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Abstract: Lightweight pedestrian structures constructed with high strength-to-weight ratio materials,
such as fiber-reinforced polymers (FRP), may experience large accelerations due to their lightness, thus
overcoming the serviceability limit state. Additionally, uncertainties associated with human–structure
interaction phenomena become relevant. Under these circumstances, variations in pedestrian actions
could modify the modal properties of the coupled human–structure system and classical approaches
based on passive Tuned Mass Dampers (TMD) do not offer an effective solution. An alternative
solution is to use a Semiactive TMD (STMD), which includes a semiactive damper that, when properly
designed, may be effective for a relatively broad frequency band, offering a robust solution when
significant uncertainties are present. Thus, this paper presents a design methodology for the design
of STMDs applied to lightweight pedestrian structures including human–structure and actuator–
structure interaction. A multiobjective optimization procedure has been proposed to simultaneously
minimize structure acceleration, inertial mass, and maximum damper force. The methodology has
been applied to a lightweight FRP footbridge. Realistic simulations, including system uncertainties,
interaction phenomena, nonlinear damper model, noise-contaminated signals, and the practical
elements (in-line digital filters) needed for the successful implementation of the control law, validate
the methodology. As a conclusion, the STMD is more effective than its passive counterpart in both,
canceling the response or achieving similar performance with significant lower inertial mass.

Keywords: human-induced vibrations; semiactive actuator; human–structure interaction; lightweight
structures; magnetorheological damper

1. Introduction

The use of lightweight materials, such as fiber-reinforced polymers (FRP), in the design
and construction of pedestrian footbridges has recently attracted increased interest. This
is motivated by several of their benefits, such as durability, high strength-to-weight ratio,
and low maintenance cost. Although modal damping ratios of FRP footbridges have been
identified to be higher than those of footbridges constructed by conventional materials, the
vibration level could exceed the comfort limits defined by design codes and guidelines due
to their low effective generalized modal masses [1], even under high and less-energetic
harmonics of pedestrian actions.

Lightweight pedestrian structures are more prone to suffer from resonance effects
induced by pedestrian actions and the human–structure interaction (HSI) phenomenon
becomes a crucial aspect to be considered. Gallegos et al. [2] studied the dynamic be-
havior of an ultra-lightweight FRP footbridge with excessive vertical vibrations, using a
mass-spring–damper–actuator (MSDA) system to model the pedestrian load crossing the
footbridge. Díaz et al. [3] presented the interaction phenomena involved when controlling

Actuators 2022, 11, 101. https://doi.org/10.3390/act11040101 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act11040101
https://doi.org/10.3390/act11040101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-3281-7595
https://orcid.org/0000-0003-2239-7048
https://orcid.org/0000-0001-9283-5109
https://orcid.org/0000-0003-4336-5520
https://doi.org/10.3390/act11040101
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act11040101?type=check_update&version=1


Actuators 2022, 11, 101 2 of 19

human-induced vibrations in lightweight structures and their consideration in the fre-
quency domain. The closed-loop transfer functions for structures controlled with strategies
based on passive and active Tuned Mass Dampers (TMD) including HSI were presented.

In order to reduce the excessive vibrations, the incorporation of a TMD is an excellent
solution to cancel vibrations when its parameters are tuned to a particular vibration mode
of the structure [4,5], whose modal properties do not change significantly [6]. Otherwise,
detuning problems may arise and more robust TMD-based strategies should be employed.

The uncertainties associated with the estimated modal properties, the excitation of
more than one vibration mode, and even the non-negligible nonresonant harmonic response,
usually lead to poor performance of passive TMDs when dealing with lightweight struc-
tures. Hence, the implementation of more robust strategies to improve the performance
of the TMD should be considered; for example, (i) Multiple TMDs (MTMDs) configured
in series or parallel, or (ii) a semiactive Tuned Mass Damper (STMD), which includes a
semiactive device in the TMD [7]. Van Nimmen et al. [8] studied the experimental response
of a slender steel footbridge with and without MTMDs, reporting variations in the results
when these were compared with the design procedure detailed in the guidelines, obtaining
a lower acceleration response with the implementation of the MTMD. Caetano et al. [9]
conducted an experimental study on the implementation of MTMDs to control the vertical
vibration and the lock-in effects (lateral vibration) of an in-service footbridge. Regarding
Semiactive TMDs (STMDs), most of the applications are based on using a Magnetorheolog-
ical (MR) damper as a semiactive device [10]. Hence, the use of this type of device requires
a control law to govern its behavior. Regarding phase control approaches, Koo et al. [11]
proposed a control law for the application within STMDs, which depends on the phase
between the displacement of the main structure and the relative velocity between the
structure and the TMD inertial mass. Later, Moutinho et al. [12] modified Koo’s control law,
substituting the displacement by the acceleration and neglecting the structure’s velocity
with respect to the TMD mass velocity. Thus, this control law is clearly geared to the
practice implementation. Other approaches, based on optimal robust controllers, may be
found in the literature. However, these approaches are based on the knowledge of the
whole system state and are usually difficult to implement in practice, especially when it
comes to civil structures with high uncertainty. As an example, Zhang et al. [13] proposed
a robust algorithm applied to a semiactive base isolation system. The algorithm combines a
linear quadratic regulator and a nonlinear robust compensator to control the oil pressure in
the cavity of a friction pendulum system. On the other hand, Gu et al. [14] used an optimal
neuro-fuzzy logic control to modify the stiffness of a magnetorheological elastomer, which
was also used in a base isolation system.

