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Abstract: The surging popularity of adopting industrial robots in smart manufacturing has led to an
increasing trend in the simultaneous improvement of the energy costs and operational efficiency of
motion trajectory. Motivated by this, multi-objective trajectory planning subject to kinematic and
dynamic constraints at multiple levels has been considered as a promising paradigm to achieve
the improvement. However, most existing model-based multi-objective optimization algorithms
tend to come out with infeasible solutions, which results in non-zero initial and final acceleration.
Popular commercial software toolkits applied to solve multi-objective optimization problems in
actual situations are mostly based on the fussy conversion of the original objective and constraints
into strict convex functions or linear functions, which could induce a failure of duality and obtain
results exceeding limits. To address the problem, this paper proposes a time-energy optimization
model in a phase plane based on the Riemann approximation method and a solution scheme using
an iterative learning algorithm with neural networks. We present forward-substitution interpolation
functions as basic functions to calculate indirect kinematic and dynamic expressions introduced in a
discrete optimization model with coupled constraints. Moreover, we develop a solution scheme of the
complex trajectory optimization problem based on artificial neural networks to generate candidate
solutions for each iteration without any conversion into a strict convex function, until minimum
optimization objectives are achieved. Experiments were carried out to verify the effectiveness of the
proposed optimization solution scheme by comparing it with state-of-the-art trajectory optimization
methods using Yalmip software. The proposed method was observed to improve the acceleration
control performance of the solved robot trajectory by reducing accelerations exceeding values of
joints 2, 3 and 5 by 3.277 rad/s2, 26.674 rad/s2, and 7.620 rad/s2, respectively.

Keywords: time-energy optimal trajectory; acceleration control; complex optimization problems;
artificial neural networks; industrial robot

1. Introduction

As industrial robots are applied in more and more manufacturing scenarios, high
efficiency and low energy cost of the motion trajectory are essential to meet the production
needs and reduce resource consumption [1–3]. Time-energy cost-optimal trajectory plan-
ning for robots given a task path is conducted while surrendering limitations of kinematic
and dynamic capabilities for safe operation. Effective trajectory optimization resolution of
redundant robots with compliance to single-level physical constraints, such as velocity, is
easy to implement. However, existing model-based algorithms for robot path planning may
result in joint-angle drift and non-zero final joint velocity and acceleration when systems
are subjected to comprehensive velocity, acceleration and torque constraints and controlled
at multiple levels, as discussed in [4–6].
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Recently, many kinds of solver software, combined with various optimization methods,
have been utilized in robot planning research to avoid obtaining infeasible solutions. The
objective and constraints input into solver software should follow the specified rules of
optimization theories, such as convex optimization (CO), linear programming (LP) [7],
quadratic programming (QP) [5], second-order cone programming (SOCP) [3], concave-
convex procedure (CCCP) [8], and semi-definite programming (SDP). Each algorithm of
the aforementioned software toolkits has its strict solution form and is usually solved by
Lagrange duality and the interior point method [9], also known as the barrier method
or combined methods. Moreover, the solving process of the above software is implicit,
which is not conducive to estimating a global optimum or local minima. Thus, for the
trajectory optimization problem of robots with precise multi-level constraints, it is necessary
to establish a generalized time-energy consumption optimization model and to develop
algorithms with feasible solutions in actual scenes.

To address the issues, this paper proposes a novel multi-objective trajectory optimiza-
tion approach with the goal of simultaneously minimizing the time and energy consump-
tion of industrial robots. First, we formulate the optimization problem by establishing
the weighting function of time and energy consumption in generalized path coordinates.
The transformed trajectory variables in the weighting function corresponding to the an-
gle, velocity and acceleration in joint coordinates are considered as generated optimizing
variables. Then, we present forward-substitution interpolation functions as basic func-
tions to calculate indirect velocity and acceleration expressions introduced in the discrete
optimization model and obtain segmented smooth paths in terms of trajectory variables.
Consequently, we impose an iterative metaheuristic scheme to solve trajectory variables
in the complex optimization problem based on artificial neural networks, avoiding the
fussy conversion of strict convex or linear functions. Moreover, velocity, acceleration and
torque constraints controlled in joint performance parameter limits in the overall process of
motion are also the focus of the trajectory design and optimization in this paper, according
to the actual needs of industrial robots. The proposed trajectory optimization model can
adjust the variable values according to the requirement of high-speed motion or low energy
consumption. Finally, extensive experiments are conducted to verify the effectiveness of the
proposed optimization solution scheme by comparing it with the state-of-the-art trajectory
optimization methods using Yalmip software.

2. Related Work

Generally, to solve a trajectory planning problem, joint angles of an industrial robot,
given the desired path described in Cartesian space, are first calculated by an inverse
kinematic model. Then, trajectory variables, including velocity and acceleration as functions
of angle derivative in terms of time, are optimized to achieve the minimum running
time or energy consumption with the demands of multi-level control for safe operation.
Feng et al. [10] employed fifth-order polynomial expressions to construct joint trajectories
and established a time-energy consumption optimization model by introducing velocity
variables obtained from the pre-defined trajectory. Since an industrial robot usually has six
joints, the optimization objective of all joint angles is a multidimensional expression. For
simplification of the objective function, Palleschi et al. [11] described path coordinates as a
normalized trajectory variable based on phase plane theory to reduce the high-dimensional
state space and solve the tracking problem of a minimum-time path with smooth and
continuous accelerations by the SCIP solver of Opti Toolbox. Although software can
generate a set of optimized solutions, the implicit solving process is often difficult to
converge when multi-level constraints of the robot are required to be controlled.

