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Abstract: This study presents a compound control algorithm that enhances the servo accuracy and
disturbance suppression capability of direct drive components (DDCs). The servo performance of
DDCs is easily affected by external disturbance and the deterioration of assembly characteristics
due to a lack of deceleration device. The purpose of this study is to compensate for the impact of
external and internal disturbances on the system. First, a linear state space model of the system
is established. Second, we analyzed the main factors restricting the performance of DDCs which
includes sensor noise, friction and external disturbance. Then, a fractional-order proportional
integral (FOPI) controller was used to eliminate the steady-state error caused by the time-invariable
disturbance which can also improve the system’s anti-interference capability. A state-augmented
Kalman filter (SAKF) was proposed to suppress the quantization noise and compensate for the
time-varying disturbances simultaneously. The effectiveness of the proposed compound algorithm
was demonstrated by comparative experiments, demonstrating a maximum 89.34% improvement.
The experimental results show that, compared with the traditional PI controller, the FOPISAKF
controller can not only improve the tracking accuracy of the system, but also enhance the disturbance
suppression ability.

Keywords: direct drive components; disturbance suppression; fractional-order control; state-
augmented Kalman filter

1. Introduction

Direct drive components (DDCs) are widely used in light load and high precision
equipment such as photoelectric pods, seekers, small robots, etc., because of its better
speed versus torque characteristics, high efficiency, high dynamic response, higher speed
operating range and low maintenance cost [1,2]. Nevertheless, DDCs are susceptible to
external disturbance, internal friction, and sensor noise, making it difficult to meet the
equipment’s stable accuracy index which reaches the micro-radian level under interference.

For the compensation of friction and external disturbance, many scholars have con-
ducted a lot of research. The traditional PI control is the most widely used in the industrial
field due to its simple structure and good robustness. However, as the system accuracy
increases many nonlinear factors and strong interference during practical application occur,
and traditional PI controllers have been unable to meet the requirements. On this basis,
many scholars have studied the integration of various advanced intelligent control algo-
rithms into PI control, e.g., genetic algorithm, expert system algorithm, neural network
algorithm, fuzzy logic control algorithm. Although intelligent algorithms have advantages
such as strong optimization capabilities, they present problems such as a high amount of
calculation, long convergence time, and difficulty in implementation.

During the past decades, researchers have paid attention to fractional-order con-
trollers [3–5]. Compared with the traditional PI controllers, the fractional-order propor-
tional integral (FOPI) controller adds one additional design parameter, thereby providing
additional degrees of freedom for the control structure. The order of integration in an
FOPI controller is an adjustable parameter, which accounts for the shortcomings of PI
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controllers, and it is simple to implement. Shah P reviewed the development of fractional-
order controllers, including the latest research progress in the design methods, parameter
tuning methods, and engineering applications [6]. His research promotes the develop-
ment of FOPI controllers. For the fast dynamic response and disturbance suppression of
permanent magnet synchronous motors, Jakovljević studied fractional and distributed
order proportional-integral-derivative (FOPID and DOPID) controllers [7]. His research
results show that FOPID and DOPID controllers have great advantages in anti-disturbance.
Liu firstly proposed a combination of an FOPID controller and active disturbance rejection
control (ADRC) method for current compensation and voltage tracking of active power
filters [8]. The simulation results show that compared with the traditional double-loop
control method, this method has greater robustness and higher compensation accuracy.
Bingi proposed the two-degree-of-freedom fractional-order PID (2DOF-FOPID) controller
for the real-time control of pressure process in both parallel and series configurations [9].
From the real-time experimental results obtained, the proposed approach outperforms
PID, FOPID and 2DOF-PID controllers in terms of overshoot and settling time. Hence,
the approach has better set-point tracking ability and disturbance rejection capability.
Seyedtabaii reexamined the robustness of the fractional-order controller in containing the
UAV aerodynamic parameters uncertainty and suggested modifications for better vehicle
performance and lower computations [10]. He proposed a modified method for flat phase
margin FOPID design and the experiment results demonstrated that the proposed method
outperforms the conventionally designed FOPID and definitely PID in leading the roll,
yaw and pitch motion in a coherent manner. The abovementioned research proves that the
fractional-order controller has a wide range of application prospects.