Based on the results of several numerical studies, the semiactive control device has
been demonstrated to outperform the passive device, either in terms of the dynamic
response of the structure [15–17] or the size of the device [18]. Several experimental
implementations of semiactive control devices have been successfully achieved for human-
induced vibrations [19–21]. Nevertheless, there are often important differences between
simulation and experimental results. Thus, before sizing and implementing the STMD,
realistic simulations should be undertaken, especially when dealing with lightweight
structures that may experience HSI. The following issues should be considered: (i) the
nonlinear MR damper model; (ii) sensor and electrical noise should be included in order
to consider noise-contaminated sensor measurements that may affect the control law
performance; (iii) the measured-signals should be filtered according to the frequency band
of interest, avoiding phase delays and removing undesirable frequency contents; (iv) a
trigger rule to activate/deactivate the damper device becomes essential to avoid, firstly,
unstable behavior due to the nonlinear on–off phase control law [22] and, secondly, the
unnecessary continuous operation of the damper.

This paper presents a methodology for the optimum design of a STMD using a semi-
active damper controlled by a phase-control law. The proposed design methodology
considers, for the first time, the human–structure–actuator interaction, which is an im-
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portant issue when dealing with lightweight pedestrian structures. Pedestrians react to
perceptible ground vibrations by modifying their gait and the HSI phenomenon arises,
modifying substantially the coupled system (coupled human–structure model) to be con-
trolled. Additionally, the motion of the lightweight structure may affect significantly the
motion of the STMD inertial mass, and this effect can no longer be neglected when pre-
dicting the STMD performance and should be considered in the design. The methodology
has been applied to the lightweight laboratory FRP footbridge recently constructed by the
authors of the paper. The footbridge has been designed in order to fulfill all the structural
limit states except the vibration serviceability one, which is expected to be fulfilled by
implementing a STMD. Thus, the STMD is designed to meet the vibration serviceability
considering system uncertainty and human–structure–actuator interaction. The proposed
design methodology makes use of a multiobjective constrained optimization problem that
minimizes simultaneously three objective functions. The constraint of the problem allows
fulfilling the vibration serviceability limit state and the objective functions are based on
the acceleration of the structure, the mass of the control device (directly related to the
device cost), and the size of the semiactive device (through its saturation force). Finally,
the optimum STMD with a MR damper is analyzed considering a real pedestrian input,
noise in the signals of the control law, digital filters for the signals of the control law, and a
trigger rule to activate/deactivate the MR damper.

This paper is structured as follows. First, the coupled human–structure system con-
trolled with passive and semiactive TMD-based strategies is explained. Next, Section 3
focuses on the optimum design of the control device, considering uncertainty conditions in
both the structure and the pedestrian load. In Section 4, the proposed methodology
is applied to the optimum design of a TMD and a viscous STMD to control the dy-
namic response of a full-scale laboratory FRP footbridge. The STMD including a MR
damper model is designed following the proposed methodology under real conditions in
Section 5. Finally, the main concluding remarks and suggestions for future work are drawn
in Section 6.

2. System Modeling

This section describes the theoretical approach considered here for the control of
human-induced vibrations. First, the HSI model is detailed. Afterwards, both passive and
semiactive control strategies are presented.

2.1. HSI Model

The HSI model considers the human interactive force originated from the structure
movement. Based on Dougill et al. [23], the dynamic properties of the pedestrian could
be analyzed as a MSDA system, while the structure is represented as a Single Degree of
Freedom (SDOF) system, for the sake of clarity, defined through the following equation:

ms ẍs + cs ẋs + ksxs = Fh, (1)

where the parameters ms, cs, ks are the generalized modal mass, damping coefficient, and
modal stiffness of the structure, respectively; xs is the structure displacement (dots mean
time derivatives); and Fh is the resultant force acting on the structure. This system can also
be represented in the Laplace domain by the following transfer function (TF) between the
structure acceleration and the force:

GS(s) =
s2Xs(s)

Fh(s)
=

s2

s2ms + scs + ks
, (2)

where s = jω is the Laplace variable with ω being the angular frequency (rad/s).
The equations of motion that govern the HSI model are obtained from the force balance

of Figure 1a [3] and are given by
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mh ẍh + ch(ẋh − ẋs) + kh(xh − xs) = Fa, (3)

ms ẍs + cs ẋs + ksxs − ch(ẋh − ẋs)− kh(xh − xs) = −Fa, (4)

where the subindexes h and s refer to the human and structure, respectively. The human
model is defined by the effective body mass (mh, which is a fraction of the total human
body mass), the stiffness (kh), the damping coefficient (ch), and the actuator force Fa—also
known as driving force—that represents a pair of action–reaction forces generated by the
human legs that act simultaneously on both the structure and the human. Additionally, the
transmitted interaction force, denoted as Fhsi, is derived as follows:

Fhsi = ch(ẋh − ẋs) + kh(xh − xs). (5)

