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Abstract: Color noise is a special kind of noise often occurring in localization systems, and it is
more suitable than the general Gaussian white noise to model time dependence due to time delay or
high-frequency sampling. This paper derives a nonlinear Gaussian filtering framework for multi-step
colored noise systems using noise whitening techniques and Bayes rule. Meanwhile, the cubature
rule is used to solve the Gaussian-weighted integral in the proposed Gaussian filtering framework,
resulting in an analytic form of posterior state estimate. Compared with the existing nonlinear
filtering algorithms, the proposed method has obvious advantages in colored noise systems because
it fully takes into account the time dependence of colored noise. Finally, the effectiveness and
advantages of the proposed algorithm are verified with a classical target tracking system.
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1. Introduction

Nonlinear estimation is a hot problem in engineering and has a wide range of appli-
cations in robot control [1,2], fault diagnosis [3], and mobile communications [4]. In the
sense of minimum mean square error (MMSE), the optimal state estimate is the mean of its
posterior probability density function (PDF). For the linear Gaussian case, the Kalman filter
(KF) [5] gives the recursive form of the posterior PDF. However, for the nonlinear systems,
the analytic solution of the posterior PDF is difficult to be obtained, in which case one has to
find the suboptimal solution. The nonlinear Gaussian filter (GF) [6] derives the approximate
state posteriori PDF through a series of Gaussian assumptions, but it involves a series of
Gaussian weighted integrals, which are computationally significant. For this reason, a
great deal of work has been devoted to search for high-precision numerical methods to
approximate the Gaussian weighted integral [7–11]. Unscented Kalman filter (UKF) [8]
makes use of unscented transformation (UT) to approximate the Gaussian weighted in-
tegral, which is comparable in accuracy to the third-order Taylor expansion. However,
the weights of UKF can be negative at high state dimensions, which makes it numerical
unstable. Cubature Kalman filter (CKF) [7] uses the three-degree radial rule to compute
Gaussian weighted integrals, which has the same accuracy as UKF, and the weights are
all positive, making it more stable than UKF. Moreover, there are also Gauss-Hermite
quadrature filter (GHQF) [9], High-degree CKF (HCKF) [10] and Sparse-grid quadrature
filter (SGQF) [11], etc., all of which are proposed for the idea of improving the accuracy of
numerical integration.

However, the above algorithm is only applicable to the system with Gaussian white
noise, which is difficult to be satisfied in real-world environments. For example, in complex
underwater environments, gravity sensors that commonly used for navigation are suscep-
tible to outliers, which cause their measurement noise to be heavy-tailed. To reflect the
heavy-tailed characteristic, the student-t distribution is often used to model the statistical
properties of the noise [12]. In channel estimation, no radio links are individually assigned
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and there is interference between different links, which makes the noise in the channel often
a mixture of multiple Gaussian noises, i.e., Gaussian mixture noise [13]. In addition, in
GPS navigation systems, the sensors suffer from unavoidable random delays, which makes
the noise present at one moment have an impact on the measurements at multiple later
moments, i.e., the system suffers from colored noise [14]. In addition, in high-frequency
sampling systems and networked systems, color noise can occur. To reduce the impact of
color noise on the system, a large amount of literature has been contributed. Refs. [15,16]
considered the speech signals with the multi-order colored measurement noise, and respec-
tively proposed the dual perceptually constrained UKF and the modified unscented particle
filter (UPF). Refs. [17,18] modelled the measurement noise as the coloured first-order AR
process, and proposed the improved UKFs to estimate the multi-path parameter of weak
signal from GPS and track the target, respectively. However, the algorithm mentioned
above are only applicable to the case of first-order colored noise. In the fields of target
tracking, the system noise may be multi-step colored noise [19].

Motivated by the aforementioned analysis, this paper aims to propose a nonlinear
filtering algorithm that is applicable to arbitrary order colored noise. The main contributions
are summarized as follows: (i) A new system whose noise item is Gaussian white noise is
developed by whitening and dimension expansion; (ii) A nonlinear Gaussian filter for the
new system is designed by using Gaussian update rule. Finally, a target localization system
are used to show the effectiveness and advantages of the proposed methods.