Since an FOPI control introduces an adjustable integration order, finding a suitable
tuning method is the focus of research to promote the application of fractional-order
controllers in the industrial field. The existing tuning methods can be divided into auto-
tuning, optimal tuning, and robust tuning [11–14] and frequency domain design [15–17]. To
recap, the auto-tuning, optimal tuning and robust tuning are too complex and each of them
is suitable only for a specific class of systems. The frequency domain design method is the
easiest to implement in engineering and has better stability, so it is adopted to realize the
tuning of an FOPI controller. It should be pointed out that the realization of the frequency
band limitation of the fractional-order system is of equal importance in practice. XUE has
conducted in-depth research in this area, and finally put forward a modified Oustaloup
filter [18] to approximate the fractional integrator that is proved to be effective.

Due to the limitation of system size and quality, the DDCs are rarely equipped with a
tachometer for shaft rotation speed measurement. Instead, it collects and differentiates the
measured angle of an incremental encoder to obtain the angular velocity. The resolution of
the incremental encoder is not high enough, causing noise in the sensor signal. In addition,
DDCs have the problem of being greatly affected by external load disturbances. For these
two problems, this paper proposes a method of strapping down a state-augmented Kalman
filter (SAKF) [19] with the FOPI controller. Compared with the traditional Kalman filter, SAKF
expands the one-dimensional state variable on the basis of the original system state space, and
uses the Kalman filter to observe and compensate for external disturbances [19–21].

The contribution of this paper is mainly to propose a comprehensive control algorithm
that combines a fractional-order controller and SAKF. The FOPI controller is used to
eliminate linear factors in the system and improve the system’s anti-interference ability,
while SAKF can simultaneously realize the filtering of sensor signals with high signal-to-
noise ratio and the observation of external load disturbances. The sections of this paper
are organized as follows: In Section 2, a dynamic model of DDCs is established and the
key factors affecting high-precision control of DDCs are analyzed. Section 3 introduces the
structure of the control algorithm and expounds the design method of the FOPI controller
and SAKF. The experiments are described in Section 4. Finally, the conclusion of this study
is summarized in Section 5.
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2. System Modelling and Problem Statement
2.1. Modelling of DDCs

The DDCs system consists of a brushless DC torque motor (BLDC), an inertial disk, an
incremental encoder and a load as shown in Figure 1.
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where m LI I I= +  is the overall moment of inertia of the system, eK  is back-EMF coeffi-
cient, mK  is the motor torque constant and B  is the damping coefficient of the system. 
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Figure 2. Simplified linear model of DDCs, where ω  is the angular velocity of the shaft. 

Figure 1. Schematic diagram of DDCs.

The symbols in Figure 1 are defined as follows: L is the armature inductance of the
motor, R is the armature resistance, i is the armature current, u is the armature voltage, e is
the back-electromotive force (back-EMF), Im is the moment of inertia of the motor rotor, IL
is the moment of inertia of the disk, Tm is the motor torque, Td is the friction disturbance
torque and θ is the angular of the shaft.

The dynamical equations of the system was obtained as follows:
L di

dt + Ri = u− e,

e = Ke
.
θ,

I
..
θ + B

.
θ = Tm − Td,

Tm = Kmi

(1)

where I = Im + IL is the overall moment of inertia of the system, Ke is back-EMF coefficient,
Km is the motor torque constant and B is the damping coefficient of the system.

Generally, the driver is set in the current mode and the bandwidth of the current loop
is much higher than the bandwidth of the speed loop (more than ten times). Therefore,
the current loop can be viewed as a proportional element, i.e., i = KDu, where KD is the
conversion factor of the driver. Hence, the DDCs model can be simplified as shown in
Figure 2.
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According to Figure 2, the open-loop transfer function of the DDCs can be expressed as:

ω(s) =
1

Is + B
(KmKDu− Td) (2)

In order to simplify the observation of torque disturbance, the disturbance is converted
to the command end. Thus we have ζ(s) = Td(s)/(KmKD). We defined α = KmKD/I
and β = −B/I. Therefore, the relationship between the angular velocity ω, the control
command u and the equivalent input disturbance ζ can be converted into:

ω(s) =
α

s− β
(u(s)− ζ(s)) (3)

The angular θ of the shaft can be expressed as:

θ(s) =
1
s

ω(s) =
1
s

α

s− β
(u(s)− ζ(s)) (4)

After converting the above transfer function into state space, we obtain:[ .
θ(t)
.

