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Abstract: In this paper, a novel deep reinforcement learning algorithm based on Proximal Policy
Optimization (PPO) is proposed to achieve the fixed point flight control of a quadrotor. The attitude
and position information of the quadrotor is directly mapped to the PWM signals of the four rotors
through neural network control. To constrain the size of policy updates, a PPO algorithm based
on Monte Carlo approximations is proposed to achieve the optimal penalty coefficient. A policy
optimization method with a penalized point probability distance can provide the diversity of policy
by performing each policy update. The new proxy objective function is introduced into the actor–critic
network, which solves the problem of PPO falling into local optimization. Moreover, a compound
reward function is presented to accelerate the gradient algorithm along the policy update direction
by analyzing various states that the quadrotor may encounter in the flight, which improves the
learning efficiency of the network. The simulation tests the generalization ability of the offline policy
by changing the wing length and payload of the quadrotor. Compared with the PPO method, the
proposed method has higher learning efficiency and better robustness.

Keywords: Proximal Policy Optimization (PPO); quadrotor control; reinforcement learning

1. Introduction

Over the past decade, quadrotor unmanned aerial vehicles (UAV) have attracted con-
siderable interest from both academic research and engineering application. With some
features of vertical take-off and landing, simple structure, and low cost, they have been
successfully applied in military and civil fields such as military monitoring, agricultural
service, industrial detection, atmospheric measurements, and disaster aid [1–5]. How-
ever, the quadrotor UAV is an unstable, nonlinear, and highly coupled complex system.
Furthermore, external disturbances and structure uncertainties always exist in practical
quadrotors affected by wind gusts, sensor noises and unmodelled dynamics. Therefore,
all these factors demand an accurate and robust controller for the quadrotor to achieve a
stable flight.

An autonomous GNC system includes three subsystems of guidance, navigation and
control, and it undertakes all the motion control tasks of the aerial vehicles from take-off to
return. The state vector of the quadrotor usually consists of position coordinates, velocity
vector and attitude angle. The navigation system is responsible for state perception and
estimation. The guidance system generates state trajectory commands for the quadrotor,
while the control system maintains stable control to follow the trajectory. The research on
the quadrotor flight control system is usually divided into two levels, one is the low-level
inner loop control layer, which is mainly used for the simple motion control and stabi-
lization of the quadrotor, and the other is the higher-level outer loop coordination layer,
such as navigation, path planning and other strategic tasks. To achieve stable control and
target tracking of the quadrotor, various control policies have been developed. Traditional
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control theory methods, such as PID control, often have very high requirements for pa-
rameter adjustment and precise preset models. Moreover, the accuracy of the controller is
greatly affected by the complex environment. Therefore, many advanced control policies
are proposed to solve the control problems in complex environments, such as feedback
linearization control [6] adaptive control [7], model predictive control [8], immersion and
invariance control [9], sliding mode control [10], adaptive neural-network control [11,12],
backstepping control [13], active disturbance rejection method [14], and so on. However,
the effectiveness and robustness of most technologies mainly depend on the accuracy of
the dynamic model. Although some advanced algorithms have considered the uncertainty
and disturbance of the quadrotor system, they are difficult to implement in real-time due
to complex control policies.

Reinforcement learning (RL) algorithms have been used with promising results in a
large variety of decision-making tasks, including control problems [15]. Compared with
classic control techniques, RL is a learning algorithm that directly learns from the interaction
with the system and improves policies without making any assumptions on the dynamic
model [16]. Many complex quadrotor decision-making problems have been solved by RL
technology. In [17], an obstacle avoidance RL method combined with a recurrent neural
network with temporal attention is proposed to deal with cluttered environments. In [18],
UAV successfully navigate to static and dynamic formulated goals through RL method
with a customized reward mechanism. In [19], line of sight and artificial potential field are
introduced in the reward function to guide the UAV to perform the target tracking task.
In [20], an RL path planning method based on global situational information demonstrates
the excellent performance of UAVs in radar detection and missile attack environments.

In addition to high-level guidance and navigation tasks, RL has also been used for
low-actuator stable motion control. At this level, the complexity of the mission lies in
the complex dynamics of the quadrotor and its vulnerability to unknown dynamics such
as disturbances and sensor noise [21]. In this paper, we focus more on low-level motion
control of quadrotor based on a fast-response RL robust controller. In [22], the stochastic
nonlinear model of helicopter dynamics was fitted and successfully applied to autonomous
flight control through RL for the first time. In [23], the locally weighted linear regression
method was first used to approximate the quadrotor model as a Markov Decision Process
(MDP) in order to realize the continuous state-action space RL controller. In [24], deep
neural networks were used in RL as a powerful value function approximator to deal with
complex dynamics. In [25], a low-level controller generated by deep RL implements the
basic hover control and tracking tasks of a real quadrotor firmware. In order to solve the
problem of continuous state-action control decisions, the newly developed algorithms,
such as Asynchronous Advantage Actor-Critic (A3C), Twin Delayed Deep Deterministic
Policy Gradient (TD3), Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO),
are proposed [26–29] to optimize performance on high-dimensional continuous control
problems. These algorithms have also been gradually developed to solve the flight control
problem of quadrotors and other complex nonlinear systems [30–33].