For the control of robots with optimal trajectory under the multi-level constraints
enforced, a conventional solution is the Jacobian pseudo-inverse method, which can be
regarded as an analytical solution with a direct correlation between end-effector and joint
trajectory variables. Ramezani and Williams [12] present an optimal redundancy resolution
technique by using the augmented Jacobian to provide feasible solutions for the minimum
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objective function. The traditional Jacobian pseudo-inverse scheme is just applicable to
trajectory optimization with joint physical limits expressed as equality equations, while
inequality constraints can hardly be introduced to this direct solution scheme.

To achieve efficient redundancy resolution for multi-level control of a robot’s trajectory,
Verscheure et al. [3] transformed the optimization model with consideration of time, energy
cost and smoothness into a convex optimization problem, and presented a transcription
method to solve a SOCP with inequality constraints using robust numerical algorithms in
Yalmip. Nagy and Vajk [7] converted a profile generation model into linear programming
(LP) form and solved it with a sequential optimization method. Steinhauser and Swev-
ers [4] presented a two-step iterative learning algorithm that compensates for inevitable
model-plant mismatch of time-optimal motion, which improved tracking performance and
ensured feasibility based on a sequential convex log barrier method. Zhang et al. [6] for-
mulated the trajectory resolution problem subject to joint angle, velocity, and acceleration
constraints as a QP to overcome computationally intensive pseudo-inverse-based schemes.
The optimization models referred to require the objective and constraints to be converted
to satisfy the strict solving forms, which sometimes induces a failure of duality and obtains
results exceeding limits.

Among optimization approaches, metaheuristic algorithms have shown their capabili-
ties for searching for near-global-optimal solutions to numerical real-valued test problems,
such as the genetic algorithm (GA) [13,14], particle swarm optimization (PSO) [15], artificial
neural networks (ANNs) [16,17], and so forth. Chen et al. [5] formulated a multi-level
simultaneous minimization scheme as a dynamical quadratic program (DQP), which was
solved by a piecewise linear projection equation neural network. Abu-Dakka et al. [14]
constructed smooth joint trajectories with cubic polynomial functions as basic functions in
a segmented path to establish an optimization model of minimum time, energy and jerk.
Undetermined parameters in basic functions were solved by a parallel-populations genetic
algorithm (PPGA) procedure. Based on the multi-objective genetic optimization algorithm
NSGA-II, Shi et al. [18] solved the optimization problem in the multi-objective form.

Although the above state-of-the-art metaheuristic algorithms have good effects on solv-
ing general optimization problems, some of these methods applied in trajectory planning
cannot guarantee the initial and final zero-velocity and zero-acceleration and joint-angle
drift sometimes occurs, so are not suitable for actual conditions of the robot operation. In
addition to the solution algorithm, the established trajectory optimization model and the
form of internal basic function for iteration calculation, dynamic equation expressions, and
other factors will also have an impact on the output trajectories results. Thus, it is necessary
to establish a multi-objective optimization model with consideration of the applicable
conditions in the actual situation.

3. Robot Kinematics and Dynamics Modeling

In this paper, a serial 6-axis robot is considered to establish the time-energy optimiza-
tion model, the structure of which is shown in Figure 1. The modified Denavit–Hartenberg
(MDH) parameters are presented in Table 1. Forward and inverse kinematic models of the
specified robot can be established with these parameters.

Dynamic equations of the robot with several identified parameters are established to
express the joint torques NEτi according to the iterative Newton-Euler formulation [19]. To
establish an accurate dynamic identification model, inertia terms rτi and friction terms f τi
are introduced in the torques expressions [20] as follows:

τi =
rτi +

NEτi +
f τi = Iai

..
qi +

NEτi + fvi
.
qi + fcisign(

.
qi), (1)

where
.
qi and

..
qi denote the velocity and acceleration of joint i, Iai is the inertia moment for

rotor and gears of actuator i, fvi and fci are the viscous and Coulomb friction coefficients. It
should be noted that the inertia tensor CIi related to the center of mass of link in NEτi should
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be converted in terms of the inertia tensor AIi related to the origin of the joint coordinate by
introducing the expression

CIi =
AIi −mi[PT

CiPCiI3 − PCiPT
Ci], (2)

where AIi =

 Ixxi −Ixyi −Ixzi
−Ixyi Iyyi −Iyzi
−Ixzi −Iyzi Izzi

, mi is the mass of link i, I3 is the 3 × 3 identity

matrix, the undetermined vector PCi = [ xCi, yCi, zCi ]
T locates the center of mass of

link i relative to the coordinate system {Oi}. The vector of the identified parameters for each
joint torque τi is denoted as

Ωi = [ mi xCi yCi zCi Ixxi Iyyi Izzi Ixyi Ixzi Iyzi Iai fvi fci]
T , (3)

which contains position coordinate components of the center of mass of link (xCi, yCi, zCi),
inertia moment components of link i (Ixxi, Iyyi, Izzi, Ixyi, Ixzi, Iyzi).

