realize automatic inter-task mapping by acquiring the physicality of
the robot as a diagram and describing it as a difference or transformation. In this study,
RL robots are used to construct a body diagram. The environmental effects of their actions
are measured using sensors mounted on the robots, and the geometric connections of each
joint or motor of the robots are estimated. Furthermore, for performing TL between robots
with different physicalities, a method of automatically generating inter-task mapping by
computing the similarity of body diagrams is proposed.

The remainder of the paper is organized as follows. Section 2 discusses the basic
theories, related work, and the approach in this paper. Section 3 presents the proposed
method of automatic inter-task mapping based on a body diagram. Section 4 presents the
evaluation experiment using computer simulation and actual robots such as multi-legged
robots. Finally, Section 5 presents the concluding remarks.

2. Theories, Related Work, and Approach
2.1. Reinforcement Learning

RL is a machine learning method [1] in which the agent obtains the optimal solution
for the task by maximizing the reward obtained from the environment. Many types of
RL methods have been proposed in the past few decades. In this research, Q-learning is
adopted as the RL method for the robots [15]. Q-learning is defined by

Q(s, a)← Q(s, a) + α{r + γ max
a′∈A

Q(s′, a′)−Q(s, a)}, (1)

where s, s′ ∈ is the element of the state of the environment in the state space S, a ∈ A is the
element of the action of the agent in the action space A, α is the learning rate (0 < α ≤ 1),
γ is the discount rate (0 < γ ≤ 1), and r denotes the reward from the environment. Q(s, a)
is called the action-value function, which is represented by the Q-table.

An action selection function is used, e.g., the ε-greedy or Boltzmann selection function,
when the agent selects an action from Q(s, a). In this study, we assume that the Boltzmann
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selection is used for the action selection function. The Boltzmann selection represents the
softmax method and is defined as follows:

p(a|s) = e
Q(s,a)

T

∑b∈A e
Q(s,b)

T

(2)

2.2. Transfer Learning

TL is a framework that speeds up the learning time and improves the adaptive
performance in new tasks by reusing knowledge acquired in the past. TL is also proposed
for RL [3]. The agent transfers the knowledge learned in the source task to the agent of the
target task. The transferring action-value function is given by

Qt(st, at)← Qt(st, at) + Qs(χs(st), χa(at)). (3)

Here, st and at are the elements of the set of St and At, respectively, in the target task.
Qt(s, a) is the initialized action-value function in the target task. Qs(s, a) is the reused
action-value function in the source task. In addition, χs(·) and χa(·) indicate inter-task
mapping, which is defined as follows:

χs : st 7→ ss,

χa : at 7→ as. (4)

where ss and as are elements of the set of Ss and As, respectively, in the source task.
This definition of mapping is referred to as inter-task mapping herein. The function χ,
observable state st, and executable action at in the target task are mapped to the observable
state ss and executable action as in the source task. Hence, the agent in the target task can
be referred to as the action-value function read from the source task.

2.3. Heterogeneity in Robots

In the same hardware structure, the TL technique has shown some success in the
“sim-to-real” condition [11,16–18]. The difference between robots, that is, the heterogeneity,
is defined with regard to not only the shape of the robot’s body but also the observable
states and executable actions. Actions defined by the set of A, such as the number of
motors and the relationships between the motors, are constructed within the hardware
configuration of the robot. For example, one action may correspond to the movement of
one motor, or the sequential movements of multiple motors may constitute the action a.
The same is true for the state s, where information extracted from multiple sensors may or
may not constitute s.

This study focused on the heterogeneity of robots, as well as the difference in the set
of A in the target-task and source-task agents, for the verification of the proposed method.

2.4. Mappings Leveraging with Ontology

Kono et al. proposed labor-saving techniques for inter-task mapping using ontology [5].
The behavior of each agent is shared through the ontology stored on the cloud, and the
mapping was successfully simplified. As a result, the amount of work was reduced by
using Internet facilities such as the cloud, and the effect of TL was obtained. However,
it is not automated or learned. In addition, it was confirmed that when the difference in
physicality is high, the effect of TL is less likely to appear.

2.5. Learning of Inter-Task Mapping

Taylor et al., Fachantidis et al., and Cheng et al. proposed a learning method of
inter-task mapping using a neural network. Taylor et al. and Fachantidis et al. proposed
the methods known as MASTER and COMBREL. The agent executes a random action at
the beginning of the target task and obtains a sample of the state transition for the action.
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This is a method of mapping the obtained sample to the behavior and state of the agent
of the source task. However, the evaluation is limited to agents with few DOF and to
simple simulations.

Cheng et al. proposed a method that evaluated a keepaway soccer task using computer
simulation. However, in this method, only inter-task mapping in an agent with few DOF is
considered, and it is difficult to adapt to a multiple-DOF robot with actual physicality.