PPO is an advanced policy gradient algorithm, which can effectively solve the problem
of low learning efficiency caused by the traditional policy gradient algorithm due to the
influence of the step size. The main advantages of the PPO algorithm for training control
policy are: Firstly, in [34], the hyper-parameters of PPO were proved to be robust when
training various tasks, and PPO can achieve an optimal balance between control accuracy
and algorithm complexity. Secondly, in [35], through the comparison of performance
indicators, the training control policy of PPO was superior to other RL algorithms on every
metric. It is the best performing algorithm for controlling the attitude of a quadrotor. Then,
in [36], the position control of the “model-free” quadrotor was successfully realized through
the PPO algorithm. In [37], considering the full six DoF system dynamics of the UAV, PPO
is used to train the quadrotor control policies, which has achieved the basic control task of
stable hovering. The RL integrated controller designed in [38] has solved advanced tasks
such as autonomous landing in actual flight for the first time. Moreover, some improved
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algorithms have been presented to improve the robustness and tracking accuracy of the
controller. In [39], a state integrator was introduced in the actor–critic framework, and the
PPO-IC algorithm was proposed to reduce the steady-state error of the system.

However, most RL methods are only for specific control environments. Further
research is still needed to design an RL algorithm with fast response and stable strategy
in the flight control system. As far as RL policies on quadrotors are concerned, many
problems still remain unsolved. They are summarized as follows: Firstly, the quadrotor
UAV is an underactuated nonlinear system with multiple inputs and outputs. For such a
complex system, PPO is prone to lacking exploration and slow convergence, especially in
poor initialization policies [40]. Secondly, the reward function plays an important role in
RL [41]. Most reward function settings cannot achieve effective exploration in the training
control policy.

Aiming at the above problems, an improved quadrotor control policy based on PPO
is proposed in this paper. Firstly, in [35], PPO has the best effect on quadrotor attitude
control among all baseline RL algorithms. Inspired by this, we introduce a penalized point
probability distance as the probability ratio between different policies, thereby improving
the exploration efficiency. Secondly, we verify that the improved PPO algorithm has a better
control performance and training rate on dimensions of attitude and position. Moreover,
for the exploration of new reward signals mentioned in [36] and [39], a compound reward
function is proposed to converge faster to the control requirements and minimize the
steady-state error during the training process. The main contributions of this paper are
summarized as follows:

In this paper, an improved quadrotor control strategy based on PPO is proposed.

(1) In the objective function of the PPO algorithm, a penalized point probability distance
based on Monte-Carlo approximation is introduced to replace KL divergence in order
to eliminate the strict penalty when the action probability does not match. The strategy
will optimize the decision-making of the quadrotor when training the control policy.
The new policy optimization algorithm helps to stabilize the learning process of
the quadrotor and promote exploration, which will be remarkably robust to model
parameter variations.

(2) For actual flight control, a compound reward function is designed to replace the single
reward function to prevent the training of the decision network from falling into the
local optimum. With the defined reward function, the improved PPO will be applied
to the quadrotor environment to train the policy network.

The organization of this article is as follows. In Section 2, the nonlinear model of the
quadrotor is established, and the theoretical overview of RL is provided. In Section 3, the
algorithm and reward and punishment function are optimized after analyzing the PPO
algorithm. The details and results of the simulation experiment are discussed in Section 4.
The conclusion is given in Section 5.

2. System Statement

The purpose of this section is to develop an RL method that can solve the fixed-point
flight control problem of the quadrotor. Moreover, the method can meet the requirements
for pinpoint flying and hovering based on defined rewards.

2.1. Dynamic Model of Quadrotor

A dynamical model of the quadrotor is set up by the earth-frame I(Oxyz) and the
body-frame B(Oxyz) as illustrated in Figure 1.
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Figure 1. Quadrotor helicopter and the body-fixed frame. 
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Figure 1. Quadrotor helicopter and the body-fixed frame.

The position and attitude of the quadrotor expressed in the inertial frame are defined
as P = [x, y, z]T and Θ = [ϕ, θ, ψ]T, where ϕ, θ, ψ are roll, pitch and yaw angles, respectively.
.
p,

..
p is the speed and acceleration of the quadrotor.

The transformation matrix R is used to transform the thrust force from the body-fixed
coordinate system to the inertial coordinate system, which is

R =

 CϕCθ CϕSθSϕ − CϕSψ SϕSψ + CϕCψSθ

SψCθ SϕSθSψ + CϕCψ CϕSθSψ − CψSϕ

−Sθ CθSϕ CϕCθ

, (1)

where S{·} and C{·} denote sin(·) and cos(·) respectively.
The thrust generated by the four motors is defined as Ti. In the body coordinate

system, the thrust of the body is vertical-upward, which can be expressed as:

Ti = bui, i = 1, 2, 3, 4, (2)

where b is the thrust gain, and ui is the normalized control input.
The establishment of the quadrotor dynamics model is based on the dynamic charac-

teristics of torque-driven rotational motion and force-driven translational motion. For the
rotational motions, with the Euler’s equation of a rigid body, the sum of torque applied to
the quadrotor can be expressed as

M = Mτ + Mc + M f = I
.

w + w× Iw, (3)

where I is the diagonal inertia matrix of the quadrotor, w = [
.
ϕ,

.
θ,

.
ψ]

T
is the angular velocity

of the quadrotor, and Mτ = [τϕ, τθ , τψ]
T is the control torque given by:

Mτ =

 τϕ

τθ

τψ

 =

 L(T2 − T4)
L(T1 − T3)

k(T1 − T2 + T3 − T4)

, (4)

where the distance from the center of mass to each rotor is L, the control torques τψ along
the z-axis is the sum of the reaction torques generated by the four rotors. k is the damping

coefficient. The gyroscopic effect of the four rotors is Mc = [−Ip
.
θΩ, Ip

.
ϕΩ, 0]

T
, where

Ip is the moment of inertia, and Ω is the disturbance effect from each rotor. The drag
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torque of quadrotor flight is M f = [−dϕ
.
ϕ,−dθ