The differential Equation (1) in terms of 78 dynamic parameters can be linearized and
expressed by

τ =ω
(
q,

.
q,

..
q
)
·Ω, (4)

where τ = [τ1, τ2, . . . , τ6]
T is the joint torques vector, Ω = [Ω1, Ω2, . . . , Ω6]

T is the stan-
dard parameters vector,ω

(
q,

.
q,

..
q
)

is a 6 × 78 regressor matrix and q is the joint position
vector. The above equation can be transformed into a simplified form with a minimal set
of 52 identifiable parameters Ωmin by regrouping the original parameters Ω, a detailed
derivation process for which can be seen in [21,22]. Thus, the torque can be simplified as

τ =ωmin
(
q,

.
q,

..
q
)
·Ωmin, (5)

where ωmin
(
q,

.
q,

..
q
)

is a subset of the independent columns of ω
(
q,

.
q,

..
q
)
. We sample

several data of torques and joint angles when the robot moves according to an exciting
trajectory at t = t1, t2, . . . , tN , and over-determined linear equations are obtained as

Γ = Ψ ·Ωmin + ε, (6)

where observation matrix is Ψ =


ωmin

(
q(t1),

.
q(t1),

..
q(t1)

)
ωmin

(
q(t2),

.
q(t2),

..
q(t2)

)
...

, the torques vector is

Γ =
[
τ(t1)

T, τ(t2)
T, . . . τ(tN)

T
]
, and ε is a vector of sampling error. Based on the

least square method, the minimum identification parameters set can be obtained by

Ωmin =
(

ΨTΨ
)−1

ΨTΓ. (7)

The calculated minimum set of combined parameters Ωmin is listed in Table A1 in
Appendix A. The dynamic model with an iterative Newton–Euler formulation is obtained
by substituting Ωmin into Equation (1).

Then, we rewrite the dynamic model into the state-space equation form, as follows:

τ = M(q)
..
q + C(q,

.
q)

.
q + G(q) + f τ(

.
q), (8)

where M(q) is the mass or inertia matrix, C(q,
.
q) is the vector of Coriolis and centrifugal

terms, G(q) is the vector of gravity terms, and f τ(
.
q) = Fcsgn(

.
q) + Fv

.
q is the vector of

friction terms.
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6 −1.571 0 0.156 θ6 
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Figure 1. Specified robot structure.

Table 1. Modified Denavit–Hartenberg parameters of the specified robot.

Joint i αi−1 (rad) ai−1 (m) di (m) θi (rad)

1 0 0 0.435 θ1
2 −1.571 −0.00022 0 θ2 (–π/2)
3 0 0.765522 0.060267 θ3
4 −1.571 0.004315 0.63512 θ4
5 1.571 0 0 θ5
6 −1.571 0 0.156 θ6

4. Problem Formulation

This section formulates the time-energy optimal trajectory planning problem of a robot
with precise multi-level constraints. The optimization objective and complex constraints,
including velocity, acceleration and torque, are derived based on the phase plane theory
and Riemann approximation method. For effective numerical computing, the optimization
model introduces the discrete kinematic and dynamic equation results.

4.1. Original Formulation

Minimizing the total motion time t f of an industrial robot is simply expressed as∫ t f
0 1dt. For optimization of the energy cost, the main resistance energy consumption of the

servo circuit in each robot joint is modeled by Joule’s law, as follows:

ie = i I2
servo · ir · t, for i = 1, . . . , 6, (9)

where i I servo is electric current and ir is the resistance. Due to the relevant relations between
torque and current, the above equation can be proportional to the expression in terms
of torque:

ie ∝ τ2
i · ir · t, (10)

For a single servo motor system, the energy consumption model during the running
time should be:

iE ∝
∫ t f

0
τ2

i · irdt ∝
∫ t f

0
τ2

i dt, (11)
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which omits the coefficient ir since it is constant for one joint. Then, energy consumption iE

is also proportional to the integral of the torque square
∫ t f

0 τ2
i dt. Total energy consumption

of a robot can be optimized by minimizing the normalized expression:

min
6
∑

i=1

∫ t f
0

τ2
i

(τi)
2 dt , (12)

which divides the square of maximum torque limit (τi)
2 for equalized optimization of

every joint energy.
For simultaneous minimizing of the time and energy of a robot with multi-level

constraints, the following synthetical optimization model is established as

min
∫ t f

0 1dt + β
6
∑

i=1

∫ t f
0

τ2
i

(τi)
2 dt , (13)

Subjected to

.
qi(0) = 0,

.
qi(t f ) = 0,

..
qi(0) = 0,

..
qi(t f ) = 0,

.
q

i
≤ .

qi(t) ≤
.
qi,

..
q

i
≤ ..

qi(t) ≤
..
qi, τ ≤ τ(t) ≤ τ,

}
, for i = 1, . . . , 6, (14)

where β is the weight coefficient; overline and underline of velocity, acceleration and torque
represent the maximum and minimum values.