ω(t)

]
= Ac

[
θ(t)
ω(t)

]
+
[

Bc − Bc
][ u(t)

ζ(t)

]
where Ac =

[
0 1
0 β

]
, Bc =

[
0
α

]
(5)

Since the control signal u is generated by a D/A converter, Equation (3) can be
rewritten in the discrete-time domain with a zero order hold at the input stage as [20,22]

ω(k) =
αd

z− βd
(u(k)− ζ(k)), where αd =

α

−β
(1− eβts), βd = eβts (6)

where k is the sample counter, αd is the discrete time transfer function gain, βd is the discrete
time pole, z is the forward shift operator and ts is the sampling period. Then, the discrete
time version of the state space expression in Equation (5) can be obtained as:[

θ(k + 1)

ω(k + 1)

]
= Ad

[
θ(k)
ω(k)

]
+
[

Bd − Bd
][ u(k)

ζ(k)

]
, where Ad = eActs , Bd =

∫ ts

0
eAcλdλ · Bc (7)

Restricted by the level of sensor manufacturing accuracy, the sensor inevitably intro-
duces quantization noise and measurement errors, which would affect the accuracy and
stability of servo control. The noise is mainly composed of D/A converter quantization
noise and angular measurement quantization noise.

The real output voltage of the D/A converter can be expressed as:

u = u′ + ũ (8)

where u′ is the voltage command and ũ is the voltage noise. The distribution and magnitude
of the noise depends on the accuracy of the D/A converter.

Assuming that the noise distribution of the output voltage is approximately a uniform
probability distribution, the variance of the D/A converter noise can be obtained as:

Rũ = E
{
(ũ− E[ũ])2

}
=

(δu)2

12
(9)

where δu is the resolution of D/A converter.
Similarly, the angular θm and the angular velocity ωm measured by the encoder are

expressed, respectively:

θm(k) = θ(k) + θ̃(k), ωm(k) = ω(k) + ω̃(k) (10)
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where θ is the real output angular, θ̃ is the angular noise, ω is the real output angular
velocity, ω̃ is the angular velocity noise. The variances of the angular noise and angular
velocity noise are:

R
θ̃
= E

{
(θ̃ − E[θ̃])

2}
=

(δθ)2

12
, Rw̃ = E

{
(ω̃− E[ω̃])2

}
=

(δω)2

12
(11)

where δθ is the resolution of the encoder. Since the angular velocity ω is derived from the
angular θ, the relationship between δθ and δω can be expressed as δω = δθ/ts.

In order to design an unbiased state estimator, the influence of disturbance charac-
teristics on the system must also be considered in the dynamic model. Friction is the
dominant disturbance of the shaft control system, and it does not change suddenly during
steady-state motion. Therefore, it can be reasonably assumed that the disturbance ζ(k) is
composed of a piecewise constant signal with zero average white noise perturbation ζd(k)
as below:

ζ(k + 1) = ζ(k) + ζd(k) (12)

where the variance of the disturbance perturbation Rζd is the tuning parameter of the
Kalman Filter. Combining Equations (6)–(11), an augmented discrete-time state-space
model including linear dynamics, input and measurement noise and disturbance models
is deduced:

 θ(k + 1)

ω(k + 1)

ζ(k + 1)

 = Aaug

 θ(k)
ω(k)
ζ(k)

+ Baug
[

u(k)
]
+ Waug

[
ũ(k)
ζd(k)

]

[
θm(k)
ωm(k)

]
= Caug

 θ(k)
ω(k)
ζ(k)

+ Vaug

[
θ̃(k)
ω̃(k)

] (13)

where,

Aaug =

[
Ad −Bd

0 0 1

]
, Baug =

[
Bd

0

]
, Caug =

[
1 0 0

0 1 0

]
, Waug =

 Bd 0

0

0 1

, Vaug =

[
1 0

0 1

]

In the above model, Aaug and Baug are the augmented system and input matrices, respec-
tively. The disturbance ζ(k) appears as a state which is estimated by the Kalman filter. Waug

decides how the process noise vector [ ũ ζd ]
T affects the state transition. Caug is the

output matrix, and Vaug relates the measurement noise [ θ̃ ω̃ ]
T

to the measured angular

and angular velocity [ θm ωm ]
T , which is also referred to as the output vector. The above

model is used in the SAKF design for disturbance compensation in Section 3.2.

