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Abstract: The surging popularity of adopting industrial robots in smart manufacturing has led to 
an increasing trend in the simultaneous improvement of the energy costs and operational efficiency 
of motion trajectory. Motivated by this, multi-objective trajectory planning subject to kinematic and 
dynamic constraints at multiple levels has been considered as a promising paradigm to achieve the 
improvement. However, most existing model-based multi-objective optimization algorithms tend 
to come out with infeasible solutions, which results in non-zero initial and final acceleration. Popu-
lar commercial software toolkits applied to solve multi-objective optimization problems in actual 
situations are mostly based on the fussy conversion of the original objective and constraints into 
strict convex functions or linear functions, which could induce a failure of duality and obtain results 
exceeding limits. To address the problem, this paper proposes a time-energy optimization model in 
a phase plane based on the Riemann approximation method and a solution scheme using an itera-
tive learning algorithm with neural networks. We present forward-substitution interpolation func-
tions as basic functions to calculate indirect kinematic and dynamic expressions introduced in a 
discrete optimization model with coupled constraints. Moreover, we develop a solution scheme of 
the complex trajectory optimization problem based on artificial neural networks to generate candi-
date solutions for each iteration without any conversion into a strict convex function, until mini-
mum optimization objectives are achieved. Experiments were carried out to verify the effectiveness 
of the proposed optimization solution scheme by comparing it with state-of-the-art trajectory opti-
mization methods using Yalmip software. The proposed method was observed to improve the ac-
celeration control performance of the solved robot trajectory by reducing accelerations exceeding 
values of joints 2, 3 and 5 by 3.277 rad/s2, 26.674 rad/s2, and 7.620 rad/s2, respectively. 

Keywords: time-energy optimal trajectory; acceleration control; complex optimization problems; 
artificial neural networks; industrial robot 
 

1. Introduction 
As industrial robots are applied in more and more manufacturing scenarios, high 

efficiency and low energy cost of the motion trajectory are essential to meet the production 
needs and reduce resource consumption [1–3]. Time-energy cost-optimal trajectory plan-
ning for robots given a task path is conducted while surrendering limitations of kinematic 
and dynamic capabilities for safe operation. Effective trajectory optimization resolution 
of redundant robots with compliance to single-level physical constraints, such as velocity, 
is easy to implement. However, existing model-based algorithms for robot path planning 
may result in joint-angle drift and non-zero final joint velocity and acceleration when 
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systems are subjected to comprehensive velocity, acceleration and torque constraints and 
controlled at multiple levels, as discussed in [4–6]. 

Recently, many kinds of solver software, combined with various optimization meth-
ods, have been utilized in robot planning research to avoid obtaining infeasible solutions. 
The objective and constraints input into solver software should follow the specified rules 
of optimization theories, such as convex optimization (CO), linear programming (LP) [7], 
quadratic programming (QP) [5], second-order cone programming (SOCP) [3], concave-
convex procedure (CCCP) [8], and semi-definite programming (SDP). Each algorithm of 
the aforementioned software toolkits has its strict solution form and is usually solved by 
Lagrange duality and the interior point method [9], also known as the barrier method or 
combined methods. Moreover, the solving process of the above software is implicit, which 
is not conducive to estimating a global optimum or local minima. Thus, for the trajectory 
optimization problem of robots with precise multi-level constraints, it is necessary to es-
tablish a generalized time-energy consumption optimization model and to develop algo-
rithms with feasible solutions in actual scenes. 

To address the issues, this paper proposes a novel multi-objective trajectory optimi-
zation approach with the goal of simultaneously minimizing the time and energy con-
sumption of industrial robots. First, we formulate the optimization problem by establish-
ing the weighting function of time and energy consumption in generalized path coordi-
nates. The transformed trajectory variables in the weighting function corresponding to the 
angle, velocity and acceleration in joint coordinates are considered as generated optimiz-
ing variables. Then, we present forward-substitution interpolation functions as basic func-
tions to calculate indirect velocity and acceleration expressions introduced in the discrete 
optimization model and obtain segmented smooth paths in terms of trajectory variables. 
Consequently, we impose an iterative metaheuristic scheme to solve trajectory variables 
in the complex optimization problem based on artificial neural networks, avoiding the 
fussy conversion of strict convex or linear functions. Moreover, velocity, acceleration and 
torque constraints controlled in joint performance parameter limits in the overall process 
of motion are also the focus of the trajectory design and optimization in this paper, ac-
cording to the actual needs of industrial robots. The proposed trajectory optimization 
model can adjust the variable values according to the requirement of high-speed motion 
or low energy consumption. Finally, extensive experiments are conducted to verify the 
effectiveness of the proposed optimization solution scheme by comparing it with the state-
of-the-art trajectory optimization methods using Yalmip software. 

2. Related Work 
Generally, to solve a trajectory planning problem, joint angles of an industrial robot, 

given the desired path described in Cartesian space, are first calculated by an inverse kin-
ematic model. Then, trajectory variables, including velocity and acceleration as functions 
of angle derivative in terms of time, are optimized to achieve the minimum running time 
or energy consumption with the demands of multi-level control for safe operation. Feng 
et al. [10] employed fifth-order polynomial expressions to construct joint trajectories and 
established a time-energy consumption optimization model by introducing velocity vari-
ables obtained from the pre-defined trajectory. Since an industrial robot usually has six 
joints, the optimization objective of all joint angles is a multidimensional expression. For 
simplification of the objective function, Palleschi et al. [11] described path coordinates as 
a normalized trajectory variable based on phase plane theory to reduce the high-dimen-
sional state space and solve the tracking problem of a minimum-time path with smooth 
and continuous accelerations by the SCIP solver of Opti Toolbox. Although software can 
generate a set of optimized solutions, the implicit solving process is often difficult to con-
verge when multi-level constraints of the robot are required to be controlled. 