2.6. Body Representation in Human Brain

In the human brain, “body representation in the brain” is a function for adaptation.
Ota et al. investigated this phenomenon for a rehabilitation method in the form of an
“embodied-brain systems science” field [13]. The key to elucidating the adaptability to
changes in the human body is the body representation, and if there is a method to specifi-
cally describe the body representation, it should be possible to describe the embodiment of
the robot and recognize changes in the embodiment.

It might be difficult to represent the human body in a format that can be implemented
by a computer that uses organized robot intelligence. However, it is possible to apply the
concept, as well as to define and utilize a body representation in a robot.

2.7. Approach

As mentioned above, RL and TL are applied to real-world situations as knowledge-
leveraging methods. The mechanism for recognizing changes in the body is also elucidated,
and by integrating these technologies and ideas, it may be possible to realize TL between
robots with different embodiments. That is, the automation of inter-task mapping can be
realized. In addition, unlike automated inter-task mapping using simulations, which has
been discussed in previous research, this research aims to transfer from the learning results
of multiple trials by physics-based simulation of the robot into the real environment using
the “sim-to-real” method [11,16–18] for realizing transfer learning between robots with a
large number of DOF. In this paper, we proceed with the discussion on the premise of a
multi-legged robot with a large number of DOF (compared to a mobile robot such as a
wheel type, which has a configuration with a small number of DOF). With reference to
the transformation of the body representation in the human brain, it is considered that the
body representation can also represent the structure of the robot body, as a diagram. By
moving the robot and acting on the environment, the diagram inside the robot is modified,
and the robot’s own body structure is clarified.

In both RL and TL using agents that physically resemble robots, actions are realized by
the movement of one or more actuators (e.g., motors). Therefore, in this study, we propose a
method of acquiring a body diagram, which is the information regarding body composition,
using the sensor data obtained from each action of the agent, the actuator in each action,
the number of executions, and the performance of the automatic physicality mapping.
This method is called Body Calibration. The main contribution of the proposed method
is not only realizing the automation of inter-task mapping but also realizing sim-to-real
transfer and real-to-real transfer by considering the body diagram. Previous research has
used only a trial-and-error approach to the automatic description of inter-task mapping for
generalization of the method. In the proposed method, by acquiring the body diagram by
trial and error in advance, it is possible to reuse the body diagram during transfer learning.
This is expected to reduce the trial-and-error process for automatic inter-task mapping in
transfer learning.

3. Proposed Method: Body Calibration

In this research, inspired by the body representation, a method is proposed in which
the robot performs body calibration in advance to acquire the body diagram and then compares
the body diagrams of the agents to perform automatic inter-task mapping.
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3.1. Number of Executed Actions

Executable actions of agents are defined as ai, and paired with the corresponding
executed number of actions ni, as follows:

Ai , (ai, ni). (5)

Here, ai is constructed with a driven motor number pattern, defined as

ai , f (Mm, · · · , Mn). (6)

and ai is also ai ∈ A. Furthermore, i is a number that identifies the type of action and Mj is
an arbitrary motor number or identification (ID). Each Mj is an actuator, such as a motor,
corresponding to each joint of the robot’s movement. Therefore, the function f means that
one or multiple motors realize the motion of the robot, that is, an action of the robot.

The variable ni represents the count when there is a change in body vector B or foot
vector F (described later), or when the agent is not overturned as a result of the action

3.2. Body Vector

It is assumed that the agent can be obtained by self-location using any sensor system.
The obtained coordinate information pi

t is defined as pi
t = (x, y, z)>. The coordinate

changes ∆pi with respect to ai executed by the agent are obtained by the following equation,
using the coordinate information before (t) and after (t + 1) for an action.

∆pi = pi
t+1 − pi

t. (7)

where i is also the number that identifies the type of action. Similarly, the posture angle
information ηi

t is defined as ηi
t = (φ, θ, ψ)>. The change in the posture angle is expressed as

∆ηi = ηi
t+1 − ηi

t. (8)

It is assumed that the posture angle information can be obtained using a gyro sensor.
The posture angle change for each rotation axis is calculated by the rotation matrix, shown
in the following equation.

ψR =

 cos(∆ψ) − sin(∆ψ) 0
sin(∆ψ) cos(∆ψ) 0

0 0 1

, (9)

φR =

 cos(∆φ) 0 sin(∆φ)
0 1 0

− sin(∆φ) 0 cos(∆φ)

, (10)

θ R =

 1 0 0
0 cos(∆θ) − sin(∆θ)
0 sin(∆θ) cos(∆θ)

. (11)

It is assumed that each rotation matrix for the roll φ, pitch θ, and yaw ψ can be
described as follows:

R(∆ηi) = ψR φR θ R. (12)

The body vector B is then obtained by the following equation.

Bi , R(∆ηi)∆pi. (13)

The latest calculation, Bi = (xr, yr, zr)>, is written as Bi
t, and the current body diagram

Bi is updated each time the agent acts, as shown in the following equation.

Bi ← Bi + Bi
t. (14)
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3.3. Foot Vector

The end point of the leg (toe) of a multi-legged robot has a touch sensor, and the
obtained sensor information τi is given by τi = {0, 1}, which indicates whether the toe
has been touched. Here, i is also the number that identifies the type of action. The sensor
vector is defined as Ti = (τ1, τ2, · · · , τn)>. Note that the i of the sensor vector is the action
number in Equation (6).