2.2. Problem Statement

From the above analysis, it can be seen that the disturbance contained in the DDCs
mainly include into two parts. The first part is the quantization noise Rũ, R

θ̃
, Rw̃, which is

introduced by the D/A converter and the measuring device used in the system. The other
is the uncertain disturbance Td composed of the friction torque, the mass unbalance torque
and external load disturbance. For brevity, we did not analyze these disturbances in detail.
Additionally, the uncertain disturbance can be divided into time-invariable disturbance Td
and time-varying disturbance T̃d [23,24].

Time-invariable disturbance Td and time-varying disturbance T̃d will introduce the
steady-state error and dynamic error, respectively in the control process. Excessive measure-
ment noise may cause an instability of the control system. Therefore, the above three factors
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must be managed accordingly to improve the control accuracy and the anti-interference
capability of the system.

For Td, which appears as a step signal, the FOPI controller is useful to eliminate the
influence of its effect as well as improve the ability to resist external disturbances.

For T̃d, the FOPI controller is not feasible because the frequency component is un-
known. A state augmented Kalman filter (SAKF) has been proven to be an effective method
to realize observation and compensation of T̃d and the filtering of measurement noises.

3. Controller Design and Analysis

In this section, a compound control strategy is proposed to improve the nonlinear
dynamic behavior due to time-invariable disturbance Td, time-varying disturbance T̃d and
measurement noise.

As shown in Figure 3, the fractional-order controller is used to eliminate steady-state
errors caused by Td. For T̃d and measurement noise, an SAKF observer is configured to track
the residual perturbation by collecting the input voltage u, feedback angular velocity ωm
and feedback angular θm.Then, the estimated disturbance T̂d after a coefficient Kg = 1

KDKm
is added to the input voltage through feedforward and the filtered angular velocity ω̂ is
used for speed feedback control.
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3.1. Design of FOPI Controller

As shown in Figure 2, the open-loop linear system model of velocity can be expressed as:

Gopen(s) =
KmKD
Is + B

(14)

Let s = jw, the expression of the transfer function in frequency domain is:

Gopen(jw) =
KmKD

jIw + B
=

KmKD(B− jIw)

I2w2 + B2 (15)

The phase and amplitude of the transfer function are:

Arg
[
Gopen(jw)

]
= −arctan

(
Iw
B

)
(16)

∣∣Gopen(jw)
∣∣ = KmKD

I2w2 + B2

√
I2w2 + B2 =

KmKD√
I2w2 + B2

(17)

Set the fractional-order controller as a FOPI controller which is expressed as:

C(s) = FOKP(1 + FOKi
1
sλ

) (18)
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where FOKP, FOKi and λ are the proportional coefficient, integral coefficient and order of
the integrator of the FOPI controller, respectively.

Similarly, let s = jw, we obtain:

C(jw) = FOKP(1 + FOKi
1

(jw)λ )

= FOKP[(1 + FOKi · w−λ cos(− λπ
2 ))− j(FOKi · w−λ sin(− λπ

2 ))]
(19)

The phase and amplitude of the FOPI controller are:

Arg[C(jw)] = −arctan

 FOKi · w−λ sin
(
− λπ

2

)
1 + FOKi · w−λ cos

(
− λπ

2

)
 (20)

|C(jw)| = FOKP ·

√(
1 + FOKi · w−λ cos

(
−λπ

2

))2
+

(
FOKi · w−λ sin

(
−λπ

2

))2
(21)

The velocity loop open-loop transfer function of the system in frequency domain is
G(jw) = C(jw) · Gopen(jw). Combining Equations (15) and (19), the phase of G(jw) can be
obtained as:

Arg[G(jw)] = −arctan
(

Iw
B

)
− arctan

 FOKi · w−λ sin
(
− λπ

2

)
1 + FOKi · w−λ cos

(
− λπ

2

)
 (22)

In the same way, combining Equations (16) and (20), the amplitude of G(jw) is shown as:

|G(jw)| = KmKD · FOKP√
I2w2 + B2

√(
1 + FOKi · w−λ cos

(
−λπ

2

))2
+

(
FOKi · w−λ sin

(
−λπ

2

))2
(23)

In order to obtain the three parameters of the FOPI controller, three constraint equa-
tions need to be established. We adopt the three criteria proposed by Monje C A [12,16] to
obtain the three parameters.