For the control of robots with optimal trajectory under the multi-level constraints 
enforced, a conventional solution is the Jacobian pseudo-inverse method, which can be 
regarded as an analytical solution with a direct correlation between end-effector and joint 
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trajectory variables. Ramezani and Williams [12] present an optimal redundancy resolu-
tion technique by using the augmented Jacobian to provide feasible solutions for the min-
imum objective function. The traditional Jacobian pseudo-inverse scheme is just applica-
ble to trajectory optimization with joint physical limits expressed as equality equations, 
while inequality constraints can hardly be introduced to this direct solution scheme. 

To achieve efficient redundancy resolution for multi-level control of a robot’s trajec-
tory, Verscheure et al. [3] transformed the optimization model with consideration of time, 
energy cost and smoothness into a convex optimization problem, and presented a tran-
scription method to solve a SOCP with inequality constraints using robust numerical al-
gorithms in Yalmip. Nagy and Vajk [7] converted a profile generation model into linear 
programming (LP) form and solved it with a sequential optimization method. Steinhauser 
and Swevers [4] presented a two-step iterative learning algorithm that compensates for 
inevitable model-plant mismatch of time-optimal motion, which improved tracking per-
formance and ensured feasibility based on a sequential convex log barrier method. Zhang 
et al. [6] formulated the trajectory resolution problem subject to joint angle, velocity, and 
acceleration constraints as a QP to overcome computationally intensive pseudo-inverse-
based schemes. The optimization models referred to require the objective and constraints 
to be converted to satisfy the strict solving forms, which sometimes induces a failure of 
duality and obtains results exceeding limits. 

Among optimization approaches, metaheuristic algorithms have shown their capa-
bilities for searching for near-global-optimal solutions to numerical real-valued test prob-
lems, such as the genetic algorithm (GA) [13,14], particle swarm optimization (PSO) [15], 
artificial neural networks (ANNs) [16,17], and so forth. Chen et al. [5] formulated a multi-
level simultaneous minimization scheme as a dynamical quadratic program (DQP), which 
was solved by a piecewise linear projection equation neural network. Abu-Dakka et al. 
[14] constructed smooth joint trajectories with cubic polynomial functions as basic func-
tions in a segmented path to establish an optimization model of minimum time, energy 
and jerk. Undetermined parameters in basic functions were solved by a parallel-popula-
tions genetic algorithm (PPGA) procedure. Based on the multi-objective genetic optimi-
zation algorithm NSGA-II, Shi et al. [18] solved the optimization problem in the multi-
objective form. 

Although the above state-of-the-art metaheuristic algorithms have good effects on 
solving general optimization problems, some of these methods applied in trajectory plan-
ning cannot guarantee the initial and final zero-velocity and zero-acceleration and joint-
angle drift sometimes occurs, so are not suitable for actual conditions of the robot opera-
tion. In addition to the solution algorithm, the established trajectory optimization model 
and the form of internal basic function for iteration calculation, dynamic equation expres-
sions, and other factors will also have an impact on the output trajectories results. Thus, 
it is necessary to establish a multi-objective optimization model with consideration of the 
applicable conditions in the actual situation. 

3. Robot Kinematics and Dynamics Modeling 
In this paper, a serial 6-axis robot is considered to establish the time-energy optimi-

zation model, the structure of which is shown in Figure 1. The modified Denavit–Harten-
berg (MDH) parameters are presented in Table 1. Forward and inverse kinematic models 
of the specified robot can be established with these parameters. 
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Figure 1. Specified robot structure. 

Table 1. Modified Denavit–Hartenberg parameters of the specified robot. 

Joint i αi−1 (rad) ai−1 (m) di (m) θi (rad) 
1 0 0 0.435 θ1 
2 −1.571 −0.00022 0 θ2 (–π/2) 
3 0 0.765522 0.060267 θ3 
4 −1.571 0.004315 0.63512 θ4 
5 1.571 0 0 θ5 
6 −1.571 0 0.156 θ6 

Dynamic equations of the robot with several identified parameters are established to 

express the joint torques 
NE

iτ  according to the iterative Newton-Euler formulation [19]. 

To establish an accurate dynamic identification model, inertia terms 
r
iτ  and friction 

terms 
f
iτ  are introduced in the torques expressions [20] as follows: 

+ + sign( )r NE f NE
i i i i ai i i vi i ci iI q f q f qτ τ τ τ τ= = + + +   , (1)

where iq  and iq  denote the velocity and acceleration of joint i, aiI  is the inertia moment 

for rotor and gears of actuator i, vif  and cif  are the viscous and Coulomb friction coef-

ficients. It should be noted that the inertia tensor 
C

iI  related to the center of mass of link 

in 
NE

iτ  should be converted in terms of the inertia tensor 
A

iΙ  related to the origin of the 
joint coordinate by introducing the expression  

T T
3[ ]C A

i i i Ci Ci Ci Cim= − −I I P P I P P , (2)

where 

=
xxi xyi xzi

A
i xyi yyi yzi

xzi yzi zzi

I I I
I I I
I I I

 − −
 − − 
 − − 

I

, im  is the mass of link i, 3I  is the 3 3×  identity matrix, 

the undetermined vector 
T[ , , ]Ci Ci Ci Cix y z=P  locates the center of mass of link i relative 

to the coordinate system {Oi}. The vector of the identified parameters for each joint torque 
iτ  is denoted as 
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T[ ]i i Ci Ci Ci xxi yyi zzi xyi xzi yzi ai vi cim x y z I I I I I I I f fΩ = , (3) 

which contains position coordinate components of the center of mass of link ( Cix , Ciy , 
Ciz ), inertia moment components of link i ( xxiI , yyiI , zziI , xyiI , xziI , yziI ).  