4.2. Reformulation Based on Phase Plane Theory

Due to the complexity of the multidimensional-optimal problem for an industrial
robot with six joints, the optimization objective is calculated using six different trajectories
functions until the minimum operation time value for any of all joints is found. For
simplification of the objective function, we describe path coordinates as a parameterized
trajectory variable based on phase plane theory to reduce the high-dimensional state space
to one dimension.

Based on the Pontryagin principle [23], the optimization independent variable t can
be replaced by the trip proportion variable assigned to the path curve s(t) through a
generalized coordinate transformation t =

∫ s
0

1.
s(t)

ds. Then, the reformulated optimization

problem is analyzed in the S-phase plane. Joint position q is a function of s, notated as q(s).
Joint velocity and acceleration are transformed as

.
q(s) = q′(s)

.
s,

..
q(s) = q′(s)

..
s + q′′ (s)

.
s2, (15)

where q′(s) = ∂q(s)
∂s , q′′ (s) = ∂2q(s)

∂s2 ,
..
s(t) = d2s

dt2 is defined as u(s),
.
s(t) = ds

dt . Moreover,
substituting the relations (15) into the dynamic equation (8), yields

τ(s) = M(q(s))q′(s)
..
s + M(q(s))q′′ (s)

.
s2
+ C(q(s),

.
q(s))q′(s)

.
s + G(q(s)) + Fcsgn(q′(s)

.
s) + Fvq′(s)

.
s, (16)

where the term C(q,
.
q) is linear to the joint velocity

.
qi [24], which can be described as

C(q(s),
.
q(s)) = C(q(s), q′(s))

.
s. Meanwhile, the trajectory velocity

.
s is positive when the

robot runs along a path, such that the sign function of q′(s)
.
s is equal to q′(s). We define

m(s) = M(q(s))q′(s), c(s) = M(q(s))q′′ (s) + C(q(s), q′(s))q′(s), g(s) = Fcsgn(q′(s)) +
G(q(s)) and f (s) = Fvq′(s) for simplification of Equation (16).

The normalized time-energy consumption optimization model for the robot trajectory
is reformulated by substituting expression (16) and t f =

∫ 1
0

1.
s(t)

ds as

min
∫ 1

0

1
h(s)

[
1 + β

6

∑
i=1

τ2
i (s)

(τi)
2

]
ds, (17)
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where h(s) represents
.
s(t) = ds

dt .
Since the integral optimization model is difficult to be solved, it is converted to discrete

sums based on the Riemann approximation method. Then, the corresponding discretization
and normalization are carried out for the time-energy optimization objective with multi-
level constraints, as follows:

min
N−1

∑
j=1

(
∆sj+1

h(sj+1)

)[
1+β

6

∑
i=1

τ2
i (sj+1)

(τi)
2

]
=

N−1

∑
j=1

∆sj+1v(sj+1), (18)

where sj is the j-th point proportion of the divided path curve, ∆sj+1 = sj+1 − sj. Simultane-
ously, velocity and acceleration in joint coordinate and torque constraints are discrete as

q′ i(s1) · h(s1) = 0, q′ i(sN) · h(sN) = 0, q′ i(s1)u(s1) + q′′ i(s1)h(s1)
2 = 0, q′ i(sn)u(sn) + q′′ i(sn)h(sn)

2 = 0
.
q

i
≤ q′ i(sj) · h(sj) ≤

.
qi,

..
q

i
≤ q′ i(sj)u(sj) + q′′ i(sj)h(sj)

2 ≤ ..
qi

τ ≤ τ(sj) = m(sj)u(sj) + c(sj)h(sj)
2 + g(sj) + f (sj)h(sj) ≤ τ, for i = 1, . . . , 6, j = 1, . . . , n

(19)

where u(s1) = 0, u(sj+1) =
h(sj+1)

2−h(sj)
2

2∆sj+1
for j = 1, . . . , n − 1 is assumed as a piecewise

function. In the case of the dramatic increase in velocity and acceleration, the corresponding
constraints are limited in the range of 1/(n − 1) multiple maximum values at the initial
and final interval segments.

5. Solution Algorithm

In this section, we present a solving scheme of a time-energy optimal trajectory with
a forward-substitution interpolation method and metaheuristic algorithm. Firstly, high-
order polynomial interpolation functions are applied as basic functions to calculate indirect
kinematic and dynamic expressions introduced in a discrete optimization model and other
constraints. Then, we develop a solution algorithm based on artificial neural networks to
generate candidate solutions for each iteration without any conversion into strict forms,
until a minimum objective function value is achieved.