Notations: Rr and Rr×s denote the r-dimensional and r× s dimensional Euclidean
spaces, respectively. E{·} denotes mathematical expectation. diag{·} stands for block
diagonal matrix. blk{·} denotes block matrix. Oij ∈ Rij is zero matrix. I stands for
identity matrix. ei denotes the i-th column of I. Superscript T represents transpose. | · |
denotes absolute value. The symmetric terms in a symmetric matrix are denoted by “*".
AAT , A(∗)T , where A is an arbitrary matrix. N(a; a, b) indicates that random vector a
follows Gaussian distribution with mean a and covariance b.

2. Problem Statement

Consider a nonlinear system described by the following state-space model:{
xk+1 = f (xk) + ωk
zk+1 = h(xk+1) + υk

k = 0, 1, 2, . . . . (1)

where xk+1 ∈ Rnx and z ∈ Rnz are the state vector and measurement, respectively. f (·) and
h(·) represent the nonlinear vector function. ωk and υk are multi-step colored noise with
multi-step autoregressive models, witch can be formulated as{

ωk = ∑n
i=0 ai

kωk−i + ξk
υk = ∑m

i=0 bi
kυk−i + ηk

k = 0, 1, 2, . . . . (2)

where n = min{k, s} and m = min{k, t} are the known correlated step, a0
k = Onx×nx ,

b0
k = Onz×nz , k = 1, 2, · · · . ξk and ηk are uncorrelated white Gaussian noise with covariance

Qk and Rk, respectively. ai
k, i = 1, 2, · · · , n and bj

k, j = 1, 2, . . . , m are known correla-
tion parameters. Gaussian filtering is done by approximating the system with Gaussian
distribution to obtain posteriori estimates

xk|k = E[xk|z1:k], Pxx
k,k|k = E[(xk − xk|k)(∗)T |z1:k] (3)

based on the measurement information z1:k = {z1, z2, . . . , zk}. However, ωk and υk in
system (1) are not Gaussian white noise, and the classical Gaussian filtering is no longer
applicable here. Our aim is to design a new Gaussian filter to obtain a posteriori estimates
of system (1).
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Remark 1. It should be emphasized that a0
k and b0

k are only added to facilitate the modeling of the
case where the colored noise is of order 0. Although it appears in the model, the computational
procedure for the terms associated with these two values will not be given later since they are equal
to zero matrices and remain zero matrices when multiplied by any matrix.

Remark 2. When the sampling frequency of the system is sufficiently high, the noise at a given
moment can have an effect on several adjacent sampling periods, and the noise is correlated in the
time direction, which is referred to as multi-step colored noise [18]. In addition, feedback control is
also one of the causes of colored noise, for example, in the GPS multi-path delay nonlinear estimation,
the formation process of the colored noise is shown in Figure 1 of Ref. [18]. ζ(t) = nc(t) is the
result of input noise n(t) spread over the local code, ψ(t) = BIp f is the low-pass filter bandwidth
equivalent to the integral totalizer.

3. Main Results
3.1. Colored Noises Whitening

In order to process the colored noise in system (1), it is first necessary to whiten it:

yk+1 =zk+1 − b0
k+1zk+1 − b1

k+1zk − · · · − bm
k+1zk+1−m

=h(xk+1)− b0
k+1h(xk+1)− b1

k+1h(xk)− · · ·
− bm

k+1h(xk+1−m) + ηk.

(4)

We can see that the noise term of yk+1 is Gaussian white noise. Moreover, notice
that the new measurement yk+1 becomes a function of xk+1−m, xk+2−m, . . . , xk+1, and the
process noise is colored noise. In this case an expansion of the state is required:

Xk+1 =


xk+1
ρk
ωk

θk−1

 =


f (xk) + ∑n

i=0 ai
kωk−i

ρk
∑n

i=0 ai
kωk−i

θk−1

+


ξk

Omnx×1
ξk

Omnx×1

 (5)

where

ρk =

 xk
...

xk+1−m

, θk−1 =

 ωk−1
...