A. Phase margin specification:

Arg[G(jwc)] = −arctan
(

Iwc

B

)
− arctan

 FOKi · wc
−λ sin

(
− λπ

2

)
1 + FOKi · wc−λ cos

(
− λπ

2

)
 = −π + ϕm (24)

where wc is the gain crossover frequency and ϕm is the phase margin required.

B. Robustness to variation in the gain of the plant:

d(Arg[G(jw)])

dw

∣∣∣∣
w=wc

= 0 (25)

That is, the derivative of G(jw) with respect to the frequency is forced to be zero at the
gain crossover frequency so that the closed-loop system is robust in gaining variations, and
therefore the overshoots of the response are almost invariant.

C. Gain crossover frequency specification:

|G(jwc)| =
KmKD · FOKP√

I2wc2 + B2

√(
1 + FOKi · wc−λ cos

(
−λπ

2

))2
+

(
FOKi · wc−λ sin

(
−λπ

2

))2
= 1 (26)
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Combining Equations (23) and (24), the coefficient FOKi and order λ of the integrator
can be obtained as Equations (26) and (27):

FOKi =
tan
(

π − ϕm − arctan
(

Iwc
B

))
w−λ

c sin
(

λπ
2

)
− w−λ

c cos
(

λπ
2

)
tan
(

π − ϕm − arctan
(

Iwc
B

)) (27)

FOKi =
−N ±

√
N2 − 4Mw−2λ

c

2Mw−2λ
c

(28)

where,

M =
I
B

1 + ( Iwc
B )

2 , N = 2Mw−λ
c cos(

λπ

2
)− λw−λ

c sin(
λπ

2
)

According to Equations (26) and (27), when the gain crossover frequency wc and
the phase margin ϕm are given, we take the order of the integrator λ as the independent
variable and the coefficient of the integrator FOKi as the dependent variable. Two curves
can be drawn and the intersection of the curves is the tuning result.

According to Equation (25), the proportional coefficient of the fractional controller
FOKp can be expressed as:

FOKp =

√
I2w2

c + B2

KmKD

√(
1 + FOKi · w−λ

c cos
(
− λπ

2

))2
+
(

FOKi · w−λ
c sin

(
− λπ

2

))2
(29)

Therefore, as long as the gain crossover frequency wc and the phase margin ϕm are
known, the parameter values of the FOPI controller can be calculated according to the
above three criteria.

Since the FOPI controller is an infinite-dimensional system, it needs to memorize all
the historical inputs in the past, which is difficult in practical engineering applications. The
band limit implementation of fractional-order systems is important in practice, which is
why Xue [18] proposed a modified Oustaloup filter to approximate the fractional integrator:

sλ ≈ K0

(
ds2 + hwhs

d(1− λ)s2 + hwhs + dλ

) n

∏
k=−n

s + w′k
s + wk

(30)

where,

K0 =

(
dwb

h

)λ n

∏
k=1

wk
w′k

(31)

where, k = 1, 2, . . . , n, w′k = wbw(2k−1−λ)/n
u , wk = wbw(2k−1+λ)/n

u , wu =
√

wh
wb

.

where the frequency range to be fit is defined as (wb, wh),n is the order of the filter.

3.2. Design of SAKF Based Estimator

The time-varying disturbance T̃d and measurement noise of DDCs are the main factors
affecting servo performance. To improve the disturbance suppression capability of DDCs,
a compound control strategy that strapping the SAKF observer behind the FOPI controller
is proposed. The SAKF can realize the observation of nonlinear disturbances and enhance
the signal-to-noise ratio of the sensor signal at the same time.

Equation (12) establishes a discrete extended state space including a dynamic model
and a noise model. Furthermore, the form of SAKF is obtained as [19,21]:
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 θ̂(k)
ω̂(k)

ζ̂(k)

 = (E− KobsC)Aaug

 θ̂(k− 1)

ω̂(k− 1)

ζ̂(k− 1)

+
(
E− KobsCaug

)
Baug[u(k− 1)] + Kobs

[
θm(k)
ωm(k)

]
(32)

where E is the identity matrix. The gain Kobs of the SAKF can be obtained offline iteratively
by Equation (32):

H(k|k− 1 ) = AaugH(k− 1|k− 1 )AT
aug + WaugRzWT

aug

Kobs(k) = H(k|k− 1 )CT
[

Rv + CaugH(k|k− 1 )CT
aug

]−1

H(k|k ) =
[
E− Kobs(k)Caug

]
H(k|k− 1 )

(33)

where H is the covariance of state estimation error and Rz =

[
Rũ 0

0 Rζd

]
, Rv =

[
R

θ̃
0

0 Rω̃

]
.