∆Ti = Ti
t − Ti

0. (15)

Here, Ti
0 is the sensor vector in the default posture of the robot. The function N(1)(∆Ti)

is defined as the number of toes that are in contact with ground due to the action ai.
From the number of toes that are in contact with the ground, the degree of influence λ is
calculated as follows:

λ =
Ns

N(1)(∆Ti)
. (16)

where Ns is the number of elements of the sensor vector and therefore the number of touch
sensors at the toes of the legs. Finally, the foot vector F is updated using the above values
each time the agent acts, as follows.

Fi ← Fi + λ∆Ti. (17)

Here, the initial value Fi is also set as an arbitrary default value, typically zero.

3.4. Body Diagram

The obtained body vector Bi and foot vector Fi are averaged by the number of executed
actions ni in Ai, which are defined in Equation (5). The averaged body vector Bi and foot
vector Fi are as follows:

B̄i =
Bi
ni

, (18)

F̄i =
Fi
ni

. (19)

The body diagram D is constructed with the calculated values of B̄i and F̄i, based on
Ai. The body diagram D is defined as follows:

D = {(A1, B̄1, F̄1), (A2, B̄2, F̄2) · · · (An, B̄n, F̄n)}. (20)

The body diagram D is stored in a table as the body vector B and foot vector F for
all A, where n is the number of types of actions. The body diagram D is calculated for
the agents, and mapping realizes the transfer between agents with different embodiments,
using mapping behaviors or actuators that have similar effects on states in the action of
agents after obtaining the body diagram D. When the body diagrams D are generated,
the initial state is such that all the legs of the robots and agents are in contact with the
ground and are in a standing position, for the measurement of the body vector Bi and
foot vector Fi. After defining the initial position, the robots and agent select all actions
and calculate the body vector Bi and foot vector Fi, which represent the differences before
and after the action. In the simulation, this may be executed multiple times, or it may be
executed only once when there is a time constraint, as in the case of an actual robot.

3.5. Mapping between Body Diagrams

After the calculation of the body diagram D, actions are mapped to the other agent’s
actions. The body diagram Dα is obtained from agent α in the source task, and the body
diagram Dβ is obtained from agent β in the target task. Each action is mapped between the
action ai of agent α and the action aj of agent β using the following equation:

χD : ai 7→ aj, (21)
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with the condition
min{d(B̄α, B̄β)} ∩min{d(F̄α, F̄β)}. (22)

Here, actions are ai ∈ Aα and aj ∈ Aβ, where Aα and Aβ are sets of actions of the
agents α and β, respectively. Bα and Fα are the body and foot vectors of agent α that are
stored in the body diagram Dα. Moreover, Bβ and Fβ are the body vector and foot vector
of agent β, which are stored in the body diagram Dβ. In Equation (22), the function d(·)
calculates the Euclidean distance between two input vectors. In other words, the action
with a similar body and foot vector between agents is mapped, and a list of mappings from
agent α to agent β is generated.

Finally, the theoretical descriptions are mapped to a simplified schematic, as shown
in Figure 1. This figure demonstrates the relationship between the traditional transfer
reinforcement learning structure and the proposed method. Only the body diagram in-
formation is provided for the transfer reinforcement learning to translate the inter-task
mapping based on the difference in the bodies of the agents.

Figure 1. Simplified illustration of proposed method. The right side explains traditional transfer
reinforcement learning, and the left side explains body calibration’s information flow.

4. Experiments

To evaluate the effectiveness of the proposed method, experiments were conducted
using a multi-legged type of virtual agent and an actual multi-legged robot. The purpose of
this experiment was to confirm that an equivalent or near-equivalent effect can be obtained
by TL using the conventional inter-task mapping set by humans and the TL of the automatic
mapping, using body calibration. This means that if the proposed method has an equivalent
effect to the conventional method, the inter-task mapping process can be automated using
mapping with body calibration. In addition, the proposed method is an automated method
of generating inter-task mapping as part of the TL process. Therefore, the RL setup was not
original, and the possibility of TL is the most important result of this experiment.

4.1. Experimental Setup

In this experiment, a physical calculation simulator and actual small multi-legged
robot were adopted to evaluate the proposed method. Webots was used as a physical
calculation simulator [19]. The virtual agent’s body was designed to be multi-legged, as
shown in Figure 2. The virtual agent was compatible with the actual multi-legged robots
that were developed for this experiment, as shown in Figure 3. The robot in Figure 3 is
called Robot 1 hereinafter. The virtual agent and Robot 1 have 18 joints, and each joint is
connected by a link, as shown in Figure 4. Obtaining the contact and posture information
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in the computer simulation is straightforward. However, Robot 1 needs to be equipped
with sensors to obtain this information. Therefore, a touch sensor was implemented for
the end point of each leg, and a gyro sensor was implemented on the robot’s body. In this
configuration, the touch sensor can detect contact between the end point of the leg and
the ground as on/off. To detect contact between the body and the ground, a laser distance
sensor was implemented under the body.