ωk−n

. (6)

The noise term of Xk+1 becomes Gaussian white noise after dimension expansion, and
it is clear that yk+1 is a function of Xk+1. Let us define

H(Xk+1) ,h(xk+1)− b0
k+1h(xk+1)− b1

k+1h(xk)− · · ·
− bm

k+1h(xk+1−m),
(7)

then
yk+1 = H(Xk+1) + ηk. (8)

Equations (5) and (8) constitute the system with noise whitening processing, and
notice that {y1, y2, . . . , yk} can be transformed back into {z1, z2, . . . , zk} by the linear trans-
formation in Equation (4), which means that the information contained in y1:k and z1:k is
equivalent, so Equation (3) is equivalent to

xk|k = E[xk|y1:k], Pxx
k,k|k = E[(xk − xk|k)(∗)T |y1:k]. (9)
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3.2. Design Gaussian Filter with Multi-Step Colored Noise

In this section, in the case of multi-step colored noise, a posteriori estimates of the
k + 1 moments are derived based on the posteriori estimates of the k moments. Firstly, for
arbitrary random variable α and β, we define

αi|j = E[αi|y1:j]

α̃i|j = αi − αi|j
Pαβ

i,j|r = E[α̃i|r β̃T
j|r|y1:r]

. (10)

The following Lemma will be used later.

Lemma 1 ([20]). When the joint PDF of αk and βk conditioned on βl:k−1 is Gaussian, that is,
p(αk, βk|β1:k) is Gaussian, then p(αk|β1:k) can be computed as Gaussian with mean αk|k and
corresponding covariance matrix Pαα

k,k|k as the unified form:

αk|k = αk|k−1 + Kα
k (βk − βk|k−1), (11)

Pαα
k,k|k = Pαα

k,k|k−1 − Kα
k Pββ

k,k|k−1(K
α
k )

T , (12)

Kα
k = Pαβ

k,k|k−1(Pββ

k,k|k−1)
−1, (13)

where αk|k−1 = E[αk|β1:k−1], Pαα
k,k|k−1 = E[(αk − αk|k−1)(∗)T ], βk|k−1 = E[βk|β1:k−1], Pββ

k,k|k−1

= E[(βk − βk|k−1)(∗)T ]. Pαβ

k,k|k−1 = E[(αk − αk|k−1)(βk − βk|k−1)
T ].

Assumption 1. Based on the measurement from moments 1 to k, the one-step predictive PDF for
Xk+1 and yk+1 are Gaussian, that is

p(Xk+1|y1:k) = N(Xk+1; Xk+1|k, PXX
k+1|k), (14)

p(yk+1|y1:k) = N(yk+1; yk+1|k, Pyy
k+1|k), (15)

where Xk+1|k = E[Xk+1|y1:k], PXX
k+1|k = E[(Xk+1−Xk+1|k)(∗)T ], yk+1|k = E[yk+1|y1:k], Pyy

k+1|k =

E[(yk+1 − yk+1|k)(∗)T ].

3.2.1. One-Step Prediction

According to the definition in Equation (5), the one-step predictive estimate Xk+1|k
can be given by

Xk+1|k = E[Xk+1|y1:k] =


E[xk+1|y1:k]

E[ρk|y1:k]
E[ωk|y1:k]

E[θk−1|y1:k]

 =


xk+1|k
ρk|k
ωk|k

θk−1|k

 (16)

where

xk+1|k =E[xk+1|y1:k] = E[ f (xk) + ωk|y1:k] =
∫

f (xk)N(Xk; Xk|k, PXX
k,k|k)dXk + ωk|k. (17)

Since ξk is uncorrelated with y1:k, we have

ωk|k =E[ωk|y1:k] = E[a0
kωk + a1

kωk−1 + · · ·+ an
k ωk−n + ξk|y1:k] =

n

∑
i=0

ai
kωk−i|k. (18)
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Notice that the posteriori estimate of Xk at the previous moment is

Xk|k = E[Xk|y1:k] =


E[xk|y1:k]

E[ρk−1|y1:k]
E[ωk−1|y1:k]
E[θk−2|y1:k]

 =


E[ρk|y1:k]

E[xk−m|y1:k]
E[θk−1|y1:k]

E[ωk−1−n|y1:k].

 (19)

According to Equation (6), we have

E[θk−1|y1:k] =


ωk−1|k
ωk−2|k

...
ωk−n|k.

 (20)

In this case, ρk|k, θk−1|k and ωk−i, i = 1, 2, . . . , n can be obtained from the posteriori
estimate at the previous moment, i.e, Xk|k.