The differential Equation (1) in terms of 78 dynamic parameters can be linearized and 
expressed by 𝝉 = 𝛚(𝒒, 𝒒ሶ , 𝒒ሷ ) ⋅ 𝛀, (4) 

where 
T

1 2 6[ , ,..., ]τ τ τ=τ  is the joint torques vector, 
T

1 2 6[ , ,..., ]= Ω Ω ΩΩ  is the standard 
parameters vector, 𝛚(𝒒, 𝒒ሶ , 𝒒ሷ ) is a 6 × 78 regressor matrix and q is the joint position vector. 
The above equation can be transformed into a simplified form with a minimal set of 52 

identifiable parameters minΩ  by regrouping the original parameters Ω , a detailed deri-
vation process for which can be seen in [21,22]. Thus, the torque can be simplified as 𝝉 = 𝛚௠௜௡(𝒒, 𝒒ሶ , 𝒒ሷ ) ∙ 𝛀୫୧୬, (5) 

where 𝛚௠௜௡(𝒒, 𝒒ሶ , 𝒒ሷ ) is a subset of the independent columns of 𝛚(𝒒, 𝒒ሶ , 𝒒ሷ ). We sample sev-
eral data of torques and joint angles when the robot moves according to an exciting tra-
jectory at 𝑡 = 𝑡ଵ, 𝑡ଶ, … , 𝑡ே, and over-determined linear equations are obtained as 

min εΓ = Ψ⋅ +Ω , (6) 

where observation matrix is Ψ = ൦𝛚୫୧୬(𝑞(𝑡ଵ), 𝑞ሶ (𝑡ଵ), 𝑞ሷ (𝑡ଵ))𝛚୫୧୬(𝑞(𝑡ଶ), 𝑞ሶ (𝑡ଶ), 𝑞ሷ (𝑡ଶ))⋮ ൪ , the torques vector is

T T T
1 2( ) , ( ) , ( )Nt t t Γ =  τ τ τ , and ε  is a vector of sampling error. Based on the least 

square method, the minimum identification parameters set can be obtained by 

( )-1min
T T= Ψ Ψ Ψ ΓΩ . (7) 

The calculated minimum set of combined parameters minΩ  is listed in Table A1 in 
Appendix A. The dynamic model with an iterative Newton–Euler formulation is obtained 

by substituting minΩ  into Equation (1). 
Then, we rewrite the dynamic model into the state-space equation form, as follows: 

( ) ( , ) ( ) ( )fM q q C q q q G q qτ τ= + + +    , (8) 

where ( )M q  is the mass or inertia matrix, ( , )C q q  is the vector of Coriolis and centrifu-

gal terms, ( )G q  is the vector of gravity terms, and ( ) sgn( )f
c vq F q F qτ = +    is the vector of 

friction terms. 

4. Problem Formulation 
This section formulates the time-energy optimal trajectory planning problem of a ro-

bot with precise multi-level constraints. The optimization objective and complex con-
straints, including velocity, acceleration and torque, are derived based on the phase plane 
theory and Riemann approximation method. For effective numerical computing, the op-
timization model introduces the discrete kinematic and dynamic equation results. 
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4.1. Original Formulation 

Minimizing the total motion time ft  of an industrial robot is simply expressed as 

0
1f

t
dt . For optimization of the energy cost, the main resistance energy consumption of 

the servo circuit in each robot joint is modeled by Joule’s law, as follows: 
2i i i
servoe I r t= ⋅ ⋅ , for i = 1, …, 6, (9)

where 
i
servoI  is electric current and ir  is the resistance. Due to the relevant relations be-

tween torque and current, the above equation can be proportional to the expression in 
terms of torque: 

2i i
ie r tτ∝ ⋅ ⋅ , (10)

For a single servo motor system, the energy consumption model during the running 
time should be: 

2 2

0 0

f ft ti i
i iE rdt dtτ τ∝ ⋅ ∝  , (11)

which omits the coefficient ir  since it is constant for one joint. Then, energy consumption 

iE  is also proportional to the integral of the torque square 
2

0

ft

i dtτ . Total energy con-
sumption of a robot can be optimized by minimizing the normalized expression: 

( )
26

20
1

min ft i

i
i

dt
τ

τ=
 , (12) 

which divides the square of maximum torque limit ( )2iτ  for equalized optimization of 

every joint energy. 
For simultaneous minimizing of the time and energy of a robot with multi-level con-

straints, the following synthetical optimization model is established as 

( )
26

20 0
1

min 1f ft t i

i
i

dt dt
τβ
τ=

+   , (13) 

Subjected to 

(0) 0, ( ) 0, (0) 0, ( ) 0,

( ) , ( ) , ( ) ,
i i f i i f

i i i i i i

q q t q q t

q q t q q q t q tτ τ τ
= = = = 

≤ ≤ ≤ ≤ ≤ ≤ 

   

      , for i = 1, …, 6, (14) 

where β  is the weight coefficient; overline and underline of velocity, acceleration and 
torque represent the maximum and minimum values. 

