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Abstract: In this study, the performance of a vortex array gripper was numerically investigated based
on the pressure distribution on the surface of a gripped object and the resulting suction force. An
analysis of the suction force generated by a single-vortex gripper was performed to determine the
geometric parameters for providing a good suction force and subsequently, for the vortex array
gripper configuration. Array grippers consisting of two- and four-vortex grippers were studied. For
dual-vortex grippers, the generated suction forces of various inlet air configurations with different
vortex gripper distances are illustrated. The pros and cons of all types of air supply and the influence
of positive pressure formed by outlet airflow interaction were examined. The analysis of quad-vortex
grippers also revealed that the suction force could be increased by reducing the outlet flow interaction
between the grippers using the placement of exhaust vents. Thus, the installation of array grippers
can be arranged in a more compact form to increase the total suction force per unit operation area
with uniformity.

Keywords: computational fluid dynamics; suction force; noncontact; vortex array grippers

1. Introduction

The demand for advanced production technologies has increased owing to the rapid
development of the semiconductor industry. Robotic manipulators are conventional appli-
ances used for gripping and positioning in various industries. In the production process
involving silicon wafer manipulation, the workpiece may be damaged by surface scratching
and static electricity from frequent contact with end-effectors, leading to defective products.
To prevent quality defects owing to contact with the gripper, noncontact grippers have
been proposed as a preferable solution. Commercially available noncontact grippers are
used to grip thin films, copper sheets, PCBs, and LED glass screen panels.

The air-flow-based gripping method is a conventional technique used in noncontact
grippers. Bernoulli levitation and vortex levitation are the main types of pneumatic noncon-
tact methods. For example, the Bernoulli gripper uses airflow to adhere to a workpiece. As
the name implies, this is based on the Bernoulli airflow principle. A high-velocity airstream
flows radially and forms a low-static-pressure region between the gripper and workpiece.
Subsequently, it enables contactless gripping within a given range gap. The Bernoulli
gripper also shows good stability without using a control loop and reduces maintenance
expenses [1,2]. Moreover, Bernoulli grippers can be applied to food production processes,
such as in the handling of fruits and vegetables, to reduce damage [3]. The other gripping
method is based on vortex levitation [4], which feeds air into a vortex chamber through a
tangential nozzle to generate a high-speed vortex flow. Because of the centrifugal force, a
negative pressure is generated in the center of the vortex. The negative pressure distributed
over the central region of the vortex chamber results in a suction force, and the positive
pressure around the gap passage prevents air from flowing into the vortex chamber, which
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maintains the negative pressure in the gripper. The gripper designed based on the vortex
levitation principle, as shown in Figure 1, is called a vortex gripper [5].

Figure 1. Vortex gripper.

The distribution of the negative pressure in the vortex chamber varies with the inlet
mass flow rate and clearance gap between the gripper and workpiece. An adequate
clearance gap is required to maintain a stable suction force. If the workpiece departs from
the equilibrium position, a higher mass flow rate can be supplied to obtain a higher suction
force and recover a stable condition. However, the vortex is dispersed and the flow is
reversed if the clearance gap exceeds the limitation. This phenomenon is similar to that
observed in cyclones. The lowest pressure occurs at the center of the cyclone. Therefore,
producing a vortex in the vortex gripper generates a notable negative-pressure region.