4. Experiment

In order to demonstrate the effectiveness of the proposed compound control strategy,
comparative experiments between the traditional methods and the proposed one were
carried out.

4.1. Experiment Setup

The experimental device is mainly composed of a BLDC, a servo driver, an adjustable
inertia disk, an encoder, a magnetic powder brake, a dSPACE1103 and computer as shown
in Figure 4. The inertia plate is used to simulate load inertia and the external disturbance is
applied by the magnetic powder brake. The rotational speed of the shaft is measured by an
incremental encoder. All the required parameters are provided in Table 1.
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Table 1. Parameters of the experimental device.

Symbol Description Value

Im/(kg ·m2) Moment of inertia of motor rotor 6.5 × 10−3

IL/(kg ·m2) Moment of inertia of load 2.3 × 10−3

B/(N ·m · s · rad−1) Damping coefficient of motor rotor 0.044

Km/(N ·m ·A−1) Motor torque constant 0.73

KD/(A ·V−1) Driver conversion factor 0.47

δũ/(V) DA conversion resolution 20/(216)

δθ̃/(◦) Encoder resolution 0.02

4.2. Control Parameters

According to the mechanical parameters and sensor parameters, the three parameters
of the FOPI controller are first calculated.

On the basis of previous engineering experience, when the open-loop gain crossover fre-
quency and phase margin are wc = 90 rad, ϕm = 45◦, the dynamic performance requirements
of the system can be met. By substituting the two parameters into Equations (26) and (27), the
two curves in Figure 5 were derived.
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From Figure 5, we find λ = 0.47582 and FOKi = 35.1486. Substituting λ and FOKi
into Equation (28), FOKp = 0.4707 is obtained. Therefore, the FOPI controller can be
expressed as:

C(s) = 0.4707 · (1 + 35.1486 · 1
s0.47582 )
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Secondly, the approximate calculation of the integrator of the FOPI controller is carried
out. In order to weigh the degree of approximation and computational efficiency of the
modified Oustaloup filter to the fractional integrator, the filter order is set to N = 9. Refer
to reference [18], the frequency range (wb, wh) of the filter is set to (0.01, 1000). S = By
substituting the above values into Equations (29) and (30), the parameter values of the
modified Oustaloup filter are obtained.

Finally, the gain of SAKF Kobs is calculated offline. After substituting the parameters
in Table 1 into Equation (12), the discrete state space matrix containing the dynamic model
and the noise model is obtained as:

Aaug =

 1 9.975× 10−4 −0.0011

0 0.995 −2.2283

0 0 1

, Baug =

 0.0011

2.2283

0

, Caug =

[
1 0 0

0 1 0

]
, Waug =

 0.0011 0

2.2283 0

0 1

, Vaug =

[
1 0

0 1

]

In the debugging, for weighing the fast response of the observer and the noise, the
value of the noise and disturbance perturbation covariance is set as Rζd = 0.01 and the
coefficient Kg = 2.9146. After the offline iteration shown in Equation (32), the final optimal
gains of SAKF is obtained:

Kobs =

 0.1604 1.2511× 10−5

12.5111 0.0013

−0.2022 −2.4812× 10−5


4.3. Experimental Results

To verify the advancement of the proposed compound control algorithm, performance
comparison experiments under different control methods were conducted. The control
methods include: (1) PI, (2) FOPI and (3) FOPI + SAKF (FOPISAKF). To ensure the validity
of the comparison, we used the method described in Section 3.1 to obtain the parameters of
the PI controller.

Firstly, we compared the tracking performance of the four methods on the sinusoidal
signal with different frequency (20◦/s and 1 Hz and 20◦/s and 5 Hz) and the results are
shown in Figure 6a,b. Secondly, we tested the step response characteristics of the system
under different control methods whose results are given in Figure 6c. Thirdly, Figure 6d
compares the anti-interference performance of the three control methods.

In Figure 6, the green curve represents the result of PI control, the dark blue curve
represents the result of FOPI control and the pink represents the result of FOPISAKF control.