.
θ,−dψ

.
ψ]

T
, where dϕ, dθ and dψ are the drag

coefficients of the three axes.
For translational motions, the motion equation can be obtained from Newton’s

second law:
..
p =

RFl
m
− Fd

m
− g, (5)

where Fl = [0, 0, T1 + T2 + T3 + T4] is the thrust vector. Fd = [−dx
.
x,−dy

.
y,−dz

.
z]T is the

aerodynamic drag, where dx, dy and dz are the resistance coefficients. m is the mass of the
quadrotor and g is the acceleration of gravity, Tz = T1 + T2 + T3 + T4. Finally, the quadrotor
dynamics equation can be expressed as:

..
x = [Tz(CϕSθCψ + SϕSψ)− dx

.
x]/m

..
y = [Tz(CϕSθSψ + SϕCψ)− dy

.
y]/m

..
z = [Tz(CϕCθ)− dz

.
z−mg]/m

..
ϕ = [τϕ − Ip

.
θΩ− dϕ

.
ϕ +

.
θ

.
ψ(Iy − Iz)]/Ix

..
θ = [τθ − Ip

.
ϕΩ− dθ

.
θ +

.
ϕ

.
ψ(Iz − Ix)]/Iy

..
ψ = [τψ − dψ

.
ψ +

.
ϕ

.
θ(Ix − Iy)]/Iz

(6)

2.2. Quadrotor Control Based on Reinforcement Learning

The goal of RL is to find an optimal policy for an agent to interact with a certain
environment to maximize the total reward over time. It uses the formal framework of the
Markov Decision Process (MDP) to define the interactions between the learning agent and
the environment [42]. The environment is usually modelled as an MDP described by a
four-tuple (S,A,P,R), where S and A are the state set and action set, respectively, P and R
are the state transition probability function and reward function.

According to the interaction between the agent and the environment, the policy πθ is
updated as:

L(πθ) = E
s0,s1···

[
∞

∑
k=0

γkrt+k

]
=
∫

s
dπθ (s)Vπθ (s)ds, (7)

where θ is the policy parameter, γ ∈ [0, 1) is the discount factor, πθ is a stochastic policy,

Vπθ (s) = E
st+1,st+2···

[
∞
∑

t=t
γtrt|st = s , πθ

]
.

In RL, the expected reward function of the state-action (st,at) generated by policy π is
called the action-value function, which is determined as:

Qπ(st, at) = Eπ [R(st, at) + γVπθ (st+1)]. (8)

Its output represents the value of taking a specific action in a specific state and follow-
ing this policy thereafter. Based on the baseline function Vπθ (s), the policy gradient can be
written as:

∇θ L(πθ) = E
s∼ρπθ

[∇θπθ(s)∇a Aπθ (s, a)|a = πθ(s)], (9)

where Aπθ (s, a) = Qπθ (s, a)− Vπθ (s) is called the advantage function, and its value can
represent the advantage of the value obtained by taking a certain action to the current
policy πθ(s), ρπθ is the state distribution following the policy πθ .

For the quadrotor control problem, the main goal is to seek an appropriate control
policy to drive the quadrotor to a predefined state stably and rapidly. The quadrotor
dynamics will be converted into the MDP form, and appropriate states and actions should
be selected to satisfy the Markov property. The quadrotor control structure based on RL is
shown in Figure 2. S is the current position and attitude information of the quadrotor, A is
the control input of the quadrotor, P is the policy distribution of RL, and R is the reward
function set for the task requirements. Through the interaction between the controller and
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the environment, the RL algorithm combined with the reward function can finally obtain
the optimal policy of the quadrotor.
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Among the basic RL algorithms, the policy gradient method is the most suitable
because it is compatible with continuous states and actions. The parameterized random
policy πθ (a|s) directly generates the control action, which is the probability of taking action
a in the given state s and parameter θ. We need to adjust the parameters to optimize the
policy according to the gradient of the performance measurement value J(πθ):

∇θ J(πθ) = E
s∼ρπθ ,a∼πθ

[∇θ log πθ(a|s )Qπθ (s, a)], (10)

The policy gradient algorithm can find the optimal control policy without considering
the accuracy of the model. However, the basic RL algorithm is difficult to effectively con-
verge to the optimal state in the continuous state-action space of the complex environment.
Many advanced RL algorithms have improved policy optimization, such as PPO. The
algorithm uses a Kullback–Leibler divergence (KLD) to limit the update range of the policy,
thereby improving the learning efficiency of the algorithm.

3. Proposed Approach

In this section, a policy optimization with penalized point probability distance (PPO-
PPD) is firstly proposed for quadrotor control. Then, a compound reward function is
adopted to promote the algorithm convergence to the desired direction.

3.1. The PPO-PPD Algorithm

In the PPO method, our goal is to maximize the following alternative objective function
LCPI (conservative policy iteration) proposed in [43], which is constrained by the size of
the policy update.