In recent years, some researchers have devoted their efforts to studying noncontact
grippers. Ma et al. [6] numerically examined the flow characteristics of the pressure
distribution and bearing capacity. Their study demonstrated that the lifting force increases
as the inlet mass flow rate increases. In addition, the effects of the gap thickness are also
discussed. As the gap thickness increases, the lifting force initially increases and then
decreases to a stable value. This indicates that the optimal lifting force can be obtained by
maintaining a suitable gap thickness. Feng et al. [7] numerically predicted the suction force
of vortex grippers and pressure distribution. This study proposed the relations between
the suction force and several parameters to improve the performance of arc/circular inner
channel grippers. Iio et al. [8] investigated the relationship between the sucking pressure
and flow dynamics. Measurements were performed for the pressure and flow field in the
vortex chamber, and indicated that the performance of the vortex levitation is strongly
affected by the gap height between the vortex gripper and the workpiece. Li et al. [9]
conducted numerical and experimental studies on vortex grippers and provided scientific
insights into flow phenomena and flow structure. Moreover, the influence of clearance
variation on the performance was investigated. Li and Kagawa [10] proposed a new
noncontact gripper called swirl gripper. They clarified the mechanism of this gripper and
showed that it can maintain stable levitation in the levitation zone.

Considering the wafer size, the dimensions of the manipulator end-effector should
be designed accordingly. The suction force of the small grippers may be insufficient for
large wafers. Therefore, an array gripper is used for handling large wafers at low cost.
The suction force is proportional to the inlet mass flow rate. In this study, the suction
force was considered as a performance index, and the geometric parameters of the vortex
chamber were studied. First, a single-vortex gripper was studied to determine the best
combination of the design parameters. Then, dual-vortex grippers were constructed based
on this single-vortex gripper model for array gripper studies. The interactions of airflow
in different layout patterns were examined for different distances between each gripper,
and the maximum suction force per unit area was realized. The analysis of quad-vortex
grippers also revealed that the suction force could be increased by reducing the outlet flow
interaction between the grippers using the placement of exhaust vents.

The outline of this article is as follows: The numerical method and key system pa-
rameters applied in this study are introduced in Section 2. In Section 3, a parametric
analysis is performed. The effects of geometric parameters of a single-vortex gripper on
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resulting suction force and pressure distributions are discussed. Subsequently, the layouts
of gripper arrays and the resulting pressure distributions are investigated. The different
layout designs with exhaust vents on quad-vortex array grippers are also proposed to
improve suction force generation. In Section 4, the conclusions are made and future studies
are addressed.

2. Numerical Method

In this study, the governing equations of mass, momentum, energy, and RNG k − ε
turbulence model were employed. Assumptions of an ideal gas and compressible flow
were made because of the high-pressure condition at the inlet boundary. The mass flow
rate and pressure outlet boundaries were set at the inlet and outlet, respectively. The
commercial software ANSYS FLUENT was used to solve the governing equations. The
present study is based on the SIMPLEC algorithm. Pressure and velocity correction schemes
were implemented in the model algorithm to arrive at a converged solution when both
the pressure and velocity satisfied the momentum and continuity equations, and the
under-relaxation scheme was employed to avoid divergence in the iterative solutions.

Based on a literature survey and to make the study more practical, the following
parameter values were selected for the rest of the numerical study: D2 = 17 mm, d = 1 mm,
h = 10 mm, H2 = 2 mm, and H3 = 1.2 mm. Because the mass flow rate condition was
applied to the inlet boundary, the inlet velocity varied with the diameter of the inlet nozzle
(d). Simulations were performed within a confined range of parameters to obtain a good
suction force for the vortex gripper.

3. Results and Discussions
3.1. Geometric Parameters and Performance of a Single Vortex Gripper

First, the influence of the inlet angle θwas studied. Referring to Figure 2, the geometric
parameters were as follows: D1 = 13 mm, D3 = 18 mm, H3 = 1.2 mm, gap = 0.3 mm,
d = 1.0 mm. The inlet mass flow rate Q was 2 × 10−4 kg/s. The resulting suction force with
respect to H1 and θ is presented in Table 1. The maximum suction force occurred at θ = 10◦

for both H1 values. Hence, θ = 10◦ was applied in the following studies. To investigate
the suction force at different gap values up to 1 mm, four cases with different H3 and D1
were studied under mass flow rate conditions of Q = 2 × 10−4 kg/s. As shown in Figure 3,
the largest suction force occurred at gap = 0.3 ± 0.1 mm for all cases. Therefore, a gap of
0.3 mm was chosen for the suction force evaluation in the following design studies.