4.2. Reformulation Based on Phase Plane Theory 
Due to the complexity of the multidimensional-optimal problem for an industrial ro-

bot with six joints, the optimization objective is calculated using six different trajectories 
functions until the minimum operation time value for any of all joints is found. For sim-
plification of the objective function, we describe path coordinates as a parameterized tra-
jectory variable based on phase plane theory to reduce the high-dimensional state space 
to one dimension. 

Based on the Pontryagin principle [23], the optimization independent variable t can 

be replaced by the trip proportion variable assigned to the path curve ( )s t  through a 

generalized coordinate transformation 
0

1
( )

s
t ds

s t
=   . Then, the reformulated optimization 
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problem is analyzed in the S-phase plane. Joint position q is a function of s, notated as 
( )q s . Joint velocity and acceleration are transformed as 

( ) ( )q s q s s′=  , 2( ) ( ) ( )q s q s s q s s′ ′′= +   , (15)

where 

( )( ) q sq s
s

∂′ =
∂ , 

2

2

( )( ) q sq s
s

∂′′ =
∂ , 

2

2( ) d ss t
dt

=
is defined as ( )u s , 

( ) dss t
dt

=
. Moreover, 

substituting the relations (15) into the dynamic equation (8), yields 

( ) 2( ) ( ) (( ) ( ) ( , ) ( )) ( ) ( ) ( ) ( ) ( sgn( () ) ) ( )c vs M q M q C q qs q s s s q G qq s s s s s s s F q s s F q s s′ ′ ′= + + + +′ ′′+τ      , (16)

where the term ( , )C q q  is linear to the joint velocity iq  [24], which can be described as 
( ) ( ) ( ) (( , ( ))) ,C q q Cs s s sq q s′=  . Meanwhile, the trajectory velocity s  is positive when the 

robot runs along a path, such that the sign function of ( )q s s′   is equal to ( )q s′ . We define 
(( )) (( ))sm M q q ss ′= , ( ) ( ) ( ), ( ))( ) ( (( ) )s q s C s q s qM q sc s q′′ ′ ′+= , ( ) sgn( ( )( )) ( )cg s F q G ss q′= +  

and ( ) ( )vf s F q s′=  for simplification of Equation (16). 
The normalized time-energy consumption optimization model for the robot trajec-

tory is reformulated by substituting expression (16) and 

1

0

1
( )ft ds
s t

=    as 

( )
261

0 2
1

( )1min 1+
( )

i

i
i

s ds
h s

β
τ

τ
=

 
 
 
  

 , (17) 

where ( )h s  represents 
( ) dss t

dt
=

. 
Since the integral optimization model is difficult to be solved, it is converted to dis-

crete sums based on the Riemann approximation method. Then, the corresponding dis-
cretization and normalization are carried out for the time-energy optimization objective 
with multi-level constraints, as follows: 

( )
21 6 1

1 1
1 1

1 1 11
2

( )
min 1+ ( )

( )

N N
j i j

j
j i

j
j i j

s s
s v s

h s τ

τ
β

− −
+ +

+ +
= = =+

  Δ   = Δ    
    

   , (18) 

where js  is the j-th point proportion of the divided path curve, 1 1j j js s s+ +Δ = − . Simulta-
neously, velocity and acceleration in joint coordinate and torque constraints are discrete 
as 

1 1( ) ( ) 0iq s h s′ ⋅ = , ( ) ( ) 0i N Nq s h s′ ⋅ = , 2
1 1 1 1( ) ( ) ( ) ( ) 0i iq s u s q s h s′ ′′+ = , 2( ) ( ) ( ) ( ) 0i n n i n nq s u s q s h s′ ′′+ =  

( ) ( )i i j j iq q s h s q′≤ ⋅ ≤  , 2( ) ( ) ( ) ( )i i j j i j j iq q s u s q s h s q′ ′′≤ + ≤   
2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j j j j js m s u s c s h s g s f s h sττ τ≤ = + + + ≤ , for i = 1, …, 6, j = 1, …, n 

(19)

where 1( ) 0u s = , 

2 2
1

1
1

( ) ( )
( )

2
j j

j
j

h s h s
u s

s
+

+
+

−
=

Δ
 for j = 1, …, n−1 is assumed as a piecewise func-

tion. In the case of the dramatic increase in velocity and acceleration, the corresponding 
constraints are limited in the range of 1/(n−1) multiple maximum values at the initial and 
final interval segments. 

5. Solution Algorithm 
In this section, we present a solving scheme of a time-energy optimal trajectory with 

a forward-substitution interpolation method and metaheuristic algorithm. Firstly, high-
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order polynomial interpolation functions are applied as basic functions to calculate indi-
rect kinematic and dynamic expressions introduced in a discrete optimization model and 
other constraints. Then, we develop a solution algorithm based on artificial neural net-
works to generate candidate solutions for each iteration without any conversion into strict 
forms, until a minimum objective function value is achieved. 