Taking Laplace transforms in Equations (3)–(5) and considering Equation (2), the
following TFs are derived:

GHSI(s) =
Fhsi(s)

s2Xs(s)
=
−mh(sch + kh)

s2mh + sch + kh
, (6)

GA(s) =
Fha(s)
Fa(s)

=
−s2mh

s2mh + sch + kh
, (7)

with GHSI(s) being the TF between the human interacting force and the acceleration
response of the structure and GA(s) being the TF between the human force—without
considering the movement of the structure—and the driving force. Using Equations (2),
(6) and (7), the HSI model for nonmoving actions (such as jumping or bouncing) can be
represented as the block diagram of Figure 1b. To account for a pedestrian passing along
the footbridge, the block diagram of Figure 1b can be modified according to the position of
the pedestrian, as depicted in Figure 1c. The force acting on the structure must be scaled
by the modal shape ϕ(x). Thus, the resultant force acting on the structure will be ϕ(x)Fh,
in which x = vt and the velocity of the MSDA system (v) depends on the gait frequency.
Finally, it is worth mentioning that more than one vibration mode can be considered at the
control point by modifying GS(s).

(a) (b)

(c)

Figure 1. (a) Free body diagram for a SDOF structure. (b) Block diagram of the HSI model. (c) Block
diagram considering a moving pedestrian.

2.2. Passive TMD

The TMD is a passive control device composed of an inertial mass (mt), a viscous
damper (ct), and a spring (kt). This device attached to a structure is able to cancel resonant
vibrations because its relative movement acts approximately with a delay of 90◦ with
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respect to the motion of the structure, attenuating the structure vibration. The system of
equations that governs the behavior of the TMD–structure coupled system is

mt ẍt + ct(ẋt − ẋs) + kt(xt − xs) = 0, (8)

ms ẍs + cs ẋs + ksxs = Ft − Fha + Fhsi, (9)

where the subindex t is associated with the modal parameters of the TMD, Ft is the force
transmitted by the TMD to the structure, and Fhsi − Fha is the external resulting force
produced by the human loading. The force Ft is defined from Equation (8) as

−mt ẍt = Ft;−→ ct(ẋt − ẋs) + kt(xt − xs) = Ft. (10)

Thus, the TF between the TMD control force and the structure’s acceleration is

GT(s) =
Ft(s)

s2Xs(s)
=
−mt(sct + kt)

s2mt + sct + kt
. (11)

Figure 2 shows the block diagram for the HSI (Figure 1b) model including the feedback
loop of the TMD control force. Note that the TMD loop does not depend on the position of
the pedestrian action.

Figure 2. Block diagram of the HSI and TMD models.

2.3. Semiactive TMD

The STMD makes use of a semiactive damper, which can modify its properties in real-
time. For the TMD, perfect tuning occurs with a delay of 90◦ as mentioned above; however,
if the TMD and the structure are not in phase, the nulling vibration effect disappears,
adding even more vibration. Hence, an ON–OFF phase control law is assumed for the
semiactive damper in such a way that the inertial mass is blocked or released depending
on the relative phase between the inertial mass and the structure.

Figure 3 shows the block diagram for the HSI model with a STMD, where the trans-
mitted force from the control device to the structure is obtained from the sum of the elastic
force (linear and represented by its TF GK(s)) and damper force (nonlinear and defined by
the control law).

Semiactive Control Law

The semiactive control law employed herein consists of an ON–OFF phase control,
accounting for the acceleration of the structure and the relative velocity between the
structure and the inertial mass to make a decision for the input to the semiactive device.
Note that, for lively structures, the relative velocity cannot be approximated by the inertial
mass velocity, as was performed in Ref. [12]. Figure 4 shows different states of a SDOF
structure controlled by a STMD in order to illustrate the application of the phase control.
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Figure 3. Block diagram of the HSI and STMD models.

(a) Step No 1 (b) Step No 2

(c) Step No 3 (d) Step No 4

Figure 4. (a,b) show the phase control logic for upward motion with respect to an equilibrium state.
(c,d) show the phase control logic for downward motion with respect to an equilibrium state.

The phase control can be expressed by the following inequations:

ẍs · (ẋt − ẋs) ≤ 0 ⇒ ct(t) = cmin (normal functioning)

ẍs · (ẋt − ẋs) > 0 ⇒ ct(t) = cmax (blocking functioning)

s.t.: |ct(t) · (ẋt − ẋs)| ≤ Fsat

(12)

in which xs has been substituted by ẍs (and changing the inequation sign of Figure 4) and
a viscous semiactive damper with force saturation is assumed. The parameters cmin and
cmax are the minimum and maximum damping coefficients, respectively, and Fsat is the
saturation value for the force.
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3. Optimum Design Procedure

The proposed methodology consists of the optimum design of a TMD and a STMD
by solving a multiobjective constrained optimization problem. The uncertainty associated
with the parameters that define the HSI model is taken into account considering N different
samples of structures and pedestrian loads. Every structure sample is crossed by one
pedestrian whose pacing frequency is tuned to the worst case scenario. Hence, the aim of
the optimum design is to obtain an acceleration of the structure below the limit stated by
guidelines while minimizing the inertial mass value and the size of the semiactive devices
represented by its saturation force.