LCPI(θ) =
∧
Et

[
πθ(at|s t)

πθold(at|s t)

∧
At

]
, (11)

where θold is the vector of policy parameters before the update. The objective function is
maximized subject to a constraint by:

∧
Et
[
KL
[
πθold(·|s t), πθ(·|s t)

]]
≤ δ, (12)

where δ is the upper limit of KLD. Applying the linear approximation of the objective
function and the quadratic approximation of the constraints, the conjugate gradient algo-
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rithm can be more effective to solve the problem. In the continuous domain, KLD can be
defined as:

DKL(πθold(·|s )‖πθ(·|s ) ) = ∑
a

πθold(a|s ) ln
πθold(a|s )
πθ(a|s ) , (13)

where s is a given state. When choosing DKL(πθold‖πθ ) or DKL(πθ

∥∥πθold ), its asymmetry
results in a difference that cannot be ignored. PPO limits the update range of policy
πθ through KLD. It is assumed that the distribution of πθold is a mixture of two Gaussian
distributions, and πθ is a single Gaussian distribution. When the learning tends to converge,
the distribution of policy πθ will approximate to πθold , DKL(πθold‖πθ ) or DKL(πθ

∥∥πθold )
should be minimized at this moment. Figure 3a is the effect of minimizing DKL(πθold‖πθ ).
When πθold has multiple peaks, πθ will blur these peaks together, and eventually lie between
the two peaks of πθold , resulting in invalid exploration. When choosing another function, as
shown in Figure 3b, πθ ends up choosing to fit on a single peak of πθold .
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By comparing forward and reverse KL, we argue that KLD is not an approximation
or ideal limit to the expected discounted cost. Even if the θ output θold has the same high
probability of correct action, it is still penalized for the probability mismatch of other
non-critical actions.

To address the above issues, a point probability distance is introduced based on Monte
Carlo approximation in the PPO objective function as a penalty for the surrogate objective.
When taking action a, the point probability distance between πθold(·|s ) and πθ(·|s ) can be
defined as:

DPP
(
πθold(·|s ), πθ(·|s )

)
=

(
In

πθold(a|s ) + 1
πθ(a|s ) + 1

)2

. (14)

In the penalty, the distance is measured by the point probability, which emphasizes
the mismatch of the sampled actions in a specific state. Compared with DKL, DPP is
symmetric, that is, DPP(πθold‖πθ ) = DPP(πθ

∥∥πθold ), so when the policy is updated, DPP
is more conducive to helping the agent converge to the correct policy and avoid invalid
sample learning like KLD. Furthermore, it can be found that DPP is the lower bound of DKL
by deriving the relationship between DPP and DKL.
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Theorem 1. Assuming that ai and bi are two policy distributions with K values, then DPP(ai‖bi )
≤ DKL(ai‖bi ) holds.

Proof of Theorem 1. The total variance distance is introduced as a reference, which can be
written as follows:

DTV =
∑i|ai − bi|

2
. (15)

From [44], D2
TV is the lower bound of DKL, which is expressed as D2

TV ≤ DKL. Assum-
ing that ax = c1 is arbitrarily distributed in ai, and bx = c2 is arbitrarily distributed in bi,
where c1, c2 ∈ [0, 1]. Then it can be derived:

D2
TV =

1
4

(
K
∑

i=1
|ai − bi|

)2

=
1
4

(
K
∑

i=1,i 6=x
|ai − bi|+ |ax − bx|

)2

≥ 1
4

(∣∣∣∣∣ K
∑

i=1,i 6=x
ai−

K
∑

i=1,,i 6=x
bi

∣∣∣∣∣+ ax − bx

)2

=
1
4
(|1− c1 − (1− c2)|+ c1 − c2)

2

= (c1 − c2)
2

For any real number between 0 and 1, there is (c1− c2)2 ≥ (In(1 + c1)− In(1 + c2))2 =
DPP. Therefore DKL ≥ D2

TV ≥ DPP.
Compared to DKL, DPP is less sensitive to the dimension of the action space. The

optimization algorithm aims to improve the shortcomings of KLD. The reward function
rt(θ) only involves the probability of a given action a, the probabilities of all other actions
are not activated, and this result no longer leads to long backpropagation. Based on the
DPP, a new proxy target can be obtained as:

max
θ

∧
Et

[
πθ(at, st)

πθold(at, st)

∧
At − βDPP

(
πθold(·|s ), πθ(·|s )

)]
, (16)

where β is the penalty coefficient. Algorithm 1 shows the complete iterative process. The
optimized algorithm reduces the difficulty of selecting the optimal penalty coefficient in
different environments of the fixed KLD baseline from PPO. We will implement it on the
quadrotor control problem.

3.2. Network Structure

The actor–critic network structure of the algorithm is shown in Figure 4. The system is
trained by a critic neural network (CNN) and a policy neural network (PNN) θi (i = 1, 2, 3,
4), which is formed by four policy sub-networks. The weights of the PNN can be optimized
by training.

The network input of the two neural networks is the new quadrotor states [
.
ϕ,

.
θ,

.
ψ, ϕ, θ, ψ,

.
x,

.
y,

.
z, x, y, z] from the replay buffer. When the PNN collects a single state vector,

the parameters of the PNN will be copied to the old PNN πθold. In the next batch of training,
the parameters of πθold remain fixed until new network parameters are received. The output
of PNN is πθ and πθold. The penalty DPP is obtained by calculating the point probability
distance between the two policies. When the state vector enters the CNN, according to
the reward function, a batch of advantage values is generated to evaluate the quality of
the action taken. Through the gradient descent method, the CNN minimizes these values
to update its parameters. Finally, the policies πθ and πθold, penalized point probability
distance DPP and advantage value At are provided to update of the PNN. After the PNN
is updated, its outputs µi and δi (i = 1, 2, 3, 4) correspond to the mean and variance of
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the Gaussian distribution. As the normalized control signals for the four rotors of the
quadrotor, a set of 4-dimensional action vectors ai (i = 1, 2, 3, 4) are randomly sampled from
a Gaussian distribution.