5.1. Forward-Substitution Interpolation Basic Functions 
A path that a robot usually moves around is specified by a series of space position 

coordinates ( , , )k k k kP x y z= . Geometric curve functions, such as the cubic Bezier or B-
spline curve, could be used to fit these points, as 

2
3 2

1
1

1

1 3 3 1
3 6 3 0

( ) 1
3 3 0 0
1 0 0 0

k

k
k

k

k

P
P

B S S S S
P
P

+

+

− −   
  −    =     −
  

   

, [0,1]S∈  (20)

where control points 
2

1 10.15 0.15k k k kP P P P+ −= + − ,
1

1 1 20.15 0.15k k k kP P P P+ + += + − . Then the 

interpolated path points 11P , 12P , … coordinates are calculated by the cubic Bezier curve 
function, and we add the number of path points to N. For convenience, we notate points 

as 1Q , 2Q , …, lQ ,…, NQ . Although the partitioned Bezier curve function describes the 
discrete interpolated points space coordinates between the specified points along the path. 

Each joint positions vector ( ) ( ) ( ) ( ) ( ) ( ) ( ) T
1 2 3 4 5 6, , , , ,l l l l l l lQ q Q q Q q Q q Q q Q q Q=   q

 in the 
joint coordinate system corresponding to the path point can be resolved by the inverse 

kinematic model with position coordinate ( , , )x y z  and specified pose orientation vector, 

as rotations around the x-axis, y-axis, z-axis ( , , )rx ry rz . 
To express the joint trajectory function, isometric distributed generalized path curve 

parameters 1S ,…, NS  are introduced to establish the mapping relation of unevenly dis-

tributed trajectory points 1( )Qq ,…, ( )NQq . Figure 2 shows the correspondence relations 
diagram of path points and generalized path curve parameters. Due to the velocity and 
acceleration requirements, the third-order polynomial function is the lowest order form 
we choose to be an interpolated trajectory function in terms of the curve parameter S. 
Moreover, the initial and final trajectory functions with zero-velocity and zero-accelera-
tion are considered by applying the fifth-order polynomial function. The common fitting 
method of the fixed segmentation function just uses joint angles of two adjacent points, 

such as 1( )i Qq  and 2( )i Qq , to establish the trajectory function. In this case, the higher 
derivatives of the adjacent trajectory functions have saltation at the connecting point. To 
solve this problem, we propose a forward-substitution interpolation as a predefined basic 
trajectory function expressed as 

5

1
5 4 3

11 1 1 4
5 4 3

22 2 2 2

3
5 4 3

3

4

1

( )1
1 ( )1

1 ( )1

I

I

I

i

i

KK K K i

I

b
S

QS S S
QS S S b

S

QS S S b
S
b

q
q

q

  
  

                =                    
  








, for 1 1K d K d l≤ + ∪ − − ≤  (21) 
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  








, for other situations, (23) 

where 
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1Fb
S

 
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S

 
 
  , 
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1b
S

 
 
  , 

3
1b
S

 
 
   and 4b  are the polynomial coefficients, d is the nearest integer less than 

or equal to 0.1(N − 1), and half of the added continuous selected points number 0l ≥  is 
decided by the set variation value. Quantity l increases until the root mean squared error 
of the left-fitting value and the right-truth value of Equations (21)–(23) are larger than the 
set variation value. The super-positive definite Equations (21)–(23) are solved by the least 
square method. 

 
Figure 2. Correspondence relations diagram of path points and generalized path curve parame-
ters. 

When the path curve proportion variable s chosen is different from the generalized 
path curve parameter S, we just need to determine which segment s belongs to. The tra-

jectory function ( )i jq s  and derivative ( )i jq s′  and ( )i jq s′′  are substituted into the indi-

rect kinematic and dynamic expressions ( )( )jM q s , ( ,( ) ( ))C q qs s′ , ( )( )G q s  in the dis-
crete optimization objective expression (17) and constraints Equation (18). 
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5.2. Dynamic Metaheuristic Optimization Algorithm 

After the pre-defined value jsΔ , 
2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j j j j js m s u s c s h s g s f s h sτ = + + +  

and 

2 2
1

1
1

( ) ( )
( )

2
j j

j
j

h s h s
u s

s
+

+
+

−
=

Δ  is substituted, the discrete optimization objective ( )jv s  is 

a function in terms of variables ( )jh s . The sum terms of a normalized torque square in 
objective expression (17) will induce high-order nonlinear forms of independent variables 
( )jh s , which is difficult to be solved by the model-based analytical optimization algorithm 

or solver software without any conversion. Thus, we develop a solution algorithm based 
on artificial neural networks (ANN) [17] to handle this issue. 

In an n-dimensional optimization problem, a pattern solution representing input 
data in the ANN, is defined as 

[ ]1 2( ) ( ) ( )nh s hPatternSol s hution s=  , (24)

First, a starting candidate of the pattern solution matrix H is generated, which is ran-
domly generated between the lower and upper bounds of a problem: 

1 1 1
1 2

2 2
1 2

1 2

( ) ( ) ( )
( ) ( )

( ) ( ) ( )pop pop pop

n

N N N
n

Population of Pattern Solutions

h s h s h s
h s h s

s s

H

h s h h

 
 
 =  
 
  




. (25)

Cost functions corresponding to pattern solutions are obtained by 

( )1 2( ), ( ) ( 1, 2...) ,i i i
pop

i
nF f fh s h s h s or i N= = , (26)

where f is the objective function 

1

1 1
1

( )
N

j j
j

s v s
−

+ +
=

Δ
 in expression (17). 