Figure 2. Structure of vortex gripper.
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Table 1. The influence of θ on suction force.

θ (◦) D3 (mm)
F (N)

H1 = 8.5 mm H1 = 6 mm

0

18

0.187 0.247
10 0.190 0.257
20 0.183 0.245
30 0.178 0.231
40 0.177 0.247

Figure 3. Effects of gap on suction force.

Table 2 shows the resulting suction forces for different Q, D1, and H1. When Q = 1× 10−4 kg/s,
the suction force of the vortex gripper was too weak to grip effectively. In contrast to the
case with Q = 1 × 10−4 kg/s, the case with Q = 3 × 10−4 kg/s generated a stronger suction
force. However, an impractical inlet velocity of 311 m/s (i.e., Mach 0.91) was reached
and was not suitable for the physical model applied in this study. Considering the stable
suction force and referring to the literature, Q = 2 × 10−4 kg/s was used for the studies.
Table 2 also shows that the suction force increased with decreasing H1. However, too
small a H1 leads to low numerical accuracy or even divergence owing to a large dimension
ratio. Considering the simulation effort and reasonable magnitude of the suction force,
H1 = 6 mm was adopted. The geometric parameters with D1 = 13 mm and H1 = 6 mm under
a mass flow rate of Q = 2 × 10−4 kg/s obtained a suction force of 0.257 N, which was the
largest among the cases. The pressure distribution of the vortex gripper chamber is shown
in Figure 4, where the outer edge region shows a high pressure relative to the center region and
the pressure decreases gradually toward the center and develops a negative-pressure region
for generating the suction force. In the subsequent discussions, the suction force is calculated
according to the pressure distribution on the lower boundary surface of the gripper.

Figure 4. Pressure distribution of vortex gripper’s chamber. (a) The lower boundary surface of the
gripper (b) Longitudinal section.
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Table 2. Parameters and suction force.

Gap (mm) H1 (mm) D1 (mm)
F(N)

Q = 1 × 10−4 kg/s Q = 2 × 10−4 kg/s Q = 3 × 10−4 kg/s

0.3

3
10 0.051 0.286 0.619
13 0.038 0.199 0.438
16 0.009 0.203 N/A

6
10 0.033 0.226 0.554
13 0.035 0.257 0.660
16 0.023 0.192 0.473

9
10 0.026 0.152 0.369
13 0.022 0.179 0.365
16 0.028 0.166 0.476

12
10 0.013 0.102 0.325
13 0.011 0.114 0.370
16 0.019 0.130 0.355

3.2. Dual-Vortex Grippers

Based on the preference single-vortex gripper described in the previous section, dual-
and quad-vortex array grippers can be arranged as shown in Figures 5 and 6, where L is
the distance between the grippers, and R4 is the radius for determining the coverage of
the end-effector. In this configuration, R4 is defined as twice the diameter D3 to determine
the outlet boundary. Five inlet configurations were proposed for the simulation, as shown
in Figure 7.

Figure 5. Dual-vortex grippers.

Figure 6. Quad-vortex grippers.

Figure 7. Inlet configurations of dual-vortex grippers.
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Let D3 be the characteristic length for setting the distance (L) between the vortex
grippers. The suction forces corresponding to L = 24 mm (4/3 D3), 30 mm (5/3 D3), and
36 mm (2 D3) are shown in Figure 8. This reveals that the larger the distance between the
vortex chambers, the larger the suction force. However, the coverage area increases as the
distance of the vortex chamber increases. The rate of increase of the suction force is less
than that of the area. To assess the gains and losses, L = 4/3 and D3 = 24 mm resulted in a
larger average suction force per unit area compared to the others.

Figure 8. The influence of configuration on suction force (dual-vortex grippers).