Moreover, according to the definition in Equation (5), the one-step predictive error
covariance PXX

k+1|k has the following expressions:

PXX
k+1,k+1|k =E[(


x̃k+1|k
ρ̃k|k
ω̃k|k

θ̃k−1|k

)(∗)T |y1:k] =


Pxx

k+1,k+1|k Pxρ

k+1,k|k Pxω
k+1,k|k Pxθ

k+1,k−1|k
∗ Pρρ

k,k|k Pρω

k,k|k Pρθ

k,k−1|k
∗ ∗ Pωω

k,k|k Pωθ
k,k−1|k

∗ ∗ ∗ Pθθ
k−1,k−1|k

. (21)

Next, the terms in Equation (21) will be calculated. The error of state one-step predic-
tion can be represented as

x̃k+1|k = xk+1 − xk+1|k = f (xk)− E[ f (xk)|y1:k] + ω̃k|k, (22)

utilizing the Equation (22), we can obtain

Pxx
k+1,k+1|k =E[( f (xk)− E[ f (xk)|y1:k] + ω̃k|k)(∗)T |y1:k]

=
∫
( f (xk)− E[ f (xk)|y1:k])(∗)T N(Xk; Xk|k, PXX

k|k ))dXk

+
n

∑
i=0

∫
( f (xk)− E[ f (xk)|y1:k])ω̃

T
k−i|k(ai

k)
T N(Xk; Xk|k, PXX

k|k )dXk

+ (
n

∑
i=0

∫
( f (xk)− E[ f (xk)|y1:k])ω̃

T
k−i|k(ai

k)
T N(Xk; Xk|k, PXX

k,k|k)dXk)
T + Pωω

k,k|k

(23)

Pxρ

k+1,k|k =E[x̃k+1|k ρ̃T
k|k|y1:k]

=E[( f (xk)− E[ f (xk)|y1:k] + ω̃k|k)ρ̃
T
k|k|y1:k]

=
∫
( f (xk)− E[ f (xk)|y1:k])ρ̃

T
k|k N(Xk; Xk|k, PXX

k,k|k)dXk + Pωρ

k,k|k

(24)

Pxω
k+1,k|k =E[x̃k+1|kω̃T

k|k|y1:k]

=E[( f (xk)− E[ f (xk)|y1:k] + ω̃k|k)ω̃
T
k|k|y1:k]

=
n

∑
i=0

∫
( f (xk)− E[ f (xk)|y1:k])ω̃

T
k−i|k(ai

k)
T N(Xk; Xk|k, PXX

k|k )dXk + Pωω
k,k|k

(25)
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Pxθ
k+1,k−1|k =E[x̃k+1|k θ̃T

k−1|k|y1:k]

=E[( f (xk)− E[ f (xk)|y1:k] + ω̃k|k)θ̃
T
k−1|k|y1:k] (26)

=
∫
( f (xk)− E[ f (xk)|y1:k])θ̃

T
k−1|k N(Xk; Xk|k, PXX

k,k|k)dXk + Pωθ
k,k−1|k.

According to Equations (2) and (6), the Pωθ
k,k−1|k, Pωω

k,k|k and Pρω

k,k|k can be given by

Pωθ
k,k−1|k =E[ω̃k|k θ̃T

k−1|k|y1:k] = E[ω̃k|k[ω̃k−1|k . . . ω̃k−n|k]
T |y1:k] =

[
Pωω

k,k−1|k . . . Pωω
k,k−n|k

]
(27)

Pωω
k,k|k =E[ω̃k|kω̃T

k|k|y1:k] =
n

∑
i=0

E[ω̃k|kω̃T
k−i|k|y1:k](ai

k)
T + Qk =

n

∑
i=0

Pωω
k,k−i|k(ai

k)
T + Qk (28)

Pρω

k,k|k =E[ρ̃kω̃T
k |y1:k]

=
n

∑
i=0

E[ρ̃kω̃T
k−i|k|y1:k](ai

k)
T =

n

∑
i=0

Pρω

k,k−i|k(ai
k)

T ,
(29)

where

Pωω
k,k−j|k =E[ω̃k|kω̃T

k−j|k|y1:k] =
n

∑
i=0

ai
kE[ω̃k−i|kω̃T

k−j|k|y1:k]

=
n

∑
i=0

ai
kPωω

k−i,k−j|k, j = 0, 1, · · · , n. (30)

In addition, using Equation (19) one can obtain

PXX
k,k|k =E[X̃k|kX̃T

k|k|y1:k] = E[


x̃k|k

ρ̃k−1|k
ω̃k−1|k
θ̃k−2|k

(∗)T |y1:k]

=E[


ρ̃k|k

x̃k−m|k
θ̃k−1|k

ω̃k−1−n|k

(∗)T |y1:k] (31)

=


Pρρ

k,k|k Pρx
k,k−m|k Pρθ

k,k−1|k Pρω

k,k−1−n|k
∗ Pxx

k−m,k−m|k Pxθ
k,k|k Pxω

k−m,k−1−n|k
∗ ∗ Pθθ

k−1,k−1|k Pθω
k−1,k−1−n|k

∗ ∗ ∗ Pωω
k−1−n,k−1−n|k

.