The candidate solution with the minimum objective function value for all pattern 
solutions is selected as the target solution. This target solution will be updated at each 
iteration. After determining the target solution argT etH  among the other pattern solutions, 

the target weight 
argT etW , corresponding to the target solution, must be selected from the 

population of weight (weight matrix) by the following expression: 

1 2

1
1 1 1

1
2 2 2

1

( )

pop

pop

pop

pop

pop pop pop

Ni

Ni

Ni
N

N

N N

w w w

w

W o W W W

w w

w w w

 =  
 
 
 

=  
 
 
 

 






 , (27)

where ( )W o  is a matrix generating random numbers uniformly between zero to one dur-
ing iterations, and o  is an iteration index. The weight superscript relates to its pattern 

solution (e.g., 
2w  is related to the second pattern solution) and the weight subscript is 

shared with the other pattern solutions (e.g., 
2

3w  is shared with the third pattern solu-
tion). Every pattern solution has its corresponding weight value which has been involved 

in generating a new candidate solution. Moreover, the sum of elements in ( )W o  is 1. 

After forming ( )W o , new pattern solutions NewH  are generated by the following expres-
sion: 
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( 1) ( ) ( ) 1,2...,
popN

New i
j ij pop

i
H o w o H o for j N+ = × =
 

, (28) 

( 1) ( ) ( 1) 1,2...,
New

i i i popH o H o H o for i N+ = + + =
  

. (29) 

Therefore, the new pattern solution has been updated for iteration 1o+ . Based on 
the best weight value called “target weight”, the weight matrix should be updated, as 
follows: 

( )arg( 1) ( ) 2 ( ) ( ) 1, 2...,Updated T et
i i i popW o W o rand W o W o for i N+ = + × × − =
   

, (30) 

where rand  is a uniformly distributed random number in the range [0, 1]. 
In ANN, the bias current is introduced, of which the bias operator modifies a certain 

percentage of the pattern solutions in the new population of pattern solutions ( 1)
New
iH o +


 

and updated weight matrix ( 1)Updated
iW o +


. The bias operator in the ANN is another way 
to explore the search space, which prevents the algorithm from premature convergence 
and modifies individual numbers in the population. In fact, the bias operation acts as noise 
to the new pattern solutions and the updated weight matrix. 

Then new pattern solutions in the population from their current positions in the 
search space are transferred to new positions to update and generate better quality solu-
tions toward the target solution by the transfer function operator. The transfer function 
(TF) operation is defined by the following equation: 

( )* arg
( 1) ( ( 1)) ( 1) 2 ( ) ( 1) 1, 2...,

T et
i i i i popH o TF H o H o rand H o H o for i N+ = + = + + × × − + =

    
, (31)

where the i-th new pattern solution ( 1)iH o +


 is transferred to the updated position 
*
( 1)iH o +


. 

In summary, the optimization problem can be solved by the general behavior of 
ANN, which can be described by 

( )( ) ( ), ( ) 1, 2...i i popH o o f H o U o for i N+ Δ = =
 

, (32) 

where ( )iH o o+ Δ


 and ( )iH o


 are the next and current locations of pattern solution i-th, 

respectively. ( )U o  is a population of pattern solutions with updated weights. 

6. Results and Discussion 
To assess the general applicability and verify the accuracy of the proposed method, 

optimal time trajectory and time-energy synthesis optimization results were calculated 
using simulation and actual experiments with the kinematic and dynamic boundary con-
ditions compared with the state-of-the-art algorithms in [3] using Yalmip software. The 
boundary conditions are listed in Table 2. A circle path of robot motion was applied to 
test the effectiveness of the proposed method, as shown in Figure 3. The original coordi-
nates values of the robot end were (0.805133 m, −0.328446 m, 0.201903 m), and the radius 
of the circle was 0.15 m. The orientations of the robot end in Cartesian space were 
(3.137975 rad, −0.015916 rad, 1.620108 rad). 
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Figure 3. A circle path of robot motion. 

Table 2. Absolute value limits of joint angles, velocities and accelerations. 

Joint i 1 2 3 4 5 6 
Velocity (rad/s) 3.877 2.623 3.141 3.964 6.311 6.329 

Acceleration (rad/s2) 9.692 7.658 7.853 9.910 15.777 15.822 
Torque (Nm) 193.68 286.284 127.011 100.655 15.9296 15.884 

In [3], the minimum objective (17) is solved by the conventional optimization method 

SOCP, which converts the non-convex function 
( )
26

1
1

1
2

1

( )1( ) 1+
( )

i

i j
j

ij

s
v s

h s
τ

β
τ

+
+

=+

 
 =  
  


 into 

convex form with additional constraint conditions, as follows: 

ቱቱ
22ඥ𝛽𝜏ଵ(𝑠௝ାଵ)/𝜏̄ଵ⋮2ඥ𝛽𝜏଺(𝑠௝ାଵ)/𝜏̄଺ℎ(𝑠௝ାଵ) − 𝑣(𝑠௝ାଵ)ቱ

ቱ ≤ ℎ൫𝑠௝ାଵ൯ + 𝑣൫𝑠௝ାଵ൯. (33) 

The above fussy conversion of strictly convex functions is avoided by the proposed 
optimization model directly solved by the ANN algorithm in Section 5. Moreover, the 
second-order polynomial interpolation functions are applied as basic functions to calcu-
late indirect kinematic and dynamic expressions introduced in a discrete optimization 
model and other constraints in reference [3].  