Figure 2. Multi-legged type of virtual agent in Webots. Scales such as for the lengths of the links
and the positions of joints and the body are set to be similar to those of an actual robot, as shown
in Figure 3. This model is controlled by a Python program in Webots, and information on contact
between the ground and the end point of a leg can be obtained in the program.

Figure 3. Actual multi-legged robot (called Robot 1). All the joints are realized using a servo motor,
and the link and body structures are generated using a 3D printer. All the motors and sensors are
controlled and connected using a Raspberry Pi, which is powered by a small LiPO battery. This robot
also drives an external power source using a regulated DC power supply device. The servo motor
used was a Dynamixel XL-320 [20], and the Python library Pypot was used to control the servo motor
through the U2D2 module from the Raspberry Pi.
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Figure 4. Joint placement and structure of Robot 1 in top view. All the joints are rotational joints.
The end point of each leg has a touch sensor, as described above. Leg numbers are assigned in this
figure, for the control. Motor IDs M1 to M18 are assigned to the virtual agent, and motor IDs M21 to
M38 are assigned to Robot 1.

A different type of robot embodiment is shown in Figure 5, and this robot’s joint
structure is shown in Figure 6. The robot in Figure 5 is called Robot 2. Robot 2 was also
developed for this experiment. The specifications of the joints, sensors, and controls are
the same as in Robot 1. Only the number of joints and the rotation angles of the joints are
different from those of Robot 1. In Figures 4 and 6, the motor IDs assigned to the virtual
agent, Robot 1, and Robot 2 are M1 to M18, M21 to M38, and M41 to M52, respectively.

Figure 5. Different robot embodiment. The system configuration for elements such as servo motors
and touch sensors is the same as in Robot 1. Only the number of joints and rotation angles of the
joints are different from Robot 1.

To obtain the self-coordination of the robot, actual robots have a marker on the top of
body, as shown in Figures 3 and 5. A camera for recognizing markers was implemented
on the ceiling of the experimental environment. The self-position recognition server was
installed outside, and the robots can acquire the self-coordinates from the server using a
wireless LAN. When the agent and robot are controlled by the RL algorithm, the legs are
actuated three legs at a time. For example, legs 1, 3, and 5 in Figure 4 move simultaneously
with respect to the command value to rotate the joint. This contributes to a reduction of the
action space and a simplification of control.
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Figure 6. Joint placement and structure of Robot 2 in a top view. Motor IDs M41 to M52 are assigned
to Robot 2.

The virtual learning environment in Webots is constructed as shown in Figure 7. The
distance between the starting and goal points was 300 mm. A wall was set around the
experimental field, as shown in Figure 8, to give a negative reward to the agent. If the agent
reached the goal, the agent’s position was automatically reset to the start position. The start
position on the y-axis was the same, but the goal position differed depending on the robots,
because each robot has a different maximum movement distance for one action. In the case
of two robots, the goal position was set as the position reached by the same number of
actions. If the robots reached the goal, the robots’ positions were reset to the start position
by the human operator.

Figure 7. Virtual environment in Webots. In this figure, the distance between the start and goal
position is 300 mm. The agent has learned the motion of the legs to begin moving towards the goal.

Figure 8. Simplified overview of the actual learning environment. This figure is a bird’s-eye view. S
denotes the start position and G denotes the goal position.
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4.2. Conditions

At the beginning of this experiment, the moving behavior was learned through RL in
Webots using a virtual agent. The parameters for RL were set as shown in Table 1. After
the learning of the simulation, the body calibration was executed using all agents and
robots. In the experiment involving the robot, the parameters were the same as those given
in Table 1, except that the maximum number of episodes was different because, unlike
simulations, actual robots cannot perform the same number of episodes.

Table 1. Reinforcement learning parameters in simulation. These parameters are used for learning
simulation in Webots.

Parameters Values

Number of trials 5
Maximum number of episodes 100,000

Learning rate α 0.1
Discount rate γ 0.99

Reward at reaching goal r 10
Reward per step rs −0.05

Reward for body contact with ground rg −0.1
Temperature of Boltzmann selection T 0.1

In the reward design, when the agent and robots reach the goal, the virtual agent
and robots obtain a positive reward value of r = 10, and therefore receive a negative
reward value of rs = −0.05 per step of an action. In addition, if the virtual agent and the
robots’ bodies are in contact with the ground, they also obtain a negative reward value of
rg = −0.1. As an evaluation of the proposed method, the difference between the results
from the proposed method and hand-coded inter-task mapping by a human who was
not related to this study were compared. The evaluating factor used was the number of
steps between the start and goal positions. Essentially, the smaller the number of steps,
the higher the performance at the end of the learning process.