Comparing Equations (21) and (31), it can be seen that Pρρ

k,k|k, Pρθ

k,k−1|k, and Pθθ
k−1,k−1|k

in Equation (21) can be obtained from Equation (31). Moreover, utilizing Equation (6),
one obtains

Pθθ
k−1,k−1|k =E[θ̃k|k θ̃T

k|k|y1:k] (32)

=


Pωω

k−1,k−1|k Pωω
k−1,k−2|k · · · Pωω

k−1,k−n|k
∗ Pωω

k−2,k−2|k · · · Pωω
k−2,k−n|k

∗ ∗ · · · · · ·
∗ ∗ ∗ Pωω

k−n,k−n|k


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Pρθ

k,k−1|k =E[ρ̃k|k


ω̃k−1|k
ω̃k−2|k

...
ω̃k−n|k


T

|y1:k] =
[

Pρω

k,k−1|k Pρω

k,k−2|k · · · Pρω

k,k−n|k

]
(33)

Therefore, Pωω
k−i,k−j|k, i, j = 1, 2, . . . , n and Pρω

k,k−i|k, i = 1, 2 . . . , n in Equations (21) and

(28) can also be derived from PXX
k,k|k.

3.2.2. Measurement Update

Based on Assumption 1 and the previous analysis, we have

p(Xk+1|y1:k) = N(Xk+1; Xk+1|k, PXX
k+1,k+1|k). (34)

ηk+1 is uncorrelated with y1:k, so, measurement one-step prediction can be obtained by

yk+1|k =E[yk+1|y1:k] = E[H(Xk+1) + ηk+1|y1:k]

=
∫

H(Xk+1)N(Xk+1; Xk+1|k, PXX
k+1,k+1|k)dXk+1

(35)

The error of measurement one-step prediction is

ỹk+1|k =yk+1 − yk+1|k

=H(Xk+1)− E[H(Xk+1)|y1:k] + ηk+1,
(36)

and thus, we have

Pyy
k+1,k+1|k =E[ỹk+1|k ỹT

k+1|k|y1:k]

=
∫
(H(Xk+1)− E[H(Xk+1)|y1:k])(∗)T

× N(Xk+1; Xk+1|k, PXX
k+1,k+1|k)dXk+1.

(37)

PXy
k+1,k+1|k =E[X̃k+1|k ỹT

k+1|k|y1:k] (38)

=
∫
(Xk+1 − Xk+1|k)(H(Xk+1)− E[H(Xk+1)|y1:k])

T

× N(Xk+1; Xk+1|k, PXX
k+1,k+1|k)dXk+1.

Substituting Equations (34), (35), (37) and (38) into Lemma 1, we have

Xk+1|k+1 = Xk+1|k + KX
k+1(yk+1 − yk+1|k), (39)

PXX
k+1,k+1|k+1 = PXX

k+1,k+1|k − KX
k+1Pyy

k+1,k+1|k(K
X
k+1)

T , (40)

KX
k+1 = PXy

k+1,k+1|k(Pyy
k+1,k+1|k)

−1. (41)

Obviously, xk+1|k+1 and Pxx
k+1,k+1|k can be obtained from Xk+1|k+1 and PXX

k+1,k+1|k.