Algorithm 1 PPO-PPD

1: Input: max iterations L, actors N, epochs K, time steps T
2: Initialize: Initialize weights of policy networks θi (i = 1, 2, 3, 4) and critic network Load the

quadrotor dynamic model
3: for iteration = 1 to L do
4: Randomly initialize states of quadrotor
5: Load the desired states
6: Observe the initial state of the quadrotor s1
7: for actor = 1 to N do
8: for time step = 1 to T do
9: Run policy πθ to select action at
10: Run the quadrotor with control signals at
11: Generate reward rt and new state st+1
12: Store st, at, rt, st+1 into mini-batch-sized buffer
13: then
14: Run policy πθold

15: Compute advantage estimations
∧
At

16: end for
17: end for
18: for epoch = 1 to K do
19: Optimize the loss target with min-batch size M ≤ NT
20: then update θold ← θ

21: Update θ w.r.t JPPO(θ) = max
θ

∧
Et

[
πθ(at ,st)

πθold (at ,st)

∧
At − βDpp

(
πθold (·|s ), πθ(·|s )

)]
22: end for
23: end for
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Based on the multilayer perceptron (MLP) structure in [45], the actor-critic network
structure of our algorithm is shown in Figure 5. The structure can maintain a balance
between the training speed and the control performance of the quadrotor. Both networks
share the same input, consisting of 12-dimensional state vectors. PNN has two fully
connected hidden layers, each hidden layer contains 64 nodes with tanh function. The
output layer is a 4-dimensional Gaussian distribution with mean µ and variance δ. The
4-dimensional action vector ai (i = 1, 2, 3, 4) is obtained by random sampling and normal-
ization, which will be used as the control signal of the quadrotor rotor. The structure of
CNN is similar to that of PNN. It also has two fully connected hidden layers with the tanh
activation function, and each layer has 64 hidden nodes. The difference is that its output
is an evaluation of the advantage value of the current action, which is determined by the
value of the reward function.
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3.3. Reward Function

The goal of RL algorithm is to obtain the most cumulative rewards [46]. The existing
RL reward function settings are relatively simple, most of which are presented as:

r = −
√

x2 + y2 + z2 + ψ2, (17)

where r is the single-step reward value, (x, y, z) is the position observation of the quadrotor,
and ψ is the heading angle. It is not enough to evaluate the pros and cons of the chosen
actions of the quadrotor by relying on the efficiency of a single reward function. If (18) is
used, it will make the action space update too large, and increase the ineffective exploration,
making the convergence slower. A new reward function that combines multiple reward
policies is introduced to solve the problem.

The quadrotor explores through a random policy. When the mainline event is triggered
with a certain probability, the corresponding mainline reward should be given. Because
the probability of triggering the main line reward is very low in the entire flight control,
we need to design the corresponding reward function according to all possible states of
the quadrotor. Therefore, in this paper, a navigation reward, boundary reward and target
reward are designed. As the mainline reward, the navigation reward directly affects the
position and attitude information of the quadrotor by observing the continuous state space.
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1. Navigation Reward;

(a) Position Reward

In order to drive the quadrotor to fly to the target point, the position reward is defined
as a penalty for the distance between the quadrotor and the target point. When the
quadrotor is close to the target point, the penalty should be small, otherwise the penalty
should be large. Therefore, the definition of position reward is as follows:

rP = −kP

√
xe2 + ye2 + ze2 − kV

√
.
xe2 +

.
ye

2 +
.
ze2, (18)

where xe = x − xd, ye = y − yd, ze = z − zd are the position errors relative to the target state,
.
xe,

.
ye, and

.
ze are the linear speed errors in the x, y, z-axis directions, and kP, kV ∈ (0, 1].

(b) Attitude Reward

The attitude reward is designed to stabilize the quadrotor flying to the target point and
the large angle deflection is not conducive to the flight control of the quadrotor. It is found
that although a simple reward function like

√
ϕ2 + θ2 + ψ2 aims to make the attitude angle

tend to 0, and the quadrotor will weigh the position reward and the attitude reward to find
the local optimal policy, which is not the best control policy for quadrotor fixed-point flight.
When the position is closer to the target point, the transformation function of its attitude
angle also tends to 0. Without considering ψ, ϕ and θ can also be inversely solved to be 0.
Therefore, replacing the attitude angle itself by its transformation function into the reward
function will not affect the judgment of the quadrotor during position control, and can
increase the stability of the inner and outer loop control. The attitude reward is defined as:

rA = −kA

√
(CϕSθCψ + SϕSψ)

2 + (CϕSθSψ + SϕCψ)
2, (19)

where (ϕ, θ, ψ) are the attitude observation and kA ∈ (0, 1].

(c) Position-Attitude Reward

When the distance to the target point is farther, the weight of the position reward is
larger. As the quadrotor flies closer to the target point, the weight of the position reward
decreases, and the weight of the attitude reward gradually increases. The specific reward
function setting is as follows:

rPA = −kPA
a2

ϕ,θ

max(ep, 0.001)
, (20)

where ep is the position error relative to the target state, aϕ and aθ are the normalized actions
of roll and pitch from 0 to 1, kPA ∈ (0, 1] and a2

ϕ,θ is the sum of the squared roll and pitch
actions. It is constrained by the reciprocal of ep to minimize the oscillation of the quadrotor
near the target position. Therefore, its contrast parameter is set to 0.001.