5.1. Forward-Substitution Interpolation Basic Functions

A path that a robot usually moves around is specified by a series of space position
coordinates Pk = (xk, yk, zk). Geometric curve functions, such as the cubic Bezier or B-spline
curve, could be used to fit these points, as

Bk(S) =
[

S3 S2 S 1
]
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




Pk
2Pk

1Pk+1
Pk+1

, S ∈ [0, 1] (20)

where control points 2Pk = Pk + 0.15Pk+1 − 0.15Pk−1,1Pk+1 = Pk+1 + 0.15Pk − 0.15Pk+2.
Then the interpolated path points P11, P12, . . . coordinates are calculated by the cubic Bezier
curve function, and we add the number of path points to N. For convenience, we notate
points as Q1, Q2, . . . , Ql , . . . , QN . Although the partitioned Bezier curve function describes
the discrete interpolated points space coordinates between the specified points along the
path. Each joint positions vector q(Ql) = [q1(Ql), q2(Ql), q3(Ql), q4(Ql), q5(Ql), q6(Ql)]

T

in the joint coordinate system corresponding to the path point can be resolved by the
inverse kinematic model with position coordinate (x, y, z) and specified pose orientation
vector, as rotations around the x-axis, y-axis, z-axis (rx, ry, rz).

To express the joint trajectory function, isometric distributed generalized path curve
parameters S1, . . . , SN are introduced to establish the mapping relation of unevenly dis-
tributed trajectory points q(Q1), . . . , q(QN). Figure 2 shows the correspondence relations
diagram of path points and generalized path curve parameters. Due to the velocity and
acceleration requirements, the third-order polynomial function is the lowest order form we
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choose to be an interpolated trajectory function in terms of the curve parameter S. More-
over, the initial and final trajectory functions with zero-velocity and zero-acceleration are
considered by applying the fifth-order polynomial function. The common fitting method of
the fixed segmentation function just uses joint angles of two adjacent points, such as qi(Q1)
and qi(Q2), to establish the trajectory function. In this case, the higher derivatives of the
adjacent trajectory functions have saltation at the connecting point. To solve this problem,
we propose a forward-substitution interpolation as a predefined basic trajectory function
expressed as


S1

5 S1
4 S1

3 1
S2

5 S2
4 S2

3 1
...

SK
5 SK

4 SK
3 1




Ib1

(
1.
S

)5

Ib2

(
1.
S

)4

Ib3

(
1.
S

)3

Ib4

 =


qi(Q1)
qi(Q2)

...
qi(QK)

, for K ≤ d + 1∪ K− d− l ≤ 1 (21)


SK

5 − 10SK
2 + 15SK SK

4 − 6SK
2 + 8SK SK

3 − 3SK
2 + 3SK 1

SK+1
5 − 10SK+1

2 + 15SK+1 SK+1
4 − 6SK+1

2 + 8SK+1 SK+1
3 − 3SK+1

2 + 3SK+1 1
...

SN
5 − 10SN

2 + 15SN SN
4 − 6SN

2 + 8SN SN
3 − 3SN

2 + 3SN 1




b1

(
1.
S

)5

b2

(
1.
S

)4

b3

(
1.
S

)3
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(22)
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, for other situations, (23)

where Ib1

(
1.
S

)5
, Ib2

(
1.
S

)4
, Ib3

(
1.
S

)3
, Ib4, Fb1

(
1.
S

)5
, Fb2

(
1.
S

)4
, Fb3

(
1.
S

)3
, Fb4, b1

(
1.
S

)3
, b2

(
1.
S

)2
,

b3

(
1.
S

)
and b4 are the polynomial coefficients, d is the nearest integer less than or equal to

0.1(N − 1), and half of the added continuous selected points number l ≥ 0 is decided by the
set variation value. Quantity l increases until the root mean squared error of the left-fitting
value and the right-truth value of Equations (21)–(23) are larger than the set variation value.
The super-positive definite Equations (21)–(23) are solved by the least square method.
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Figure 2. Correspondence relations diagram of path points and generalized path curve parameters.

When the path curve proportion variable s chosen is different from the generalized
path curve parameter S, we just need to determine which segment s belongs to. The
trajectory function qi(sj) and derivative q′ i(sj) and q′′ i(sj) are substituted into the indi-
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rect kinematic and dynamic expressions M(q(sj)), C(q(s), q′(s)), G(q(s)) in the discrete
optimization objective expression (17) and constraints Equation (18).

5.2. Dynamic Metaheuristic Optimization Algorithm

After the pre-defined value ∆sj, τ(sj) = m(sj)u(sj) + c(sj)h(sj)
2 + g(sj) + f (sj)h(sj)

and u(sj+1) =
h(sj+1)

2−h(sj)
2

2∆sj+1
is substituted, the discrete optimization objective v(sj) is a

function in terms of variables h(sj). The sum terms of a normalized torque square in
objective expression (17) will induce high-order nonlinear forms of independent variables
h(sj), which is difficult to be solved by the model-based analytical optimization algorithm
or solver software without any conversion. Thus, we develop a solution algorithm based
on artificial neural networks (ANN) [17] to handle this issue.

In an n-dimensional optimization problem, a pattern solution representing input data
in the ANN, is defined as

PatternSolution =
[

h(s1) h(s2) · · · h(sn)
]
, (24)

First, a starting candidate of the pattern solution matrix H is generated, which is
randomly generated between the lower and upper bounds of a problem:

Population o f Pattern Solutions H =


1h(s1)

1h(s2) · · · 1h(sn)
2h(s1)

2h(s2)
...