In this experiment, state s ∈ S for RL and TL is defined as follows:

s = (x, y)>. (23)

In the robots, the above coordinates were set from the camera system described in
Section 4.1, and for the agents, they could be obtained from Webots. The action a ∈ A for
RL and TL is defined as follows:

a = (Mi, Mj, Mk, θ). (24)

Here, Mx is the motor ID, and i 6= j 6= k are the other IDs. The action a specifies the
operation of the three servo motors and executes the changing angle command value of θ
for each motor, where θ can be set as +20 degrees or −20 degrees from the current angle in
this experimental condition.

4.3. Results of Learning Simulation

The results of the learning curve with a learning simulation of virtual agents are shown
in Figure 9. In this figure, the learning curve converges at around 60,000 episodes. As for
to general RL effects, the learning curve has a large number of steps at the beginning of
learning, and the number of steps decreases with each episode. The virtual agent can be
moved from the starting position to the goal with a gait motion.
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Figure 9. Learning curve obtained from learning simulation with virtual agents. The x-axis denotes
the number of episodes, indicating the iteration number of learning. The y-axis denotes the number
of steps between the start and goal positions. In other words, the number of steps represents the
problem-solving time or number of action selections.

4.4. Results for Body Calibration

Before transferring the obtained action-value function from the virtual agent to the
actual robots, the results of the body calibration in the virtual agent and the robots are shown
in Tables 2–4. The tables show the calculation results of the body diagram corresponding to
the action number. The corresponding motor ID is attached to the action number, giving a
correspondence table between the body B̄i and foot F̄i as a result of moving the motor. In
these tables, the foot-vector values are indicated as negative values because all foot sensors
are detected at the default position of the robot. Therefore, after an action, the change in
the foot vector is a small value.

Table 2. Results of body calibration in virtual agent. This agent has motor IDs M1 to M18.

Action No. ai, Motor IDs Mj, and Number of
Executed Actions nk

Body Vector B̄i Foot Vector F̄i

(0, M1, M4, M13, 100) (−1.41× 10−2,−1.14× 10−5, 1.15× 10−3)> (0, 0, 0, 0, 0, 0)>
(1, M1, M4, M13, 100) (1.41× 10−2,−2.98× 10−6, 1.25× 10−3)> (0, 0, 0, 0, 0, 0)>
(2, M16, M10, M7, 100) (1.41× 10−2,−3.00× 10−6,−1.20× 10−3)> (0, 0, 0, 0, 0, 0)>
(3, M16, M10, M7, 100) (−1.41× 10−2,−2.98× 10−6, 1.25× 10−3)> (0, 0, 0, 0, 0, 0)>
(4, M17, M11, M8, 100) (−3.33× 10−5, 2.81× 10−2,−1.38× 10−2)> (−2,−2,−2, 0, 0, 0)>
(5, M17, M11, M8, 100) (2.27× 10−9,−3.00× 10−4,−7.33× 10−5)> (0, 0, 0,−2,−2,−2)>
(6, M14, M2, M5, 100) (−1.41× 10−7,−2.95× 10−4, 6.31× 10−5)> (−2,−2,−2, 0, 0, 0)>
(7, M14, M2, M5, 100) (8.07× 10−5, 2.81× 10−2, 1.38× 10−2)> (0, 0, 0,−2,−2,−2)>
(8, M12, M18, M9, 100) (−3.97× 10−5,−3.93× 10−4,−2.57× 10−3)> (0, 0, 0,−2,−2,−2)>
(9, M12, M18, M9, 100) (3.94× 10−5,−4.09× 10−4, 2.24× 10−3)> (0, 0, 0,−2,−2,−2)>
(10, M15, M3, M6, 100) (3.73× 10−5,−4.04× 10−4, 2.56× 10−3)> (−2,−2,−2, 0, 0, 0)>
(11, M15, M3, M6, 100) (−3.77× 10−5,−4.09× 10−4,−2.24× 10−3)> (−2,−2,−2, 0, 0, 0)>
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Table 3. Results of body calibration in Robot 1. This robot has motor IDs M21 to M38.

Action No. ai, Motor IDs Mj, and Number of
Executed Actions nk

Body Vector B̄i Foot Vector F̄i

(0, M21, M24, M34, 1) (−1.11× 10−2,−8.36× 10−4 − 2.38× 10−2)> (0, 0, 0, 0, 0, 0)>
(1, M21, M24, M33, 1) (7.45× 10−3, 2.33× 10−3,−1.87× 10−2)> (0, 0, 0, 0, 0, 0)>
(2, M36, M27, M30, 1) (7.19× 10−3, 4.70× 10−4, 1.40× 10−2)> (0, 0, 0, 0, 0, 0)>
(3, M26, M27, M30, 1) (−7.33× 10−3, 4.07× 10−4,−1.40× 10−2)> (0, 0, 0, 0, 0, 0)>
(4, M31, M37, M28, 1) (−4.98× 10−3, 9.84× 10−3,−9.43× 10−3)> (0, 0, 0,−2,−2,−2)>
(5, M31, M37, M28, 1) (−2.41× 10−3,−2.45× 10−3, 6.81× 10−5)> (0,−3,−3, 0, 0, 0)>
(6, M25, M34, M22, 1) (1.36× 10−4,−4.00× 10−3, 5.48× 10−6)> (0, 0, 0,−2,−2,−2)>
(7, M25, M34, M22, 1) (−4.64× 10−3, 6.88× 10−3,−9.53× 10−3)> (−6, 0, 0, 0, 0, 0)>
(8, M32, M38, M29, 1) (2.52× 10−6,−5.00× 10−4, 4.92× 10−7)> (0, 0, 0, 0, 0, 0)>
(9, M32, M38, M29, 1) (−4.56× 10−5,−3.50× 10−3, 9.85× 10−5)> (0,−3,−3, 0, 0, 0)>