2. Boundary Reward;

In many earlier roll-outs, when the roll angle or pitch angle of the quadrotor is over
40◦, the motor will receive an emergency stop command to minimize damage [47]. In order
to maintain stability, we set a boundary restriction and failure penalty to the attitude angles
to prevent the quadrotor from crashing due to excessive vibration. The specific restriction
is as follows:

rBA =

{
0, RAt ≤ Rmaxattitude
−ζpenalty, RAt > Rmaxattitude

, (21)

where RAt is the error between the attitude angle and the target attitude at time t, Rmax attitude
is the maximum safe attitude angle, the boundary penalty ζpenalty is a positive constant. For
position control, the random states sampled may differ by several orders of magnitude in
different flying spaces. In order to reduce the exploration time of the quadrotor, we will
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set a safe flight range with the target point as the center, so that the quadrotor can reduce
unnecessary invalid exploration. The reward is determined as:

rBP =

{
0, RPt ≤ Rboundary

− RPt
Rboundary

, RPt > Rboundary
, (22)

where RPt is the distance between quadrotor and the target point at time t and Rboundary is
the safe flight range of the quadrotor we set.

3. Goal Reward;

The mainline event of the quadrotor is to reach the target point, so in order to prompt
the quadrotor to move to the target as soon as possible, a goal reward is designed. Unlike
other rewards, when the quadrotor triggers a mainline event, it should be given a positive
reward. When the distance between the quadrotor and the target point is less than Rreach, it
is determined that the quadrotor has reached the target point. The specific reward definition
is as follows:

rG =

{
ζgoal , RPt ≤ Rreach
0, RPt > Rboundary

. (23)

These rewards may affect the training performance of the policy network. In this
paper, when designing the quadrotor controller, all these rewards are set in combination
with the corresponding tasks, and the final comprehensive reward is defined as the sum of
them as follows:

r = rP + rA + rPA + rBA + rBP + rG. (24)

4. Simulation

In this section, we use the proposed PPO algorithm to evaluate the quadrotor flight
controller based on neural network. The simulation has been performed comparing with
the PPO algorithm controller.

4.1. Simulation Settings

The quadrotor model in the simulation is constructed based on the dynamics given in
(6). The parameters of the quadrotor are listed in Table 1.

Table 1. Parameters of the Quadrotor Simulator.

Parameter Description Value

m Mass 0.2 kg
L Wing length 0.31 m
g Acceleration of gravity 9.81 m/s2

b Thrust gain 5.723
k Reaction torque gain 0.172
Ix X-axis moment of inertia 0.008 kg·m2

Iy Y-axis moment of inertia 0.008 kg·m2

Iz Z-axis moment of inertia 0.03 kg·m2

dx X-axis air resistance coefficient 0.001
dy Y-axis air resistance coefficient 0.001
dz Z-axis air resistance coefficient 0.001

The parameter settings in the simulation model all meet the body parameters of the
real quadrotor as shown in Figure 6, so as to maximize the simulation of the flight state of
the real quadrotor. Considering the safety factors in actual flight, we define the safety range
of the state. The range of attitude angle φ and θ is −45◦ to 45◦, and the range of angular
velocity

.
ϕ and

.
θ is −4.5 rad/s to 4.5 rad/s, which meets the limitation of the gyroscope

sensor. The quadrotor is specified to operate within a range of −2.5 m to 2.5 m in the x
direction, −2.4 m to 2.4 m in the y direction, and 0 m to 2.4 m in the z direction.
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4.2. Training Evaluation

In the offline learning phase, the PPO-PPD is applied. The training parameters are
given in Table 2.

Table 2. Training parameters.

Parameter Value

Reward discount factor γ 0.97
Learning rate 0.00025

Value function coefficient 0.01
Entropy coefficient 0.5
Mini-batch size M 128

Number of actors N 4
Maximum number of iterations L 1000

Simulation sampling time per step 0.02 s
Penalty coefficient β 0.5

In order to verify the performance of the PPO-PPD policy, we act on multiple motion
tasks in OPEN GYM [48] between PPO and PPO-PPD. The two algorithms use the same
network structure and environment parameters. Motion tasks are selected from discrete
action space tasks (such as Acrobot, CartPole and Pendulum), and continuous tasks (such as
Ant, Half-Cheetah, and Walker2D [49]). Both PPO-PPD and PPO are initialized randomly
and run five times. The comparison results are shown in Figure 7.

For an intuitive comparison of algorithm performance, Table 3 shows the best perfor-
mance of PPO-PPD and PPO in different tasks. It can be observed from Figure 7 that the
PPO-PPD has a faster and more accurate control policy than PPO. We then evaluate both
algorithms in a quadrotor system with randomly initialized states.
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Table 3. The performance comparison between PPO-PPD and PPO.

PPO-PPD PPO Comparison

Acrobot −77.540 −150.458 +48%
CartPole 408.245 341.732 +19%

Pendulum −38.512 −52.455 +27%
Ant 5943.459 4268.432 +39%

HalfCheetah 6337.017 5422.827 +17%
Walker2D 3672.855 3146.045 +17%

In order to train a flight policy with generalization ability, the initial state of the
quadrotor is random during training. The target point is set at [0, 0, 1.2]. When the policy
converges, the quadrotor should be able to complete the control task of taking off and
hovering to the target point at any position. We use the average cumulative reward and
average value loss to measure the effect of learning and training. In each step, the greater
the reward value of the feedback, the smaller the error for the desired state. The training of
the quadrotor should also be carried out in the direction of smaller and smaller errors. A
faster and more accurate control policy is reflected in a larger and more stable cumulative
reward. In this study, we perform a calculation after every 50 sets of data are recorded,
and the average cumulative reward and value loss are evaluated as the average of the
50 evaluation sets. Based on the same network and training parameters, we compare the
PPO and PPO-PPD.