The pressure distributions for the different inlet configurations are shown in Figure 9.
It is observed that the interaction of the flow creates a positive pressure region in the
center between the two grippers. An increase in the distance (L) between the two grippers
attenuates the positive pressure region. Because the layouts from configurations 1 to 4 have
mirror symmetry or symmetry, the performances of the grippers are similar. Configuration
2 exhibits the best performance. Although configuration 5 also shows good performance
in terms of the total suction force, it has a significant suction force difference between the
grippers. This may cause the gripper to malfunction owing to an object attitude imbalance.
Investigating the trends of streamlines of dual-vortex grippers with L = 4/3 D3 as shown in
Figure 10, configuration 2 shows less flow interference of the two vortices and results in a
better suction force compared to the other configurations.

Figure 9. Pressure distribution of dual-vortex grippers.
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Figure 10. Streamline of dual-vortex grippers (L = 4/3 D3).

3.3. Quad-Vortex Array Grippers

In this section, quad-vortex array grippers with different configurations are discussed.
Two equilateral triangles were used to construct a parallelogram, and four vortex grippers
were placed at the four corners, as shown in Figure 11. Similar to the dual-vortex grippers,
R4 = 2 D3 was applied. Seven different inlet directions were considered. The results
revealed that a larger suction force is obtained with larger L, as shown in Figure 12. In the
aspect of the suction force per unit area, configurations 1 and 2 provide the best suction
force for L = 4/3 D3. The pressure distributions of the array grippers are shown in Figure 13.
It reveals that all configurations generate a high-pressure region in the center owing to
outlet flow interaction. Configurations 1 and 2 generate balanced suction forces with similar
negative pressure distributions in each vortex chamber.

Figure 11. Quad-vortex array grippers with different inlet configurations.

Figure 12. The influence of inlet configurations on suction force (quad-vortex array grippers).
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Figure 13. Pressure distribution of quad-vortex grippers. (a) L = 4/3 D3, (b) L = 5/3 D3, (c) L = 2 D3.
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3.4. Quad-Vortex Array Grippers with Exhaust Vents

The results of the previous section show that the interaction of airflow affects the
quad-vortex array grippers in all configurations and generates a positive pressure region at
the center of the vortex array. The distribution of the positive pressure region is influenced
by the exhaust flow. In this section, the exhaust vents are placed in the high-pressure region
to investigate their influence on the suction force, and a change in the positive pressure
distribution is demonstrated.

Consider the quad-vortex array grippers of configuration 2 (L = 4/3 D3) as an example.
Exhaust vents can be placed where there is a positive pressure. Considering the stiffness
and dimensions fitness, the diameter and height of the exhaust vents were assigned as
diameter De= 9 mm and height He= 5 mm. The structure of quad-vortex array grippers with
exhaust vents is shown in Figure 14. The geometric model and pressure distribution with
exhaust vents at different locations are shown in Figure 15. It indicates that the performance
of the array gripper is improved in view of the negative pressure intensity enhancement
and positive-pressure region reduction. The positive pressure region almost vanishes in
the layout with six exhaust vents.

Figure 14. The structure of quad-vortex array grippers with exhaust vents.

Figure 15. Pressure distribution of quad-vortex grippers with exhaust vents (configuration 2,
L = 4/3 D3).

The performances of the quad-vortex array grippers with and without exhaust vents
are listed in Table 3. This reveals that the suction force increases when exhaust vents are
applied. With two-exhaust-vent cases, the exhaust vents at the center enhanced the suction
force per unit area by 22%, and a fully installed case with six vents increased the suction
force per unit area by 36%.

Table 3. Performance improvement with exhaust vents (quad-vortex grippers, configuration 2,
L = 4/3 D3, A = 2103.22 mm2).