(10, M23, M35, M26, 1) (2.41× 10−3, 2.55× 10−3,−4.65× 10−3)> (0, 0, 0, 0, 0, 0)>
(11, M23, M35, M26, 1) (2.61× 10−3,−5.33× 10−3, 4.76× 10−3)> (0, 0, 0,−2,−2,−2)>

Table 4. Results of body calibration in Robot 2. This robot has motor IDs M41 to M52.

Action No. ai, Motor IDs Mj, and Number of
Executed Actions nk

Body Vector B̄i Foot Vector F̄i

(0, M43, M41, M49, 100) (−2.35× 10−3, 6.32× 10−5, 4.70× 10−3)> (0, 0, 0,−2,−2,−2)>
(1, M43, M41, M49, 100) (2.36× 10−3,−1.48× 10−3, 4.64× 10−3)> (0, 0, 0,−2,−2,−2)>
(2, M51, M47, M45, 100) (−2.33× 10−3, 1.91× 10−4,−4.71× 10−3)> (−2,−2,−2, 0, 0, 0)>
(3, M51, M47, M45, 100) (2.30× 10−3,−2.42× 10−3, 4.77× 10−3)> (−2,−2,−2, 0, 0, 0)>

(4, M52, M48, M146, 100) (3.32× 10−5,−8.72× 10−4,−4.68× 10−3)> (−2,−2,−2, 0, 0, 0)>
(5, M52, M48, M146, 100) (−2.38× 10−3,−2.22× 10−3, 9.05× 10−5)> (0, 0, 0,−2,−2,−2)>
(6, M50, M42, M44, 100) (1.17× 10−5,−3.25× 10−3,−8.54× 10−6)> (−2,−2,−2, 0, 0, 0)>
(7, M50, M42, M44, 100) (9.86× 10−5,−1.78× 10−3,−4.79× 10−3)> (0, 0, 0,−3, 0,−3)>

Table 5 shows the mapping results of body calibration. Between the virtual agent and
Robot 2, there are cases where there is nothing to map because the DOF are different. In
the case of mapping between the virtual agent and Robot 1, the DOF are the same but
the mapping does not match exactly. The validity of this mapping result is verified by
the results shown in the next subsection. In the next subsection, the action-value function
obtained by simulation is transferred to an actual robot, and the behavior of the robot using
the mapping obtained by this body calibration is described for the inter-task mapping
of TL.

Table 5. Results of mapping using each body diagram and hand coding.

Action Number of
Virtual Agent

Mapping to Robot 1
by Proposed Method

Mapping to Robot 1
by Hand Coding

Mapping to Robot 2
by Proposed Method

Mapping to Robot 2
by Hand Coding

0 0 0 0 0
1 1 1 1 1
2 2 2 7 2
3 3 3 6 3
4 7 4 4 N/M 4

5 6 5 5 N/M 4

6 5 6 N/M 4 N/M 4

7 4 7 N/M 4 N/M 4

8 11 8 N/M 4 4
9 10 9 N/M 4 5
10 9 10 3 6
11 8 11 2 7

4 N/M indicates that there is nothing to map.
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4.5. Results of Transfer to Robots

The results for the movement trajectory of Robot 1 are shown in Figure 10 and the
movement trajectory of Robot 2 is shown in Figure 11. These movement trajectories are
illustrations of experiments that were attempted five times for each robot. In the trajectories
in the figures, the coordinates (x, y) = (0, 0) represent the starting position of the robot,
based on the marker. The goal position is 70 mm along the y-axis in Figure 10. The goal
position in Figure 11 is 100 mm along the y-axis.

Figure 10. Movement trajectory of Robot 1 when the action-value function is transferred from the
virtual agent through body calibration. As a comparison, the movement trajectory of Robot 1 during
the transfer of learning using hand-coded inter-task mapping is used.

Figure 11. Movement trajectory of Robot 2 when the action-value function is transferred from the
virtual agent through body calibration. As a comparison, the movement trajectory of Robot 2 during
the transfer of learning using hand-coded inter-task mapping is used

For the trajectories of Robot 1, hand-coded conditions are needed to move in four
steps from the starting position to the goal. However, the proposed method condition takes
33 steps to move from the starting position to the goal. In other trials, hand coding may
require more steps. Both conditions in Figure 10 show that the task of moving forward
and reaching the goal was accomplished. In the trajectories of Robot 2, it appears that
there is no significant difference in the number of steps between the hand-coded method
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and the proposed method, and the task of moving forward and reaching the goal was
accomplished, as in the experiment with Robot 1.