For verification of the accuracy and efficiency of the proposed method, the optimiza-

tion variable results ( )jh s  in objective function solved by SDPT3 optimization toolkit in 
Yalmip and the ANN algorithm, when the basic functions are the second-order polyno-
mial interpolation functions and the initial and final velocity and acceleration boundaries 
are neglected as in [3], as shown in Figure 4. We select discrete points when the number 
of s is 20. As can be seen in Figure 4, optimization variable h(sj) values at different coordi-
nates solved by the proposed method are similar to that of the commercial software toolkit 
Yalmip, which indicates the high accuracy of our model. The convergence curve of the 
optimization objective solved by ANN shows the stable minimum value of the objective 
function is 1.1454 when the number of iterations is more than 330, which is a little less 
than the minimum objective value, 1.1484, obtained by Yalmip. 
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(a) (b) 

Figure 4. Optimized results for robot joint solved by Yalmip with the method in reference and the 
proposed method using ANN. (a) Optimization variable h(sj) values at different coordinates; (b) 
Convergence curve of optimization objective with ANN. 

To intuitively display the motion of the robot, the joint angles and joint angular ve-
locities and torques of six joints during the trajectory operation with time-energy optimi-
zation weight 0α =  are obtained according to the method in [3] and our proposed 
method with bounded velocity, acceleration, torque limits, and initial and final bounda-
ries, as shown in Figures 5 and 6. 
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Figure 5. Optimized trajectories for robot joint with the method in reference. 
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Figure 6. Optimized trajectories for robot joint with the proposed method. 

The joint angular velocity and acceleration curves start with non-zero values calcu-
lated by the method in [3], and accelerations of joints 2, 3 and 5 exceed the limits by 3.277 
rad/s2, 26.674 rad/s2, 7.620 rad/s2, respectively. The generated trajectories are hardly used 
in the actual scene. On the contrary, our result showed a smoother optimization trajectory 
with initial and final zero velocity and acceleration and all kinematic and dynamic con-
straints were satisfied within the extreme values.  

For verification of the effectiveness of the proposed method, the calculated normal-

ized energy consumption 
( )

6
2 2

0
1

( ) /ft

i i
i

s dtτ τ
=


and motion time tf results obtained by the 
proposed optimization model are listed in Table 3, when weights β = 0, 0.1, 1 and 100.4, of 
which selected weights β are the same as [3]. In Table 3, the motion time tf rises and the 
normalized energy decreases simultaneously when the weight increases, which indicates 
that the proposed trajectory optimization model can adjust the variable values according 
to the requirement of high-speed motion or low energy consumption. 
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Table 3. Normalized energy consumption and motion time results obtained by the proposed opti-
mization model. 

Weight β Motion 
Time 

Normalized 
Energy 

Maximum Accelera-
tion of Joint 2 

Maximum Accelera-
tion of Joint 3 

Maximum Accelera-
tion of Joint 5 

0 1.8139 0.9998 2.8306 7.8076 6.0125 
0.1 1.824 0.9977 2.8291 7.8038 5.9886 
1 2.072 0.9641 2.7369 7.7953 5.9441 

100.4 3.2915 0.9364 2.6435 7.7955 5.9388 

The results of the optimization trajectories with different weights β = 0.1 and 1 can be 
seen in Figures 7 and 8. As can be seen in Figures 6–8, the trajectory acceleration fluctua-
tion at the corresponding singular point decreases gradually with weight increases. This 
indicates that the design of the objective function is based on the trade-off analysis of time 
and energy consumption. Therefore, the overall trend of the joint torque curve of the ma-
nipulator still tends to be near the safety limit of the rated torque. However, after the en-
ergy consumption modeling and weight distribution of the manipulator servo drive con-
trol system, the operation trend of the manipulator joint torque curve tends to decrease 
with increase in the weight. The time near the safety limit of the rated torque gradually 
decreases, which also means that the energy consumption of the joint servo drive control 
system has been effectively improved during the corresponding trajectory operation. 
From the normalized comparison of energy consumption in Table 3 of the manipulator 
trajectory optimization, it can be seen that modeling the energy consumption index of the 
robot servo motor and assigning a corresponding weight design plays a significant role in 
reducing the energy consumption value of the manipulator trajectory operation. 
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Figure 7. Optimized trajectories for robot joint with the proposed method when α = 0.1. 
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Figure 8. Optimized trajectories for robot joint with the proposed method when α = 1.  

To test the actual optimization effect, an experiment of the proposed method was 
implemented with the robot system, as shown in Figure 9. The path time of the optimal 
trajectory when 0.410α =  was 3.2915 s which ensured the joint velocity in the range of 
the velocity set limits. The energy consumption of the robot running optimal trajectory 
was 0.357 Wh. The experimental sampling data of six joint angles, torques and velocities 
of time-energy consumption optimal trajectory are shown in Figure 10. The torque values 
of the servo motor of joints were within the torque performance constraints. The safety 
range of the accelerations of robot joint was reached at several discrete solutions, and the 
obtained solutions were used in an actual scene, which demonstrated the effectiveness of 
the above algorithm and the constraint design. 



Actuators 2022, 11, 130 19 of 22 
 

 

 
Figure 9. Experiment platform of six-joints robot. 