3.3. Implementing the Gaussian Filter Using Third-Degree Spherical-Radial Rule

The previous section derived the posteriori estimate at k + 1 moment based on the
posteriori estimate at moment k. However, notice that Equations (23)–(26), (35), (37) and
(38) contain integral operations, which have a uniform form:∫

g(φ)N(φ; φ, P)dφ (42)
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where φ ∈ RL, g(·) is an arbitrary function. The core of the Gaussian filter is the calculation
of the integral in the form of Equation (42). Various methods have been proposed in
Refs. [6–11] to calculate the above equation. The third-degree spherical-radial rule [7] has
been widely used to approximate Equation (42) because of its good integration accuracy,
stability, and ease of implementation:

∫
g(φ)N(φ; φ, P)dφ ≈

2L

∑
i=1

1
2L

g(Sµi + φ) (43)

where

P = SST , µi =

{ √
Lei, i = 1, 2, . . . , L
−
√

Lei−n, i = L + 1, L + 2, . . . , 2L.
(44)

Using Equation (44) to compute the Gaussian weighted integral in Equations (23)–(26),
(35), (37) and (38) yields the Cubature Kalman filter with multi-step colored noise (CKF-
MCN) easily, and we summarize the algorithmic procedure of the CKF-MCN in Algorithm 1.
In addition, to better understand the operation of CKF-MCN, its main steps are summarized
in the form of a flow chart in Figure 1.

Algorithm 1 Cubature Kalman filter with multi-step colored noise.

1: At k + 1 moment, input Xk|k and PXX
k|k

2: Obtain ρk|k, θk−1|k and ωk−i|k, i = 1, 2, . . . , n from Xk|k;
3: Calculate ωk|k by Equation (18);
4: Calculate

∫
f (xk)N(Xk; Xk|k, PXX

k,k|k)dXk using Equation (42), then get xk+1|k;

5: Get Pρρ

k,k|k, Pρθ

k,k−1|k, Pθθ
k−1,k−1|k, Pωω

k−i,k−j|k, i, j = 1, 2, . . . , n and Pρω

k,k−i|k, i = 1, 2 . . . , n from

PXX
k|k ;

6: Calculate Pωθ
k,k−1|k and Pωω

k,k−j|k, j = 1, 2, · · · , n using Equations (27) and (30);

7: Calculate Pρω

k,k|k and Pωω
k,k|k using Equations (29) and (28);

8: Calculate∫
( f (xk) − E[ f (xk)|y1:k])(∗)T × N(Xk; Xk|k, PXX

k|k ))dXk,
∫
( f (xk) − E[ f (xk)|y1:k])ρ̃

T
k|k ×

N(Xk; Xk|k, PXX
k,k|k)dXk,

n
∑

i=0

∫
( f (xk) − E[ f (xk)|y1:k])ω̃

T
k−i|k × N(Xk; Xk|k, PXX

k|k )dXk

×(ai
k)

T , and∫
( f (xk)− E[ f (xk)|y1:k])θ̃

T
k−1|k × N(Xk; Xk|k, PXX

k,k|k)dXk by Equation (42);

9: Obtain Pxx
k+1,k+1|k, Pxρ

k+1,k|k, Pxω
k+1,k|k and Pxθ

k+1,k−1|k from Equations (23)–(26), then

PXX
k+1,k+1|k can be given by Equation (21);

10: Calculate
∫

H(Xk+1)N(Xk+1; Xk+1|k, PXX
k+1,k+1|k)dXk+1 by Equation (42), and then get

yk+1|k from Equation (35);

11: Calculate yk+1|k, Pyy
k+1,k+1|k and PXy

k+1,k+1|k by Equation (42).

12: Calculate KX
k+1 from Equation (41);

13: Calculate Xk+1|k+1 and PXX
k+1,k+1|k+1;

14: xk+1|k+1 and Pxx
k+1,k+1|k+1 can be obtained from Xk+1|k+1 and PXX

k+1,k+1|k+1
15: Return to step 1 and implement steps 1–14 for obtaining the estimation of next time;
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Figure 1. The flowchart of the CKF-MCN.

Remark 3. Compared with the extended Kalman filter (EKF), the proposed CKF-MCN has two
main advantages: (1). Higher accuracy. The EKF utilizes Taylor expansion to approximate the
first-order and second-order moments of the random variable with an accuracy of 1st-order Taylor
expansion. However, the CKF-MCN uses cubature rules to approximate the statistical properties of
random variables with an accuracy of 3rd-order Taylor expansion; (2). Better application prospects.
The EKF is only applicable to white noise systems, while the CKF-MCN is applicable to multi-step
colored noise systems.