In Section 3.1, the excitation force are presented. Secondly, the performance indexes
and the optimization problem statement are detailed in Section 3.2.

3.1. HSI Model

The TF of the structure including uncertainties (Equation (2)) can be replaced by the
following expression:

ĜS(s) =
s2Xs(s)

Fh(s)
=

s2

s2m̂s + sĉs + k̂s
, (13)

where “•̂” refers to uncertainty. Although one vibration mode is assumed, the extension
to several vibration modes is straightforward by considering their contribution in TF
Equation (13).

This must also be applied to the TF associated with the interaction phenomenon
(Equation (6)) and that associated with the human load (Equation (7)), yielding

ĜHSI(s) =
Fhsi(s)

s2Xs(s)
=
−m̂h(sĉh + k̂h)

s2m̂h + sĉh + k̂h
, (14)

ĜA(s) =
Fha(s)
Fa(s)

=
−s2m̂h

s2m̂h + sĉh + k̂h
. (15)

The driving force, Fa, which affects the structure and the pedestrian simultaneously, is
defined as

Fa(t) = Q

(
1 +

k

∑
n=1

GLFn · sin(2πn f t + ψn)

)
(16)

where Q is the static load of the pedestrian, f is the pacing frequency, ψn is the phase angle
of the n-th harmonic, k is the number of harmonics considered, and GLF (Generated Load
Factor) is the coefficient of the harmonic force associated with the n-th harmonic [2]. As
mentioned above (Figure 1c), this force is influenced by the pedestrian’s position.

3.2. Performance Indexes and the Optimization Problem

The multiobjective optimization problem aims to minimize three objective functions.
These are derived from the so-called performance indexes. The multiobjective constrained
minimization problem is expressed as follows:

find θ such that minimizes Φ = (φ1, φ2, φ3)

s.t.
{

θl ≤ θ ≤ θu
ẍs,max ≤ alim

where θ are the design parameters; φ1–3 are the three objective functions to be minimized;
θl and θu are the lower and upper bounds of the design parameters, respectively; and ẍs,max
is the maximum acceleration of the structure limited to alim. The design variables are the
mass, frequency, and damping ratio (TMD) or saturation force (STMD) of the semiactive
device for the passive and semiactive version, respectively, so θ = (mt, ft, ζt or Fsat).



Actuators 2022, 11, 101 8 of 19

The three objective functions, φ1-3, are defined as

φ1(z, h, θ) = w1 J1,P + w2 J1,RMS, with w1 + w2 = 1, (17)

φ2(z, h, θ) = J2, (18)

φ3(z, h, θ) = J3, (19)

where z = [ms, cs, ks], h = [mh, ch, kh] are the structure and pedestrian parameters defin-
ing the HSI model and w1 and w2 are weighting factors. J1,P, J1,RMS, J2, and J3 are the
performance indexes.

The first index is related to the ratio of maximum peak acceleration of the structure
with and without the control strategy implemented (the peak acceleration without control is
denoted as ˇ̈xs) whereas the second one does the same with the 1-s running root mean square
(RMS) acceleration. Thus, the first objective function φ1 is a balance between the peak
acceleration and the persistent acceleration (represented by the RMS acceleration). The third
and fourth performance indexes consider the inertial mass and the damping force (TMD)
or saturation force (STMD), respectively, which determine the damper size (affecting both
the inertial mass and the MR damper needed). Therefore, the four performance indexes are
calculated with the following:

- Normalized Peak Acceleration:

J1,P = ∑N
i=1

(
max|ẍs(t)|
max| ˇ̈xs(t)|

)
,

- Normalized 1s-RMS Acceleration:

J1,RMS = ∑N
i=1

(
RMS(ẍs(t))
RMS( ˇ̈xs(t))

)
,

- Inertial Mass of the Control Device:

J2 = mt,

- Saturation force:

J3 = Fsat.

with N being the number of samples. The Fsat of the TMD corresponds to the maximum
damping force provided by the viscous damper for the whole set of structures and humans
considered in the analysis.

4. Application of the Proposed Design Methodology

The proposed methodology is applied to the optimum design of a TMD and a STMD
to control the excessive vibrations of a real FRP footbridge.

A lightweight FRP footbridge designed using the motion-based design method and
constructed at the Laboratory of Structures of the Technical University of Madrid is used
as a benchmark structure (see Figure 5). The structure fulfills all the structural limit states
except the vibration serviceability one, which should be met through the integration of an
inertial damper [2]. The footbridge, which is 10 m-long and 1.5 m-wide, is simply supported
at the two ends and consists of three longitudinal Glass FRP (GFRP) stringers connected by
transversal GFRP crossbeams placed every 1.20 m. In order to provide a higher bending
stiffness and less static sag, Carbon FRP strips are bonded to the top and bottom flanges
of the longitudinal stringers. The handrails are comprised of GFRP profiles with a square
hollow section connected to the transversal beams. From [2], the first bending mode is
achieved at 7.63 Hz, and the second and third mode are torsional modes that are unlikely
to be excited by a pedestrian.
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Figure 5. FRP footbridge at the Laboratory of Structures of the Technical University of Madrid.