4.6. Discussion

The averaged number of steps and the standard deviation for five trials are shown
in Figures 12 and 13. In Figure 12, the result using Robot 1 focuses on the average
value. The hand-coded method and the proposed method have a similar number of
steps, and there is no significant difference. However, since the deviation is smaller in the
proposed method compared with the hand-coded method, it is suggested that it could
be possible to avoid design mistakes by humans and maintain the performance of TL by
automating the mapping using the proposed method. In this case, the virtual agent and
Robot 1 have the same embodiments in terms of DOF and structure. In fact, the hand-coded
mapping is intuitively correct because the action number of the virtual agent is mapped
to the same action number in Robot 1. Nevertheless, the reason why the deviation in the
number of steps is so large is assumed to be because there is a difference in the behavior
of the virtual agents and robots in the simulation and real environments. This fact shows
that the proposed method of body calibration can absorb and map the difference between
the simulation and actual environments, even if the embodiments of the virtual agent and
robot are the same.

Figure 12. Averaged number of steps and standard deviation over five trials (n = 5) in Robot 1, for
comparison between the proposed and hand-coded methods.

Figure 13. Averaged number of steps and standard deviation over five trials (n = 5) in Robot 2, for
comparison between the proposed and hand-coded methods.

However, under the experimental condition using Robot 2, there is no large difference
in the number of steps, as shown in Figure 12. Additionally, the deviation is larger in the
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proposed method than in the hand-coded method. Because the DOF of the robot at the
transfer destination are fewer than those of the virtual agent, this may increase the difficulty
of TL. Another reason for the deviation may be the differences from the simulation when
the real robot interacts with the real environment, e.g., slip and control errors.

The difficulty level of TL also changes depending on the differences in the embodi-
ments of agents and robots. Therefore, although the effect of the proposed method has
changed, the experimental results indicate that the mapping can be automated, because
there is no large difference in the transfer results between the proposed and hand-coded
methods. However, the standard deviation of the experimental results is large overall. This
is because the gait motion has not been sufficiently acquired in the RL process. In this
experiment, reaching the destination is the main reward condition of RL, and therefore gait
efficiency and load are not taken into consideration. Therefore, execution of the policy ob-
tained in the simulation put a load on the joints motors of the actual robot. It is considered
that the number of actions to reach the goal became unstable and the standard deviation of
the number of steps became large.

5. Conclusions

This study proposed an automatic inter-task mapping method for transfer reinforce-
ment learning inspired by the body representation in the human brain. Body calibration
using a body diagram calculated using body and foot vectors was proposed and eval-
uated using learning simulation and actual robots. Before the transfer of knowledge to
actual robots, the behavior was learned with RL using a virtual agent which contained
18 actuators operating six legs in a multi-legged robot. After the simulation, the obtained
action-value function was transferred to the actual robot, and the robot moved using the
obtained action-value functions through body diagrams which were obtained by body
calibration. As a result, compared with human-designed inter-task mapping, the TL using
body diagrams had the same effect as the TL for which the mapping was set manually.
Therefore, automatic inter-task mapping was realized. In addition, this result shows that
the proposed method, body calibration, could absorb and map the differences between the
simulation and actual environments, even if the embodiment of the virtual agent and robot
were the same.

In future work, it will be necessary to evaluate the usefulness of the proposed method
using a robot with a different embodiment, as well as investigating the difficulty of transfer
and experimental conditions with extremely different DOF. Moreover, under the experi-
mental conditions of this paper, the movement distance of the robot was at the most 100
mm, and therefore it is necessary to evaluate the method by moving a longer distance and
measuring the effect in a more complicated environmental shape. It is also important to
measure the limits of the proposed method. In addition, the effect of the transfer depends
on the difference between the simulation and the actual experiment; therefore, the perfor-
mance of the proposed method also depends on this difference. It is necessary to clarify the
differences in the effects of TL owing to the differences between the simulation and actual
experiments and the relationship between the effects in the proposed method. Considering
the implementation in real applications, it is necessary to evaluate the accuracy of the
method and verify the real-time property.