Npop h(s1)
Npop h(s2)

Npop h(sn)

. (25)

Cost functions corresponding to pattern solutions are obtained by

iF = f
( ih(s1), ih(s2) · · · ih(sn)

)
f or i = 1, 2 . . . , Npop , (26)

where f is the objective function
N−1
∑

j=1
∆sj+1v(sj+1) in expression (17).

The candidate solution with the minimum objective function value for all pattern
solutions is selected as the target solution. This target solution will be updated at each
iteration. After determining the target solution HTarget among the other pattern solutions,
the target weight WTarget, corresponding to the target solution, must be selected from the
population of weight (weight matrix) by the following expression:

W(o) =
[

W1 W2 · · · WNpop

]

=


1w1 · · · iw1 · · · Npop w1
1w2 · · · iw2

Npop w2
...

1wNpop · · · iwNpop
Npop wNpop

 (27)

where W(o) is a matrix generating random numbers uniformly between zero to one during
iterations, and o is an iteration index. The weight superscript relates to its pattern solution
(e.g., 2w is related to the second pattern solution) and the weight subscript is shared with
the other pattern solutions (e.g., 2w3 is shared with the third pattern solution). Every
pattern solution has its corresponding weight value which has been involved in generating
a new candidate solution. Moreover, the sum of elements in W(o) is 1. After forming W(o),
new pattern solutions HNew are generated by the following expression:

→
H

New

j (o + 1) =
Npop

∑
i

iw j(o)×
→
Hi(o) f or j = 1, 2 . . . , Npop , (28)
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→
Hi (o + 1) =

→
Hi(o) +

→
H

New

i (o + 1) f or i = 1, 2 . . . , Npop . (29)

Therefore, the new pattern solution has been updated for iteration o + 1. Based on the
best weight value called “target weight”, the weight matrix should be updated, as follows:

→
W

Updated

i (o + 1) =
→
Wi(o) + 2× rand×

(→
W

Target
(o)−

→
Wi(o)

)
f or i = 1, 2 . . . , Npop , (30)

where rand is a uniformly distributed random number in the range [0, 1].
In ANN, the bias current is introduced, of which the bias operator modifies a certain

percentage of the pattern solutions in the new population of pattern solutions
→
H

New

i (o + 1)

and updated weight matrix
→
W

Updated

i (o + 1). The bias operator in the ANN is another way
to explore the search space, which prevents the algorithm from premature convergence
and modifies individual numbers in the population. In fact, the bias operation acts as noise
to the new pattern solutions and the updated weight matrix.

Then new pattern solutions in the population from their current positions in the search
space are transferred to new positions to update and generate better quality solutions
toward the target solution by the transfer function operator. The transfer function (TF)
operation is defined by the following equation:

→
H
∗
i (o + 1) = TF(

→
Hi(o + 1)) =

→
Hi(o + 1) + 2× rand×

(→
H

Target
(o)−

→
Hi(o + 1)

)
f or i = 1, 2 . . . , Npop , (31)

where the i-th new pattern solution
→
Hi(o + 1) is transferred to the updated position

→
H
∗
i (o + 1).

In summary, the optimization problem can be solved by the general behavior of ANN,
which can be described by

→
Hi(o + ∆o) = f

(→
Hi(o), U(o)

)
f or i = 1, 2 . . . Npop , (32)

where
→
Hi(o + ∆o) and

→
Hi(o) are the next and current locations of pattern solution i-th,

respectively. U(o) is a population of pattern solutions with updated weights.

6. Results and Discussion

To assess the general applicability and verify the accuracy of the proposed method,
optimal time trajectory and time-energy synthesis optimization results were calculated
using simulation and actual experiments with the kinematic and dynamic boundary con-
ditions compared with the state-of-the-art algorithms in [3] using Yalmip software. The
boundary conditions are listed in Table 2. A circle path of robot motion was applied to test
the effectiveness of the proposed method, as shown in Figure 3. The original coordinates
values of the robot end were (0.805133 m, −0.328446 m, 0.201903 m), and the radius of the
circle was 0.15 m. The orientations of the robot end in Cartesian space were (3.137975 rad,
−0.015916 rad, 1.620108 rad).

Table 2. Absolute value limits of joint angles, velocities and accelerations.

Joint i 1 2 3 4 5 6

Velocity (rad/s) 3.877 2.623 3.141 3.964 6.311 6.329
Acceleration

(rad/s2) 9.692 7.658 7.853 9.910 15.777 15.822

Torque (Nm) 193.68 286.284 127.011 100.655 15.9296 15.884
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In [3], the minimum objective (17) is solved by the conventional optimization method

SOCP, which converts the non-convex function v(sj+1) = 1
h(sj+1)

[
1+β

6
∑

i=1

τ2
i (sj+1)

(τi)
2

]
into

convex form with additional constraint conditions, as follows:∥∥∥∥∥∥∥∥∥∥∥

2
2
√

βτ1
(
sj+1

)
/τ1

...
2
√

βτ6
(
sj+1

)
/τ6

h
(
sj+1

)
− v
(
sj+1

)

∥∥∥∥∥∥∥∥∥∥∥
≤ h

(
sj+1

)
+ v
(
sj+1

)
. (33)

The above fussy conversion of strictly convex functions is avoided by the proposedThe
above fussy conversion of strictly convex functions is avoided by the proposed optimization
model directly solved by the ANN algorithm in Section 5. Moreover, the second-order
polynomial interpolation functions are applied as basic functions to calculate indirect
kinematic and dynamic expressions introduced in a discrete optimization model and other
constraints in reference [3].