Under the initial network parameters, we conduct ten independent experiments on
the two algorithms. The standard deviation of these ten experiments is indicated by the
shaded part. It is shown that in the initial stage of training, both policies have obvious
errors. With the continuous training of the agent, the errors of the two algorithms are
gradually reduced to zero. In Figure 8a, it is very clear that the steady-state error is nearly
eliminated by the PPO-PPD policy after 1000 training iterations. Although PPO policy
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converges after 3000 training, it is always affected by the steady-state error, and the error
does not show any reduction in the next training iterations.
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It can be seen from the learning progress in Figure 8b, PPO-PPD has a higher conver-
gence rate and obtains a higher reward than PPO. In the standard deviation, PPO-PPD is
more consistent with less training time. In addition, the policy begins to gradually converge
when the reward value reaches 220. Therefore, a predefined threshold of 220 is set to further
observe the training steps of the algorithms.

To further verify the effectiveness of compound reward function in the process of
training policies, we compare the performance of PPO-PPD with compound reward, PPO-
PPD with single reward, and PPO with single reward. The single reward function is taken
from (17) and the compound reward function is taken from (24). Table 4 lists the training
steps required for the three algorithms to reach the threshold.

Table 4. Training steps to reach 220 threshold.

Algorithm Training Steps

PPO-PPD with compound reward 614
PPO-PPD with single reward 1347

PPO with single reward 2875

In Table 4, PPO-PPD with compound reward function takes the least number of time
steps in the flight task, because the compound reward function accelerates the convergence
of correct action and reduces the blind exploration of quadrotors. Comparing the PPO-PPD
with a single reward function with PPO, the advantages of PPO-PPD in the algorithm
structure has a better learning efficiency.

As shown in Figure 9, 60 groups of training data are sampled to obtain the final
landing position of the quadrotor after the 100th, 500th and 800th training iterations of the
three algorithms.
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It can be drawn that the two algorithms cannot train a good policy before the 100th step.
Due to the exploration efficiency, PPO-PPD has been able to sample several more rounds of
good control policies than the PPO. The advantage is especially noticeable after the 500th
step of training. Finally, PPO-PPD with compound reward successfully trains the control
policy after the 800th training step. Because of the multi-objective reward, the PPO-PPD
with compound reward can stabilize the quadrotor at the target point after completing the
mainline event. However, the PPO-PPD with single reward achieves the target point with
probability deflection due to its single reward. It is obvious that the quadrotor by PPO
controller has not obtained a good control policy in 800th iterations. It is concluded that
the PPO-PPD with compound rewards is superior to the other two methods.

The attitude control of the quadrotor at the fixed position is conducted first. This test
does not consider the position information of the quadrotor, and only uses the state of the
three attitude angles as the observation space. The set attitude angle state of the quadrotor
model is initialized to [30, 20, 10]◦, and the target attitude angle is set to [0, 0, 0]◦. It can be
seen from Figure 10a that PPO and PPO-PPD policies can achieve stable control. However,
the PPO-PPD has smoother control performance and higher control accuracy than the
PPO algorithm. On the contrary, the PPO algorithm response also has a relatively large
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steady-state error. Moreover, it can be observed that the quadrotor under the two control
strategies can reach the steady state after 0.5 s. Comparing the mean absolute steady-state
error of the two algorithms, as shown in Figure 10b, the PPO-PPD policy can achieve higher
control accuracy.
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Then we test the two controller performances in the fixed-point flight task under the
same training iterations. The observation space for the test is the motion performance
of the quadrotor on the x-axis, y-axis, and z-axis and the attitude changes of roll angle
and pitch angle. A total of five observations are made. In order to maximize its flight
performance, the initial position of the quadrotor is set around the boundary with the
coordinates [2.4, 1.2, 0] and the desired position [0, 0, 1.2], which is assumed to be the
center of the training environment point. Figure 11a shows the performance results of the
two control policies.
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It can be seen from the comparison, although both PPO-PPD and PPO converge, the
PPO algorithm does not learn an effective control policy when taking off on a relatively
unsafe boundary area. In terms of position control, the control policy learned by the
PPO algorithm has a slow convergence with a certain steady-state error. In terms of
attitude control, both policies maintain good convergence in control stability, but due to the
instability of the PPO policy in the position loop, there is still a slight error in the attitude
under the effect of quadrotor control. Furthermore, to compare the training results more
directly, we calculate the mean absolute steady-state error on the position control loop for
the two policies in steady-state at 7 s, and the comparison results are shown in Figure 11b.

In this test, both algorithms can converge to a stable policy, but PPO-PPD have the
smaller steady-state error and faster convergence rate. Next, we will conduct more tests to
observe the performance of the control policy trained by PPO-PPD.

4.3. Robustness Test

The main purpose of quadrotor offline learning is to learn a stable and robust control
policy. In this section, we test the generalization ability of the training model, and the test
is performed on the same quadrotor. In order to conduct a comprehensive robustness test
to observe the learned policy, we designed two different cases.

1. Case 1: Model generalization test under random initial state.

In different initial states of the quadrotor, the PPO-PPD algorithm is used to test its
performance. The test is still divided into two parts. We first observe the attitude change
of in the fixed-point state, that is, the control task is that the quadrotor hovers at a fixed
position, randomly initializes the state within a safe range, and the attitude in the random
state can be adjusted to the required steady state. We conduct the experiment 20 times, and
each experiment lasts 8 s. As shown in Figure 12a, the three attitude angles start at different
initial values, and the control policy can successfully converge their states.

The policy learned by the PPO-PPD algorithm can make the quadrotor stable in
different states with few errors, which is enough to prove the good generalization ability of
the offline policy. Next, we give the quadrotor a random initialization position within a safe
range and observe its position change to test the generalization ability of the RL control
policy on fixed-point flight tasks. The experiment is performed 20 times, and the duration
of each group is 8 s. The results are shown in Figure 12b.
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It can be seen from the results that the control policy learned by PPO-PPD has very
good generalization ability. No matter what the initial position of the quadrotor is, the
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control policy can quickly control the quadrotor to fly to the desired target point, which is
enough to prove the stability of the offline policy.