The root-mean-square-err (RMSE) is introduced to quantify the tracking error of the
three experiments in Figure 6 and the performance comparison results are shown in Table 2.

From the above experimental results, it can be seen that, compared with the traditional
PI controller, FOPISAKF controllers achieve an improvement of 80.58%, 66.41%, 46.62% and
89.34%, respectively. Hence, the FOPISAKF controller can not only improve the tracking
accuracy of the system, but also enhance the disturbance suppression ability.



Actuators 2022, 11, 95 12 of 14

Actuators 2022, 11, x FOR PEER REVIEW 12 of 14 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Cont.



Actuators 2022, 11, 95 13 of 14

Actuators 2022, 11, x FOR PEER REVIEW 13 of 14 
 

 

 
(d) 

Figure 6. Performance comparison under different methods. (a) 20°/s&1Hz sinusoidal signal track-
ing experiment. (b) 20°/s&5Hz sinusoidal signal tracking experiment. (c) Step response experiment. 
(d) Anti-interference experiment. 

Table 2. The RSME of experiments under different methods. 

Methods  
Experiments PI (°/s) FOPI (°/s) FOPISAKF (°/s) Improvement (%) 

20°/s and 1 Hz sinusoidal 
signal tracking experiment 

2.06 1.12 0.40 80.58 

20°/s and 5 Hz sinusoidal 
signal tracking experiment 6.46 2.31 2.17 66.41 

Step response experiment 2.66 1.69 1.42 46.62 
Anti-interference experiment 1.22 0.63 0.13 89.34 

5. Conclusions 
In order to improve the speed tracking accuracy and disturbance suppression capa-

bility of DDCs, this paper proposes a compound control algorithm of an FOPI controller 
strapdowning with an SAKF observer. A dynamic model considering disturbance and 
sensor noise was established. The disturbance in the system was divided into time-invar-
iable and time-varying parts. The FOPI controller was proposed to eliminate the time-
invariable disturbance of the system and improve the anti- interference ability of the sys-
tem. Furthermore, the encoder noise and external disturbance were filtered and compen-
sated for simultaneously by the SAKF observer. The experimental results show that, com-
pared with the traditional PI controller, the best improvement is 89.34%. The compound 
control algorithm can effectively improve the system servo accuracy and leads to better 
disturbance observation and suppression effects. 

Author Contributions: Conceptualization, J.Z., G.R. and X.X.; Data curation, J.Z.; Funding acquisi-
tion, D.F.; Methodology, J.Z., X.J. and D.F.; Supervision, X.J.; Validation, J.Z.; Writing—original 
draft, J.Z.; Writing—review and editing, D.F. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This work was funded by National Key R&D Program of China (Grant No. 
2019YFB2004700) and the National Natural Science Foundation of China (Grant No. U19A2072). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 6. Performance comparison under different methods. (a) 20◦/s&1Hz sinusoidal signal tracking
ex-periment. (b) 20◦/s&5Hz sinusoidal signal tracking experiment. (c) Step response experiment.
(d) Anti-interference experiment.

Table 2. The RSME of experiments under different methods.

Experiments
Methods

PI (◦/s) FOPI (◦/s) FOPISAKF
(◦/s)

Improvement
(%)

20◦/s and 1 Hz sinusoidal
signal tracking experiment 2.06 1.12 0.40 80.58

20◦/s and 5 Hz sinusoidal
signal tracking experiment 6.46 2.31 2.17 66.41

Step response experiment 2.66 1.69 1.42 46.62
Anti-interference experiment 1.22 0.63 0.13 89.34

5. Conclusions

In order to improve the speed tracking accuracy and disturbance suppression capa-
bility of DDCs, this paper proposes a compound control algorithm of an FOPI controller
strapdowning with an SAKF observer. A dynamic model considering disturbance and sen-
sor noise was established. The disturbance in the system was divided into time-invariable
and time-varying parts. The FOPI controller was proposed to eliminate the time-invariable
disturbance of the system and improve the anti- interference ability of the system. Fur-
thermore, the encoder noise and external disturbance were filtered and compensated for
simultaneously by the SAKF observer. The experimental results show that, compared
with the traditional PI controller, the best improvement is 89.34%. The compound control
algorithm can effectively improve the system servo accuracy and leads to better disturbance
observation and suppression effects.
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