4.1. HSI Model

Firstly, Ĝs(s) is derived using N = 50. On the one hand, the generalized modal
mass is assumed to follow a normal distribution N (405, 0.12), 405 kg being the mean
and 0.1 the standard deviation. On the other hand, the natural frequency and damping
ratio are assumed to follow a Weibull distribution, which is recommended to describe
the stiffness and strength of pultruded FRP elements [24]. The former is characterized
by a scale parameter α = 8.095 and a shape parameter β = 7.906 whereas the latter is
characterized by α = 1.616 and β = 12.153. The lower and upper limits for the structure
parameters are shown in Table 1. A wide variation range for the structure natural frequency
is assumed. This is established on the basis of the following considerations: if the rolling
supports are totally blocked, the natural frequency increases by up to 9.13 Hz (that is,
under higher rolling friction and or support deterioration, the roller may not be properly
activated and the structural natural frequency increases significantly) and if a recycled
rubber wearing layer (with a weight up to 60 kg/m2) is placed over the deck, the natural
frequency decreases to 5.15 Hz. The frequency response function for each of the N samples
is represented in Figure 6, where it can be seen that the detuning effects of the control device
could arise when only a nominal structure is considered. From Figure 6, it is concluded
that 62% of the uncertain cases present natural frequencies between 6.5 and 8.5 Hz.

4 5 6 7 8 9 10 11

Frequency (Hz)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
ag

n
it

u
d

e 
(m

/s
2
/N

)

Figure 6. FRF behavior for all structures analyzed.

The equivalent properties of the pedestrian, mass and damping ratio, are considered
to follow a normal distribution and a uniform distribution, respectively. The normal
distribution of the mass is adopted as N (65.1, 52) and the damping ratio is set on the basis
of the following limits: the lower limit is equal to 0.1 and the upper limit to 0.4 according to
the literature [25]. Hence, based on the previous distributions, the properties of the HSI
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model are summarized in Table 1. Note that the frequency of the human body is chosen
to be equal to the gait frequency, as suggested by Refs. [2,26,27]. The latter is assumed
to be the natural frequency of the structure divided by four in order to affect directly
the structure by the fourth harmonic. Therefore, the pedestrian excites the footbridge
with up to his/her fourth harmonic. The following parameters, taken from Ref. [2], have
been adopted for the definition of the driving force, Fa (Equation (16)): Q = 686.70 N;
GLF1 = 0.1673, GLF2 = 0.1787, GLF3 = 0.1296, GLF4 = 0.0315, ψ1 = 0, ψ2 = −π/2,
ψ3 = π, and ψ4 = π/2. As mentioned in Section 2.1, the MSDA system moves at a velocity
depending on the gait frequency according to the expression v = 1.271 f − 1 (m/s) [28].

Table 1. Parameters for the sensitivity analysis.

Structure Value Units

ms Mass [286.00 to 495.80] kg
fs Frequency [4.60 to 10.40] Hz
ζs Damping ratio [0.86 to 1.83] %
cs Damping coefficient [279.40 to 931.10] kg/s
ks Stiffness [3.54 to 17.05]× 105 N/m

Human Value Units

mh Mass [50.41 to 76.43] kg
fh Frequency fs/4 Hz
ζh Damping ratio [10 to 40] %
ch Damping coefficient [164.38 to 643.50] kg/s
kh Stiffness [3.52 to 17.18]× 103 N/m

4.2. Optimum Design

The control devices are designed following the aforementioned methodology to reduce
the vibration level of the footbridge. The midspan of the footbridge is considered as
a measurement point. The value of alim, which must not be exceeded, is adopted as
alim = 1 m/s2 for both control devices (medium comfort).

In order to avoid falling into local minimal, a global optimization algorithm is em-
ployed to solve the minimization problem. In particular, the multiobjective Genetic Al-
gorithm implemented in the software MATLAB (gamultiobj function) is used. An initial
population of 50 individuals (parameter vectors with the design variables) are randomly
created and iteratively modified according to the natural selection rules of the algorithm,
which are based on the selection, crossover, and mutation mechanisms. The selection
mechanism selects parents on the current population to create the next generation. Once
the parents have been selected, the crossover and mutation mechanism create the new
population. The fraction of the population created at the next generation by the crossover
function is 0.8. The mutation makes small random changes in the individuals to provide
genetic diversity and enable the genetic algorithm to search a broader space. The upper
and lower limits of the design variables for the TMD and the STMD are summarized in
Table 2. The maximum number of iterations is set from a sensitivity analysis, giving a
value of 50 iterations. At each iteration, the objective functions are assessed for the new
population. To do this, the objective function runs a Simulink model, which simulates
the human–structure–actuator interaction and calculates the maximum acceleration of the
footbridge under the human load. When the footbridge acceleration exceeds alim, a penalty
is applied to the objective functions.

As a result of the minimization problem, the Pareto front is obtained. Each point
forming the curve of the Pareto front represents a possible solution to the problem and
the choice of the optimum among all of them may be transformed into a decision-making
problem. The three objective functions considered in the problem prevent the classical
representation of the Pareto front based on two objectives. Hence, the trade-off point cannot
be illustrated and a multidimensional visualization method should be employed. In this
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study, the Level Diagrams method proposed by Blasco et al. [29] is used, which allows
representing the Pareto front according to proximity to the utopic point on the basis of a
given norm. The following steps are carried out.