For verification of the accuracy and efficiency of the proposed method, the optimiza-
tion variable results h(sj) in objective function solved by SDPT3 optimization toolkit in
Yalmip and the ANN algorithm, when the basic functions are the second-order polynomial
interpolation functions and the initial and final velocity and acceleration boundaries are
neglected as in [3], as shown in Figure 4. We select discrete points when the number of s is
20. As can be seen in Figure 4, optimization variable h(sj) values at different coordinates
solved by the proposed method are similar to that of the commercial software toolkit
Yalmip, which indicates the high accuracy of our model. The convergence curve of the
optimization objective solved by ANN shows the stable minimum value of the objective
function is 1.1454 when the number of iterations is more than 330, which is a little less than
the minimum objective value, 1.1484, obtained by Yalmip.

To intuitively display the motion of the robot, the joint angles and joint angular veloci-
ties and torques of six joints during the trajectory operation with time-energy optimization
weight α = 0 are obtained according to the method in [3] and our proposed method with
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bounded velocity, acceleration, torque limits, and initial and final boundaries, as shown in
Figures 5 and 6.
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The joint angular velocity and acceleration curves start with non-zero values calculated
by the method in [3], and accelerations of joints 2, 3 and 5 exceed the limits by 3.277 rad/s2,
26.674 rad/s2, 7.620 rad/s2, respectively. The generated trajectories are hardly used in the
actual scene. On the contrary, our result showed a smoother optimization trajectory with
initial and final zero velocity and acceleration and all kinematic and dynamic constraints
were satisfied within the extreme values.

For verification of the effectiveness of the proposed method, the calculated normal-

ized energy consumption
6
∑

i=1

∫ t f
0

(
τ2

i (s)/τ2
i

)
dt and motion time tf results obtained by the

proposed optimization model are listed in Table 3, when weights β = 0, 0.1, 1 and 100.4, of
which selected weights β are the same as [3]. In Table 3, the motion time tf rises and the
normalized energy decreases simultaneously when the weight increases, which indicates
that the proposed trajectory optimization model can adjust the variable values according to
the requirement of high-speed motion or low energy consumption.

The results of the optimization trajectories with different weights β = 0.1 and 1 can
be seen in Figures 7 and 8. As can be seen in Figures 6–8, the trajectory acceleration
fluctuation at the corresponding singular point decreases gradually with weight increases.
This indicates that the design of the objective function is based on the trade-off analysis
of time and energy consumption. Therefore, the overall trend of the joint torque curve of
the manipulator still tends to be near the safety limit of the rated torque. However, after
the energy consumption modeling and weight distribution of the manipulator servo drive
control system, the operation trend of the manipulator joint torque curve tends to decrease
with increase in the weight. The time near the safety limit of the rated torque gradually
decreases, which also means that the energy consumption of the joint servo drive control
system has been effectively improved during the corresponding trajectory operation. From
the normalized comparison of energy consumption in Table 3 of the manipulator trajectory
optimization, it can be seen that modeling the energy consumption index of the robot servo
motor and assigning a corresponding weight design plays a significant role in reducing the
energy consumption value of the manipulator trajectory operation.
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Table 3. Normalized energy consumption and motion time results obtained by the proposed opti-
mization model.

Weight β Motion Time Normalized Energy
Maximum

Acceleration
of Joint 2

Maximum
Acceleration

of Joint 3

Maximum
Acceleration

of Joint 5

0 1.8139 0.9998 2.8306 7.8076 6.0125
0.1 1.824 0.9977 2.8291 7.8038 5.9886
1 2.072 0.9641 2.7369 7.7953 5.9441

100.4 3.2915 0.9364 2.6435 7.7955 5.9388
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To test the actual optimization effect, an experiment of the proposed method was
implemented with the robot system, as shown in Figure 9. The path time of the optimal
trajectory when α = 100.4 was 3.2915 s which ensured the joint velocity in the range of the
velocity set limits. The energy consumption of the robot running optimal trajectory was
0.357 Wh. The experimental sampling data of six joint angles, torques and velocities of
time-energy consumption optimal trajectory are shown in Figure 10. The torque values
of the servo motor of joints were within the torque performance constraints. The safety
range of the accelerations of robot joint was reached at several discrete solutions, and the
obtained solutions were used in an actual scene, which demonstrated the effectiveness of
the above algorithm and the constraint design.
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Figure 10. Experiment data of optimal trajectory with α = 100.4.