 
Figure 10. Experiment data of optimal trajectory with α = 100.4. 
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7. Conclusions 
To describe the optimization problem of robot trajectory planning, a time-energy op-

timization model based on the ANN algorithm was proposed in this paper. The energy 
consumption model of servo resistance loss was constructed in addition to motion time. 
For a six degrees of freedom industrial robot, the kinematics and dynamics impact on the 
coupling constraint condition were considered, including velocity, acceleration and 
torque. The optimization model was discretized based on the Riemann approximation 
method. Based on the established kinematic and dynamic model of the robot, a basic dis-
cretization model in terms of the generalized path variable mapping was constructed. For-
ward-substitution interpolation functions were presented as basic functions for the insur-
ance of the initial and final zero-velocity and zero-acceleration of indirect kinematic ex-
pressions introduced in the discrete optimization model. Finally, the trajectory optimiza-
tion parameters and the comprehensive tradeoff time-resistance energy loss index with 
multi-level performance constraints were solved by a numerical iterative solution strategy 
based on neural networks. The simulation and actual experiments were implemented 
with different optimization weights. The proposed method could enhance the acceleration 
control performance of the solved robot trajectory by reducing accelerations exceeding 
values of joint 2, 3 and 5 by 3.277 rad/s2, 26.674 rad/s2, 7.620 rad/s2, respectively. Moreover, 
comparison results between our method and recent optimization methods showed that 
the improved basic function contributes to the smoothness of the optimization trajectory 
and guarantees zero velocity and acceleration at the starting and ending points. 
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Nomenclature 

αi−1 Link twist  NE
iτ   

Joint torques derived by the iterative New-
ton–Euler formulation 

ai−1 Link length aiI  
Inertia moment for rotor and gears of actu-
ator i 

di Link offset vif , cif  Viscous and Coulomb friction coefficients 

θi Joint angle C
iI  Inertia tensor related to center of mass 

im  Link mass A
iΙ  

Inertia tensor related to the origin of joint 
coordinate 

iτ  Joint torque 
xxiI , yyiI , zziI , xyiI , 

xziI , yziI  
Inertia moment components of link i 

f
iτ  Friction torque 𝛚(𝑞, 𝑞ሶ , 𝑞ሷ )  Regressor matrix 

r
iτ  Inertia torque 𝛚௠௜௡(𝑞, 𝑞ሶ , 𝑞ሷ )  Subset of the independent columns of 𝛚(𝑞, 𝑞ሶ , 𝑞ሷ ) 

q Joint position vector T[ , , ]Ci Ci Ci Cix y z=P  Coordinates of center of mass  
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iq  Velocity  iΩ  Standard parameters for joint i 

iq  Acceleration minΩ  
Minimal set vector of identifiable parame-
ters 

Γ  Torques vector ( )M q  Mass or inertia matrix 

t Time ( , )C q q  Coriolis and centrifugal vector 

ft  Total motion time ie  
Resistance energy consumption of the servo
circuit in robot joint 

( )G q  Gravity β  Weight coefficient of energy consumption 

i
servoI  Electric current s Trip proportion assigned to path curve 

ir  Resistance js   
The j-th point proportion of the divided 
path curve 

b  Polynomial coefficients ( )u s  Second order derivative of s Ψ Observation matrix ( )h s  First order derivative of s 

N Point number ( )kB S  Cubic Bezier curve function 

rx,ry,rz Pose orientation vector l 
Half of the added continuous selected 
points number 

v(sj) 
Discrete optimization 
objective 

d 
The nearest integer less than or equal to 
0.1(N−1) 

iF  Cost functions H Population of pattern solution  

o  Iteration index ( )W o   Population of weight 

TF Transfer function rand  Random number 

Appendix A 
The minimum identification parameter set is shown in Table A1. 

Table A1. Elements of the calculated minimum identification set minΩ . 

minΩ  (1) minΩ  (2) minΩ  (3) minΩ  (4) minΩ  (5) minΩ  (6) minΩ  (7) 

14.2652 7.7347 13.4288 19.2053 0.3683 −13.2957 20.0815 

minΩ  (8) minΩ  (9) minΩ  (10) minΩ  (11) minΩ  (12) minΩ  (13) minΩ  (14) 

−0.6178 0.0673 1.0250 33.5249 26.4618 −0.0689 4.9279 

minΩ  (15) minΩ  (16) minΩ  (17) minΩ  (18) minΩ  (19) minΩ  (20) minΩ  (21) 

4.0606 4.6718 0.3442 1.4541 −0.8636 −0.4512 10.7137 

minΩ  (22) minΩ  (23) minΩ  (24) minΩ  (25) minΩ  (26) minΩ  (27) minΩ  (28) 

12.0429 0.0897 0.0388 −0.0721 0.1035 −0.0151 0.7826 

minΩ  (29) minΩ  (30) minΩ  (31) minΩ  (32) minΩ  (33) minΩ  (34) minΩ  (35) 

−0.4236 −0.2792 8.4568 11.0075 0.0457 0.1336 −0.0042 

minΩ  (36) minΩ  (37) minΩ  (38) minΩ  (39) minΩ  (40) minΩ  (41) minΩ  (42) 

0.3912 0.0167 0.1285 −0.3073 −0.6151 1.4333 1.9285 

minΩ  (43) minΩ  (44) minΩ  (45) minΩ  (46) minΩ  (47) minΩ  (48) minΩ  (49) 

−0.0537 −0.0283 0.0152 −0.1652 0.0156 −0.0056 0.0453 
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minΩ  (50) minΩ  (51) minΩ  (52)     

0.1991 1.009 2.0133     
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