Table 2. Lower and upper bounds for the design variables of the inertial controller.

Design Variable Lower Bound Upper Bound

mt Mass (kg) 10 45
ft Frequency (Hz) 1.00 10.00
ζt Damping ratio (%) 1 50

Fsat Saturation force (N) 10 5000

First, the three objective functions are normalized with respect to their maximum and
minimum values to between 0 and 1 as follows:

φi,max = max (φi), φi,min = min (φi) i = 1, 2, 3

φ̄i =
φi − φi,min

φi,max − φi,min
. (20)

Second, the Euclidean norm (2-norm), defined as ||Φ̄||2 =
√

∑3
i φ̄2

i , is calculated for
the three objective functions selected in this study. The representation of the new Pareto
front has a common Y axis representing the Euclidean norm, and each X axis corresponds
to the values of the three objective functions. The optimum solution corresponds to the
lowest value of the Y axis, i.e., the Euclidean norm. This type of representation of the
Pareto front is illustrated in Figure 7 for the TMD and the STMD. Once the method is
applied, the optimum parameters of the TMD (mass, frequency, and damping ratio) and
the STMD (mass, frequency, and saturation force), displayed in Table 3, are obtained. Note
that the required mass ratio for the two devices is higher than the typical mass ratios
employed for footbridges constructed with traditional materials. This fact is essentially
due to the need to cancel vibrations in a very lightweight structure that may vibrate
significantly under nonresonant actions due to the HSI. In case of the TMD, once the
optimal parameters mt, ft, and ζt are obtained, the stiffness k = (2π ft)2mt and the damping
coefficient ct = 2mt(2π ft)ζt are derived. In case of the STMD, once the optimal parameters
mt, ft, and Fsat are obtained, the stiffness is derived and ct is calculated from ζ = 0.02.
Finally, the control law is implemented using cmin = ct and cmax = 50ct.

Table 3. Optimum parameters of the TMD and the STMD, and the value of the first objective function.

TMD Value

mt Mass 33.36 kg
ft Frequency 9.95 Hz
ζt Damping ratio 1.03 %
ct Damping coefficient 42.96 kg/s
kt Stiffness 1.30× 105 N/m
φ1 Objective function 0.48 -

STMD Value

mt Mass 24.50 kg
ft Frequency 6.15 Hz

cmin Normal functioning 37.91 kg/s
cmax Blocking functioning 1895.7 kg/s

kt Stiffness 3.66× 104 N/m
Fsat Saturation force 1010.24 N
φ1 Objective function 0.40 -
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Figure 7. Pareto front obtained for the optimum design of the (a) TMD and (b) STMD. The selected
optimum solution is marked in red.

4.3. Discussion of Results

From Table 3, φ1 has similar values in both cases, which indicates similar performance
of the controlled structure. However, the inertial mass of the STMD is much lower than
the one of the TMD (approximately a 30% reduction). Figure 8a shows a time history
example of the dynamic response of the structure when a pedestrian crosses the footbridge.
Figure 8b shows the Cumulative Distribution Function (CDF) of not exceeding the 1-s
running RMS value and Figure 8c shows the CDF of the instant acceleration for the N cases
run, giving good evidence of the effect of both control systems under uncertainties. Both
control devices fulfill the constraint specified in the optimization algorithm but the STMD
outperforms the TMD in terms of the mass (which is significantly smaller) without loss
of effectiveness.
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Figure 8. Dynamic response of the bare and the controlled structure: (a) acceleration at midspan,
(b) CDF of the 1s-running RMS value of all the samples, and (c) CDF of the acceleration of all
the samples.
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5. Application of the Proposed Design Methodology under Realistic Conditions

The proposed controller design methodology is now run under realistic conditions
for the STMD. Thus, the following considerations must be taken into account: (i) the
viscous semiactive damper model is replaced by a nonlinear MR damper model; (ii) the
measured signal used in the control law of the semiactive device will be affected by
statistical noise, so that noise-contaminated signals are used; (iii) the low vibration level
of the structure could cause unstable behavior of the MR damper since the control law is
nonlinear—accordingly, an activation/deactivation rule must be implemented; and (iv) the
non-negligible dynamics of filters that are used within the control law implementation
are included. At this point, it is worth mentioning that the transient response of the MR
damper is not considered since the device responds to voltage changes in milliseconds [30].

5.1. MR Modeling

The STMD installed in the structure takes into account the modal parameters obtained
in the optimization process, modifying the semiactive viscous device by a MR damper RD-
8041-1 of Lord Corporation, which is modeled using a previous identified Bingham model:

F− fo = Fc(V) · sgn(ẋ) + co(V) · ẋ, (21)

where the parameters F and fo are the total force of the MR damper and the preload force,
respectively. Note that the preload force may be customized by the manufacturer. In this
particular device, it was set to f0 = 20 N. The parameter Fc is the friction force while co is the
damping coefficient, both dependent on the control voltage. The variable V is the control
voltage applied to the MR damper (which is proportional to the current) and, according
to the control law described in Equation (12), it can take a minimum or maximum value.
In case of the MR damper, these values are 0.5 V and 5 V, respectively. Finally, the velocity
ẋ corresponds to the relative velocity between the STMD and the structure (ẋt − ẋs). The
Bingham model used was identified in Barrera et al. [31] and those parameters are used in
this section. Figure 9 shows the force–velocity curve of this MR damper for several values
of V.
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F
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Figure 9. Force vs. velocity behavior of the MR damper.