4. Simulation Examples

In this section, the effectiveness of the proposed CKF-MCN is verified by a target
tracking simulation. The motion model [7] of the target is

xk+1 =


1 sin(ΩT)

Ω 0 −( 1−cos(ΩT)
Ω ) 0

0 cos(ΩT) 0 −sin(ΩT) 0
0 1−cos(ΩT)

Ω 1 sin(ΩT)
Ω 0

0 sin(ΩT) 0 cos(ΩT) 0
0 0 0 0 1

xk + ωk

zk+1 =

[
dk+1
βk+1

]

=

√(sx,k+1 − a)2 + (sy,k+1 − b)2

tan−1(
sy,k+1
sx,k+1

)

+ υk

where the state of the target xk = [sx,k vx,k sy,k vy,k η]T , sx,k and sy,k are respectively the
coordinates of x-axis and y-axis direction. vx,k and vy,k denote the velocities of x-axis and
y-axis direction, respectively. Ω is the turn rate. a and b are respectively the location of the
sensor in the x- and y-coordinates. T is the sample period.

The simulation parameters are selected as follows: initial state is
x̂0 = [1000 m 300 m/s 1000 m 0 m/s 3π

180 rad/s]T , P0 = [100 m2 10 m2/s2 100 m2/s2 10 m2/s2

100 mrad2/s2], T = 0.25 s, Rk = [100 m2 10 mrad2/m2], Qk = diag(q1G q1G q2T) where G =

[
T3

3
T2

2
T2

2 T

]
q1 = 0.1 m2s3, q2 = 1.75× 10−4/s3.

We consider the following scenario:



Actuators 2022, 11, 103 10 of 12


ωk =

min(2,k)
∑

i=0
ai

kωk−i + ξk, a1
k = 0.25I, a2

k = 0.05I

υk =
min(2,k)

∑
i=0

bi
kυk−i + ηk, b1

k = 0.6I, b2
k = 0.2I.

By implementing Algorithm 1, the true and estimated trajectories are plotted in
Figure 2. As can be seen from this figure, the CKF-MCN can track the target well. Moreover,
position root mean square error (RMSE) is selected as performance indicator to compare
the different algorithms, which is given by

RMSEk =

√
1
m

m

∑
i=1

(sx,k(i)− ŝy,k(i))2 + (sy,k(i)− ŝy,k(i))2

where (sx,k(i), sy,k(i))T and (ŝx,k(i), ŝy,k(i))T are the true and estimated coordinate of target
at k instant of the i-th Monte carlo run. To obtain the exact position RMSE, 100 Monte
Carlo runs were performed and the simulation results are shown in Figure 3. As can be
seen from Figure 3, the CKF-MCN has the highest accuracy in several different methods,
which indicates the superior performance of our proposed algorithm in handling multi-step
colored noise.

0.5 1 1.5 2 2.5
x/m

×104

4000

6000

8000

10,000

12,000

14,000

y
/m

True

CKF-MCN

Figure 2. True and estimated trajectories by using CKF-MCN.
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The proposed CKF-MCN

The UKF with colored noise in [17]

The GF with colored noise in [18]

The CKF in [7]

Figure 3. Comparisons of the position RMSE obtained by the proposed CKF-MCN, the UKF with
colored noise in Ref. [17], the GF with colored noise in Ref. [18] and the CKF in Ref. [7].
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5. Conclusions

In this paper, the problem of state estimation for nonlinear systems with multi-step
colored noise is studied. A linear-transform-based technique is proposed to whiten the
system with colored noise by which the colored noise system can be transform to an
equivalent Gaussian white noise system. A nonlinear Gaussian filtering framework is
designed for the whitened system, which is suitable for multi-step colored noise systems.
Compared with existing methods that only apply to white noise or first-order colored
noise, the proposed method has a wider application scope. Simulation results verify
the effectiveness and advantages of the proposed algorithm. Furthermore, it should be
emphasized that the proposed menthod expands the dimension of the state, which often
leads to the instability of numerical integration. Therefore, in the future work, we aim to
propose a new method to solve the state estimation problem under colored noise without
dimensionality expansion.
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Abbreviations

xk True state
zk Measurement
wk Color process noise
vk Color measurement noise
Xk Whitening state
yk Whitening measurement
ξk Whitening process noise
ηk Whitening measurement noise
y1:k The set of measurement from moment 1 to k
Xk+1|k State one-step prediction of Xk+1
PXX

k+1,k+1|k Covariance one-step prediction of Xk+1

ρk Augmented state
θk Augmented process noise
ai|j Mean of ai given y1:j
Pab

i,j|k Cross-covariance between ai and bj given y1:k
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