2. Case 2: Model generalization test under different sizes.

In order to verify the robustness and generalization ability of the off-line learning
control strategy, the attitude control task is carried out on quadrotor models of different
sizes. The policy is tested by starting at [−15◦, −10◦, −5◦], then flying to the attitude
[0, 0, 0] in 10 s. Furthermore, a PID controller is introduced to verify the robustness of the
RL control policy. In the same way as RL, PID gains are also selected by observing the
system output response through trial and error. To measure the dynamic performance
of the control policies, the sum of error is calculated during the flight as a metric, which
is the absolute tracking error accumulated at the three attitude angles in each step. As
a cascade control, the initial PID parameters are selected as follows: the position loop
kp = 0.15, ki = 0.001, kd = 0.5; and the attitude loop kp = 0.25, ki = 0.001, kd = 0.4.

To prove the control performance of PPO-PPD under different specification models,
we conducted the following simulation. The distance from the rotor of the quad-rotor
model to the center of mass is 0.31 m, which is defined as the standard radius. Then we
choose to test the model set radius from 0.2 m (35%) to 1.1 m (250% larger). For these model
sets, the maximum thrust and mass of the quadcopter remain unchanged.

It can be seen from Figure 13 that the two RL controllers show a stable performance
at radius of 0.31 m and 0.5 m. However, the attitude based on PID controller has already
produced a slight oscillation. When the radius increases to 0.7 m, the PID controller has
poor stability and robustness because of the parameter uncertainty. When the radius is
larger than 0.9 m, the PPO policy cannot stabilize the model while the PPO-PPD policy
still obtains a stable performance until 1.1 m. Figure 14 shows the sum of attitude error
between the PPO-PPD and PPO algorithms at steady state. After comparison, the PPO-PPD
algorithm always maintains stable, consistent, and accurate control within a large radius.
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In addition, the robustness of the quadrotor of different masses are tested through a
fixed-point flight mission. The mass of the quadrotor gradually increases due to the weight
of payloads, which is not added in the training phase but is directly tested with the learned
offline policy. The payloads are from 20% to 80% of the mass of the quadrotor, which also
affects the moment of inertia of the quadrotor. After a simple test with offline training,
we reduce the difficulty of fixed-point flight task to better observe the effect of load on
quadrotor flight. A total of five tests are carried out. In each test, only the mass of the
quadrotor is changed. The quadrotor starts from the initial point [0, 0, 0] and the desired
position is [1.2, 1.0, 1.2].

The position curves of the five set tests are shown in the Figure 15. The existing PID
gain can no longer meet the control requirements when the payload accounts for 40%.
The PPO policy complete the task only when the mass is below 120%. When the mass is
increased to 140%, there is a large position steady-state error although the quadrotor based
on PPO controller is still stable. It is mainly because most of the thrust balances the gravity
provided by the payloads, that the thrust acting on the position becomes small. When
the payload reaches 60% to 80%, PPO cannot remain the stability of quadrotor. However,
PPO-PPD can quickly reach the target position without steady-state errors in different
payloads. As shown in Figure 16, the sum of position errors is compared between the
PPO-PPD and PPO policy. From the comparison results, the PPO-PPD control policy has
shown great robustness on different quadrotor models with different sizes or payloads.

3. Case 3: Anti-disturbance ability test.

The actual quadrotor system is vulnerable to disturbances such as wind dusts and
sensor noises. To verify the anti-disturbance ability of the PPO-PPD control policy, the
quadrotor rotation system is added to Gaussian white noises. The test is carried out through
the control task of the quadrotor hovering at a fixed point. The quadrotor flies from [0, 0, 0]
to [1.2, 1.2, 1.2] using the PPO-PPD offline policy. The RL controller runs continuously
for 32 s. For the first 4 s, the quadrotor takes off from the starting point and hovers at the
desired position, then a noise is applied to the roll motion signal from 4 s.
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The flight performance of the quadrotor is shown in Figure 17. Due to the influence of
noise, the rolling channel and position of the quadrotor fluctuated slightly. The quadrotor
immediately returns to the stable state when the noise disappears at t = 12 s. The noise
signal is applied to the roll and pitch channels at t = 16 s, the quadrotor tends to be
stable although there are slight oscillations. When the noise signal increases by 150% at
the 24th second, the quadrotor has a large attitude oscillation and position deviation. In
general, the control policy of PPO-PPD can successfully deal with the disturbances.
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From the results of all the cases, the control policy by PPO-PPD in the offline stage
shows strong robustness of quadrotor models of different sizes and payloads. Although
the PPO controller has a good generalization ability, the proposed PPO-PPD method is
proven to be more superior in convergence and robustness.

5. Conclusions

An improved proximal policy optimization algorithm is proposed to train the quadro-
tor to complete the low-level control tasks of take-off, precise flight and hover. A policy
optimization method with a penalized point probability distance can provide the diversity
of policy. Together with the proposed compound reward function, the new RL controller
effectively reduces the training time of the control policy and improves the learning ef-
ficiency. By varying the radius and mass of the quadrotor in the test, the offline control
policy is shown to have a good robustness. In addition, compared with the PPO algorithm
off the shelf, the control policy learned by the proposed algorithm reduces the steady-state
error of the position and attitude, and improves the control accuracy. In future work,
we will focus on exploring the role of neural networks in complex nonlinear system task
environments, and combine more traditional control techniques with RL to optimize the
control performance of the quadrotor.
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