Author Contributions: Conceptualization, S.I. and H.K.; methodology, S.I. and H.K.; software,
S.I.; validation, S.I., H.K., K.W. and H.S.; formal analysis, H.K.; investigation, S.I.; resources, S.I.;
data curation, K.W.; writing—original draft preparation, S.I.; writing—review and editing, H.K.,
K.W. and H.S.; visualization, S.I. and H.K.; supervision, H.K. and H.S.; project administration, H.K.
and H.S.; funding acquisition, H.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by JSPS KAKENHI, Grant Number JP18K18133.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Actuators 2022, 11, 140 17 of 17

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; The MIT Press: Cambridge, MA, USA, 1998.
2. Kober, J.; Bagnell, J. A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013 32, 1238–1274. [CrossRef]
3. Taylor, M.E. Transfer in Reinforcement Learning Domains; Ser. Studies in Computational Intelligence; Springer: Berlin/Heidelberg,

Germany, 2009; p. 216.
4. Lazaric, A. Reinforcement Learning—State of the art. In Transfer in Reinforcement Learning: A Framework and A Survey; Springer:

Berlin/Heidelberg, Germany, 2012; Volunme 12, pp.143–173.
5. Kono, H.; Murata, Y.; Kamimura, A.; Tomita, K.; Suzuki, T. Transfer Learning Method Using Ontology for Heterogeneous

Multi-agent Reinforcement Learning. Int. J. Adv. Comput. Sci. Appl. 2014, 5, 15–164. [CrossRef]
6. Taylor, M.E.; Kuhlmann, G.; Stone, P. Autonomous transfer for reinforcement learning. In Proceedings of the Seventh International

Joint Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal, 12–16 May 2008; pp. 283–290.
7. Fachantidis, A.; Partalas, I.; Taylor, M. E.; Vlahavas, I. Transfer learning with probabilistic mapping selection. Adapt. Behav. 2015,

23, 3–19. [CrossRef]
8. Cheng, Q.; Wang, X.; Shen, L. An Autonomous Inter-task Mapping Learning Method via Artificial Network for Transfer

Learning. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Macau, China, 5–8 December 2017;
pp. 768–773.

9. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjel, A.K.;
Ostrovski, G.; et al. Human-Level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

10. Hou, Y.; Ong, Y.; Feng, L.; Zurada, J.M. An Evolutionary Transfer Reinforcement Learning Framework for Multiagent Systems.
IEEE Trans. Evol. Comput. 2017 21, 601–615. [CrossRef]

11. Peng, X.B.; Coumans, E.; Zhang, T.; Lee, T.-W.E.; Tan, J.; Levine, S. Learning Agile Robotic Locomotion Skills by Imitating Animals.
In Proceedings of the Robotics: Science and Systems, Corvalis, OR, USA, 12–16 July 2020.

12. Kono, H.; Katayama, R.; Takakuwa, Y.; Wen, W.; Suzuki, T. Activation and Spreading Sequence for Spreading Activation Policy
Selection Method in Transfer Reinforcement Learning. Int. J. Adv. Comput. Sci. Appl. 2019 10, 7–16. [CrossRef]

13. Ota, J. Understanding Brain Plasticity on Body Representations to Promote Their Adaptive Functions; 2018 Annual Report; Kaken: Tokyo,
Japan, 2018.

14. Wen, W.; Katsutoshi, M.; Shunsuke, H.; Qi, A.; Hiroshi, Y.; Yusuke, T.; Atsushi, Y.; Hajime, A. Goal-Directed Movement Enhances
Body Representation Updating. Front. Hum. Neurosci. 2016, 10, 1–10. [CrossRef] [PubMed]

15. Watkins, C.J.C.H.; Dayan, P. Q-Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
16. Peng, X.B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Sim-to-Real Transfer of Robotic Control with Dynamics Randomization.

In Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018;
pp. 3803–3810.

17. Baar, J.V.; Sullivan, A.; Cordorel, R.; Jha, D.; Romeres, D.; Nikovski, D. Sim–to–Real Transfer Learning using Robustified
Controllers in Robotic Tasks involving Complex Dynamics. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6001–6007.

18. Hwasser, M.; Kragic, D.; Antonova, R. Variational Auto-Regularized Alignment for Sim–to–Real Control. In Proceedings of the
2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2732–2738.

19. Webots: Open Source Robot Simulator. Available online: https://cyberbotics.com/ (accessed on 30 January 2022).
20. ROBOTIS: Dynamixel XL-320. Available online: https://www.robotis.us/dynamixel-xl-320/ (accessed on 30 January 2022).

http://doi.org/10.1177/0278364913495721
http://dx.doi.org/10.14569/IJACSA.2014.051022
http://dx.doi.org/10.1177/1059712314559525
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/TEVC.2017.2664665
http://dx.doi.org/10.14569/IJACSA.2019.0101202
http://dx.doi.org/10.3389/fnhum.2016.00329
http://www.ncbi.nlm.nih.gov/pubmed/27445766
http://dx.doi.org/10.1007/BF00992698
https://cyberbotics.com/
https://www.robotis.us/dynamixel-xl-320/

	Introduction
	Theories, Related Work, and Approach
	Reinforcement Learning
	Transfer Learning
	Heterogeneity in Robots
	Mappings Leveraging with Ontology
	Learning of Inter-Task Mapping
	Body Representation in Human Brain
	Approach

	Proposed Method: Body Calibration
	Number of Executed Actions
	Body Vector
	Foot Vector
	Body Diagram
	Mapping between Body Diagrams

	Experiments
	Experimental Setup
	Conditions
	Results of Learning Simulation
	Results for Body Calibration
	Results of Transfer to Robots
	Discussion

	Conclusions
	References