Layout Without Vents Layout 1 with Vents Layout 2 with Vents Layout 3 with Vents Layout 4 with Vents

F/A (10−6 N/mm2) 355.624 433.104 381.421 405.842 483.752
Performance ratio 100% 121.79% 107.25% 114.12% 136.03%
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The streamlines of the quad-vortex array grippers with exhaust vents for configuration
2 are shown in Figure 16. It depicts that the working fluid is discharged into the exhaust
vents and causes variations in the streamlines. In the previous discussion, it was found
that the optimum suction force per unit area occurred when the airflow was exhausted
from the center of the array gripper. Central vents provide a shorter passage for exhaust
air; therefore, the suction force per unit area was the best among the cases with two vents.
The streamlines in the case of the six vents show that the exhaust air diverged uniformly.

Figure 16. Streamline of quad-vortex array grippers with exhaust vents (configuration 2, L = 4/3 D3).

Considering extended pattern manufacturing, exhaust vents were also introduced to
the vortex array grippers of configuration 5, which consists of vortex grippers with the
same inlet direction. The results in the previous section show that configuration 5 only
produced 60% of the suction force of configuration 2 without exhaust vents. Figure 17
shows the pressure distribution of the quad-vortex grippers with exhaust vents in different
vent layouts. The exhaust vent sizes were the same as those for configuration 2, that is,
diameter De = 9 mm in and height He = 5 mm.

Figure 17. Pressure distribution of quad-vortex grippers with exhaust vents (configuration 5,
L = 4/3 D3).

The pressure distribution reveals that the two exhaust vents applied at the center led
to a significant improvement in the negative pressure region, and the suction force per unit
area increased by 89%, as shown in Table 4. The increment in the suction force per unit
area was up to 122% with six exhaust vents. Compared to configuration 2, the suction force
difference per unit area was less than 2% in the six-exhaust-vent designs. Configuration
5 is a practical design for constructing grippers with a large size and a large number of
vortex grippers.
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Table 4. Performance improvement with exhaust vents (quad-vortex grippers, configuration 5,
L = 4/3 D3, A = 2103.22 mm2).

Layout Without Vents Layout 1 with Vents Layout 2 with Vents Layout 3 with Vents Layout 4 with Vents

F/A (10−6 N/mm2) 213.585 403.914 275.405 232.736 474.547
Performance ratio 100% 189.11% 128.94% 108.97% 222.18%

4. Conclusions

The suction force of the vortex array grippers was studied numerically. The influence
of the geometry and operating conditions on the pressure distribution was investigated to
achieve a higher suction force. A parametric analysis was employed to obtain a preferable
single-vortex gripper with a higher suction force, which was then used to construct the
array grippers. Dual- and quad-vortex grippers of different layouts based on different
vortex gripper distances between and inlet air directions were investigated. The suction
force per unit area can reach a good value with appropriate exhaust vent placement. The
results of this study are beneficial to the design of array grippers with a large number of
vortex grippers and are summarized as follows:

(1) The lower the height of the vortex chamber (H1), the better the suction force generated.
However, a large numerical error is induced by a very small vortex chamber, and the
pressure of the vortex chamber is highly sensitive to the gap between the gripper and
workpiece when the vortex chamber is insufficient.

(2) With regard to the vortex array grippers, the suction force of each gripper reaches a
maximum when the vortex gripper distance is sufficiently large. However, the suction
force per unit area may not be the largest, owing to the increase in the effective area.

(3) For both dual-vortex grippers and quad-vortex array grippers, a mirror-like layout
design with L = 24 mm (4/3 D3) generates a better suction force per unit area, and the
suction forces of each gripper are similar to each other.

(4) The suction force per unit area increases significantly when exhaust vents are applied
to the quad-vortex array grippers. An appropriate number of exhaust vents can be
introduced to obtain a better suction force per unit area.

It is known that the developments based on numerical methods may not directly
extend to cases beyond the parametric values that have been used in the simulations.
Therefore, experimental study is required to verify the simulation results for their practical
application and is an effort of future work.
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