7. Conclusions

To describe the optimization problem of robot trajectory planning, a time-energy
optimization model based on the ANN algorithm was proposed in this paper. The energy
consumption model of servo resistance loss was constructed in addition to motion time.
For a six degrees of freedom industrial robot, the kinematics and dynamics impact on
the coupling constraint condition were considered, including velocity, acceleration and
torque. The optimization model was discretized based on the Riemann approximation
method. Based on the established kinematic and dynamic model of the robot, a basic
discretization model in terms of the generalized path variable mapping was constructed.
Forward-substitution interpolation functions were presented as basic functions for the
insurance of the initial and final zero-velocity and zero-acceleration of indirect kinematic
expressions introduced in the discrete optimization model. Finally, the trajectory optimiza-
tion parameters and the comprehensive tradeoff time-resistance energy loss index with
multi-level performance constraints were solved by a numerical iterative solution strategy
based on neural networks. The simulation and actual experiments were implemented with
different optimization weights. The proposed method could enhance the acceleration con-
trol performance of the solved robot trajectory by reducing accelerations exceeding values
of joint 2, 3 and 5 by 3.277 rad/s2, 26.674 rad/s2, 7.620 rad/s2, respectively. Moreover,
comparison results between our method and recent optimization methods showed that the
improved basic function contributes to the smoothness of the optimization trajectory and
guarantees zero velocity and acceleration at the starting and ending points.
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Nomenclature

αi−1 Link twist NEτ i Joint torques derived by
the iterative Newton–Euler formulation

ai−1 Link length Iai Inertia moment for rotor and gears of
actuator i

di Link offset fvi, fci Viscous and Coulomb friction coefficients
θi Joint angle CIi Inertia tensor related to center of mass
mi Link mass AIi Inertia tensor related to the origin of

joint coordinate
τi Joint torque Ixxi, Iyyi, Izzi, Ixyi, Inertia moment components of link i

Ixzi, Iyzi
f τ i Friction torque ω

(
q,

.
q,

..
q
)

Regressor matrix
rτ i Inertia torque ωmin

(
q,

.
q,

..
q
)

Subset of the independent columns of
ω
(
q,

.
q,

..
q
)

q Joint position vector PCi = [xCi, yCi, zCi]
T Coordinates of center of mass

.
qi Velocity Ωi Standard parameters for joint i
..
qi Acceleration Ωmin Minimal set vector of identifiable

parameters
Γ Torques vector M(q) Mass or inertia matrix
t Time C(q,

.
q) Coriolis and centrifugal vector

t f Total motion time ie Resistance energy consumption of the
servo circuit in robot joint

G(q) Gravity β Weight coefficient of energy consumption
i I servo Electric current s Trip proportion assigned to path curve
ir Resistance sj The j-th point proportion of the divided

path curve
b Polynomial coefficients u(s) Second order derivative of s
Ψ Observation matrix h(s) First order derivative of s
N Point number Bk(S) Cubic Bezier curve function
rx,ry,rz Pose orientation vector l Half of the added continuous selected

points number
v(sj) Discrete optimization d The nearest integer less than or equal

objective to 0.1(N−1)
iF Cost functions H Population of pattern solution
o Iteration index W(o) Population of weight
TF Transfer function rand Random number

Appendix A

The minimum identification parameter set is shown in Table A1.

Table A1. Elements of the calculated minimum identification set Ωmin.

Ωmin(1) Ωmin(2) Ωmin(3) Ωmin(4) Ωmin(5) Ωmin(6) Ωmin(7)
14.2652 7.7347 13.4288 19.2053 0.3683 −13.2957 20.0815

Ωmin(8) Ωmin(9) Ωmin(10) Ωmin(11) Ωmin(12) Ωmin(13) Ωmin(14)
−0.6178 0.0673 1.0250 33.5249 26.4618 −0.0689 4.9279

Ωmin(15) Ωmin(16) Ωmin(17) Ωmin(18) Ωmin(19) Ωmin(20) Ωmin(21)
4.0606 4.6718 0.3442 1.4541 −0.8636 −0.4512 10.7137

Ωmin(22) Ωmin(23) Ωmin(24) Ωmin(25) Ωmin(26) Ωmin(27) Ωmin(28)
12.0429 0.0897 0.0388 −0.0721 0.1035 −0.0151 0.7826

Ωmin(29) Ωmin(30) Ωmin(31) Ωmin(32) Ωmin(33) Ωmin(34) Ωmin(35)
−0.4236 −0.2792 8.4568 11.0075 0.0457 0.1336 −0.0042

Ωmin(36) Ωmin(37) Ωmin(38) Ωmin(39) Ωmin(40) Ωmin(41) Ωmin(42)
0.3912 0.0167 0.1285 −0.3073 −0.6151 1.4333 1.9285

Ωmin(43) Ωmin(44) Ωmin(45) Ωmin(46) Ωmin(47) Ωmin(48) Ωmin(49)
−0.0537 −0.0283 0.0152 −0.1652 0.0156 −0.0056 0.0453

Ωmin(50) Ωmin(51) Ωmin(52)
0.1991 1.009 2.0133
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