5.2. Implementation of the Control Law

In order to account for the presence of noise in the signals, electrical noise has been
added to the sensor measurement (structure and inertial mass acceleration, which are
generally measured by accelerometers) yielding to noise-contaminated measurements [32].
Additionally, electrical noise is added to the control voltage generated by the control law.
These noises are modeled as white noise within a predefined range: a noise peak value
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of 0.001 m/s2 is assumed for the structure accelerometer; a noise peak value of 0.01 m/s2

is assumed for STMD mass acceleration; and a noise peak value of 0.02 V is assumed for
the control voltage. The peak noise values have been selected according to the available
instrumentation to be used in a future implementation.

As commented before, the inertial mass and the structure acceleration are supposed
to be measured. Now, the implementation of control law (Equation (12)) considering the
MR model (Equation (21)) is explained (and illustrated in Figure 10). Three elements are
proposed in the implementation: (i) low-pass filtering of both acceleration signals, (ii) a
lossy integrator filter for velocity estimation, and (iii) an activation/deactivation rule.

5.2.1. Low-Pass Filter

To remove high-frequency noise and to avoid spillover instabilities, a second-order,
low-pass Butterworth filter with a cut-off frequency of 20 Hz is applied to the acceleration
used by the control law. Signals with frequencies above the cut-off frequency will be
attenuated. The cut-off frequency must be at least twice the frequency of interest; otherwise,
the acceleration records will shift in its phase, affecting the control law performance
significantly. The low-pass Butterworth filter with a sampling frequency of 1000 Hz (the one
used for numerical simulation and the expected one for the experimental implementation)
is used and its Z-transform is as follows:

Hlow(z) =
0.0036z2 + 0.0072z + 0.0036

z2 − 1.823 + 0.837
. (22)

5.2.2. Integrator Filter

The relative velocity between the structure and the inertial mass is obtained by the
integration of the acceleration signals. In Section 4, an ideal integrator Hint(s) = 1/s was
used. However, this type of integrator cannot be used experimentally since it is extremely
sensitive for low-frequency components in real implementation [33]. A lossy integrator
can maintain the magnitude and phase of an ideal integrator from a cut-off frequency,
avoiding the high sensitivity at low frequencies, and removing signal offsets. Thus, the
lossy integrator could be expressed through the following equation:

Hint(s) =
s

s2 + 2sζiωi + ω2
i

, (23)

where ζi is the damping ratio of the integrator, which is chosen equal to 1, and ωi is the
cut-off frequency, which should be sufficiently smaller than the frequencies of interest
in order to maintain the magnitude and phase. A cut-off frequency of 2π fs/10 has been
adopted here. As in Equation (22), the Z-transform for a sampling frequency of 1000 Hz
is derived:

Hint(z) =
0.00099z− 0.00099
z2 − 1.99z + 0.99

. (24)

5.2.3. Deactivation Rule

To prevent the MR damper from operating at low acceleration values, a deactivation
rule has been adopted. This situation may occur under ambient loads. The application of
ON/OFF control under low input signals may lead to instabilities (chattering problems)
that are avoided by disconnecting the device. Additionally, the electrical consumption is
reduced and the device lifespan is extended. For this case, the OFF state is applied for 1-s-
RMS instant acceleration values of the structure lower than the threshold of 0.01 m/s2, so
the input voltage to the MR damper is the minimum possible indicated by the manufacturer.

Figure 10 illustrates the block diagram of a structure with a HSI model and a semi-
active control strategy. The noise in sensors, the low-pass filter, integrator filters, and the
activate/deactivate rule have been included to represent a realistic scenario.
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Figure 10. Block diagram of the HSI and STMD including all elements of the implementation and
noisy signals.

5.3. Optimum Design under Realistic Conditions

The application of the proposed design methodology is carried out again considering
the MR model, noise-corrupted signals, and all the dynamics of the elements needed to
experimentally implement the control law. Table 4 shows the optimum values obtained
for the STMD MR (which includes all components mentioned before). The optimal values
obtained are similar to those derived in Section 4 (Table 3, but the objective function φ1
shows a reduction in the global performance of the STMD). In Figure 11, the three optimum
controllers (TMD, STMD, and STMD MR) are compared. Figure 11a shows the time history
of acceleration for a particular case. Figure 11b,c show the CDF for the 1-s-running RMS
and instant acceleration for the N cases run, respectively. It can be observed that the STMD
MR maintains the maximum values of acceleration under 1 m/s2, fulfilling strictly the
constraint of the optimization problem. Three observations can be obtained at this point:
(i) for the peak acceleration, the TMD and the STMD MRs show similar performances with
a significant reduction in the inertial mass of the STMD (contributing thus to the lightness
of the footbridge); (ii) for the TMD, it should be noted that ideal conditions have been
assumed (dry friction, misaligned of the springs, nonlinear behavior of the viscous damper,
and other experimental issues might reduce its performance) so a lower performance of the
TMD is expected; (iii) the STMD MR slightly reduces its performance compared with the
viscous STMD, as expected.

Table 4. Optimum parameters of the STMD MR.

STMD MR Value

mt Mass 24.38 kg
ft Frequency 6.00 Hz
kt Stiffness 3.47× 104 N/m

Fsat Saturation force 88.27 N
φ1 Objective function 0.48 -
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Figure 11. Dynamic response of the footbridge with each control device: (a) Acceleration at midspan;
(b) CDF of the 1-s-running RMS value of all the samples; (c) CDF of the acceleration of all the samples.

Finally, the performance of the two STMDs is evaluated in terms of the objective
function φ1 under a real walking ground reaction force—that is, in Figure 10, Fha is now
the vertical reaction force measured in an instrumented treadmill so that the input is not a
pure harmonic action (see Figure 12). For this purpose, the footbridge cases with natural
frequencies equal to 5.48, 7.63, and 10.39 Hz are considered. The natural frequency of
7.63 Hz corresponds to the natural frequency of the constructed footbridge (see Section 4).
The results are shown in Figure 13 and it is clearly observable the improvement obtained
with the implementation of the STMDs, which achieves a substantial reduction of the
acceleration. For the two cases analyzed under real walking excitation, it is shown how the
performance of the STMD MR is degraded with respect to the viscous one, although this
fact may be improved by implementing a continuous control law in future works.
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Figure 12. Vertical reaction force measured in an instrumented treadmill: (a) Time history; (b) Fast
Fourier Transform.
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6. Conclusions

A methodology for the optimum design of a STMD using a semiactive damper con-
trolled by a phase-control law has been proposed in this study. The methodology framework
included, for the first time, the human–structure–actuator interaction. The design process
was based on the solution of a multiobjective constrained minimization problem in which
the parameters that define the control device are the design variables of the problem. The
constraint has been adopted from the maximum vertical acceleration allowed by guidelines.
This methodology has been applied to the optimum design of a STMD for reducing the
dynamic response of a lightweight FRP footbridge, obtaining a vibration reduction of more
than 50% with respect to the uncontrolled case. To take into account the uncertainties of the
coupled human–structure system, 50 samples of the structure and the equivalent human
system were generated. The same case was used to compare the STMD with the passive
TMD. Thus, a similar reduction capacity was achieved with both devices but a 26% higher
mass was required by the passive TMD.

Finally, the optimization process for a realistic simulation of the STMD has been
undertaken, using an MR damper (modeled by a Bingham model) as a semiactive device
and including the required elements that must be taken into account for the feedback
process and the implementation of the control law. The results reported a performance
reduction compared with the TMD and the ideal STMD. Although an ON/OFF phase
control has been adopted here, the proposed design methodology can be applied for
other control strategies, as long as the phase adjustment procedure corresponds to the one
explained in Section 2.3.

Future works will be focused on the experimental development of the methodology
proposed herein on the FRP footbridge constructed at the Laboratory of Structures of
the Technical University of Madrid. Besides, strategies for reducing the influence of the
MR nonlinear model will be explored such as dynamics inversions and/or continuous
control laws.
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The following abbreviations are used in this manuscript:

FRP Fiber-Reinforced Polymers
TMD Tuned Mass Damper
STMD Semiactive Tuned Mass Damper
HSI Human–Structure Interaction
MSDA Mass-Spring-Damper-Actuator
MTMD Multiple Tuned Mass Damper
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MR Magnetorheological
DLF Dynamic Load Factors
GLF Generated Load Factors
SDOF Single Degree of Freedom
CDF Cumulative Distribution Function
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10. Weber, F.; Maślanka, M. Precise Stiffness and Damping Emulation with MR Dampers and its Application to Semi-Active Tuned

Mass Dampers of Wolgograd Bridge. Smart Mater. Struct. 2014, 23, 015019. [CrossRef]
11. Koo, J.H.; Ahmadian, M.; Setareh, M.; Murray, T.M. In Search of Suitable Control Methods for Semi-Active Tuned Vibration

Absorbers. J. Vib. Control 2004, 10, 163–174. [CrossRef]
12. Moutinho, C. Testing a Simple Control Law to Reduce Broadband Frequency Harmonic Vibrations using Semi-Active Tuned

Mass Dampers. Smart Mater. Struct. 2015, 24, 055007. [CrossRef]
13. Zhang, D.; Pan, P.; Zeng, Y.; Guo, Y. A Novel Robust Optimum Control Algorithm and Its Application to Semi Active Controlled

Base Isolated Structures. Bull. Earthq. Eng. 2020, 18, 2431–2460. [CrossRef]
14. Gu, X.; Yu, Y.; Li, Y.; Li, J.; Askari, M.; Samali, B. Experimental Study of Semi-Active Magnetorheological Elastomer Base Isolation

System using Optimal Neuro Fuzzy Logic Control. Mech. Syst. Signal Process. 2019, 119, 380–398. [CrossRef]
15. Wang, L.; Nagarajaiah, S.; Shi, W.; Zhou, Y. Semi-Active Control of Walking-Induced Vibrations in Bridges using Adaptive Tuned

Mass Damper considering Human-Structure-Interaction. Eng. Struct. 2021, 244, 112743. [CrossRef]
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