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Abstract: The planetary gear train is often used as the main device for decelerating and increasing
the torque of the drive motor of electric vehicles. Considering the lightweight requirement and
existing uncertainty in structural design, a multi-objective uncertainty optimization design (MUOD)
framework is developed for the planetary gear train of the electric vehicle in this study. The volume
and transmission efficiency of the planetary gear train are taken into consideration as optimization
objectives. The manufacturing size, material, and load input of the planetary gear train are considered
as uncertainties. An approximate direct decoupling model, based on subinterval Taylor expansion,
is applied to evaluate the propagation of uncertainties. To improve the convergence ability of the
multi-objective evolutionary algorithm, the improved non-dominated sorting genetic algorithm
II (NSGA-II) is designed by using chaotic and adaptive strategies. The improved NSGA-II has
better convergence efficiency than classical NSGA-II and multi-objective particle swarm optimization
(MOPSO). In addition, the multi-criteria decision making (MCDM) method is applied to choose the
most satisfactory solution in Pareto sets from the multi-objective evolutionary algorithm. Compared
with the multi-objective deterministic optimization design (MDOD), the proposed MUOD framework
has better reliability than MDOD under different uncertainty cases. This MUOD method enables
further guidance pertaining to the uncertainty optimization design of transportation equipment,
containing gear reduction mechanisms, in order to reduce the failure risk.

Keywords: optimization design; vehicle structure design; uncertainty; deceleration device

1. Introduction

In recent years, electric vehicle technology has developed rapidly [1,2]. The planetary
gear reducer is used in electric vehicles due to its high transmission efficiency and compact
structure. Due to the space limitation of electric vehicles, the design of compact planetary
gear trains has become a key issue. Numerous optimization methods are involved in
the gear train design. For example, Parmar et al. [3] proposed a novel multi-objective
optimization method, for planetary gear trains, using NSGA-II. Miler et al. [4] chose trans-
mission volume and power loss as design objectives, and they optimized the parameters
of the planetary gear train with multi-objective optimization. Sedak et al. [5] proposed a
constrained multi-objective nonlinear optimization problem for planetary gearboxes, based
on a hybrid element heuristic algorithm, considering gear volume, center distance, contact
ratio, and power loss as optimization objectives. Patil et al. [6] proposed a multi-objective
optimization strategy to minimize the total volume and power loss of the two-stage helical
gearbox and spur gearbox. Compared to the single-objective optimization method with
tribological constraints, the multi-objective optimization results in less power loss. Savsani
et al. [7] used the particle swarm optimization algorithm, and the simulated annealing
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algorithm, to carry out the optimization design of the lightweight spur gear transmission
system, and, resultingly, this method is deemed to be suitable for the single-objective or
multi-objective optimization design of the multi-stage spur gear transmission. Considering
the above research, the main challenge of gear transmission design is in reducing weight
and power loss. At present, the optimization design method of planetary gear trains mainly
considers the determining system parameters and implements the conventional determinis-
tic optimization method. However, for practical engineering structures, many uncertainties
are observed in the material properties, manufacturing, and measurement [8–12]. To obtain
a reliable structural design, the uncertainties of the planetary gear train of electric vehicles
need to be considered.

Uncertainty optimization in engineering design has gradually attracted attention [13–15].
For example, Xian et al. [16] proposed an effective analysis framework for stochastic opti-
mization pertaining to non-linear viscous dampers of energy dissipation structures, which
was applied to the uncertainty optimization of non-linear viscous dampers of suspension
bridges. Lü et al. [17] proposed an efficient approach for the optimization design of dual un-
certain structures, taking into account the dual robust design and the possibility of failure,
quickly estimating the dual uncertain target of fuzzy random variables, and equivalently
solving the possibility constraints involving fuzzy randomness. Baek et al. [18] developed
a design method of a composite microwave absorbing structure using reliability-based
optimization (RBO), which considers the failure probability. Compared with the results
of deterministic optimization (DO), it was found that the total thickness of the reliability
design method increased slightly, but RBO significantly reduced the failure probability.
Fang et al. [19] developed an effective multi-objective uncertainty optimization program in
order to design car doors. The program analyzed the impact of changing the uncertainty
conditions and improving the reliability level, and it provided clear design information
for decision-makers. Zhang et al. [20] proposed a reliable uncertainty optimization design
route for obtaining optimal energy-absorbing structures. The study found that the solution
obtained, by uncertainty optimization, sacrificed certain demand performance, but it was
more reliable than deterministic design. The above studies have carried out the uncertainty
optimization based on the probability model, which is highly dependent on statistical data.
Considering that the distribution of uncertainty requires a lot of data, it is of a high cost to
obtain effective probability data from a practical engineering perspective.

To overcome the limitation, of uncertainty optimization, due to the lack of data, some
interval uncertainty modes have been gradually developed and applied to engineering
optimization [21,22]. The interval uncertainty model mainly focuses on the upper and
lower boundaries of uncertainty values, which is easier to implement than the probabilistic
uncertainty model. Inuiguchi et al. [23] proposed a linear multi-objective strategy based on
maximum and minimum regret criteria to solve the problem of interval uncertainty in the
objective function. Fu et al. [24] developed a multi-objective direct structural optimization
method for solving interval uncertainty. This method uses the satisfaction value of the
interval possibility model to deal with non-linear uncertain constraints, and it judges the
feasibility and infeasibility of individual design vectors. Wu et al. [25] proposed a non-
probabilistic robust topology optimization method for interval uncertain structures. The
method uses the Chebyshev interval inclusion function to realize the non-invasiveness
of the interval algorithm. Wang et al. [26] developed an effective interval uncertain opti-
mization design strategy using Legendre polynomial chaotic expansion, which is more
efficient than the conventional method. Hou et al. [27] carried out the uncertainty opti-
mization, pertaining to the energy efficiency of ships in icy areas, considering the interval
parameters; the optimization results provided practical guidance for the energy-saving
design of ships in the case of uncertainty in the actual environment. Yu et al. [28] regarded
friction coefficient, material properties, and wear element thickness as interval uncertainty
factors, and proposed an uncertainty optimization method for the noise suppression of the
brake system.
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The above studies have developed a highly effective uncertainty optimization method
based on the interval model, and they have applied it to solve practical engineering prob-
lems. The interval model has been validated as a highly applicable uncertainty optimization
method. Uncertainties in the manufacturing and operation of the planetary gear train of
electric vehicles are unavoidable. The process of efficiently solving multi-objective uncer-
tainty problems for the planetary gear train of electric vehicles is still a key issue. Therefore,
a multi-objective uncertainty optimization design (MUOD) framework is developed for
the planetary gear train of an electric vehicle in this study. Section 2 describes the detailed
methodology of MUOD. Section 3 describes the design requirement of the planetary gear
train of an electric vehicle. Section 4 shows the optimization results. The main conclusions
are drawn in Section 5.

2. Methodology
2.1. Multi-Objective Uncertainty Optimization Problem

In general, the multi-objective deterministic optimization design (MDOD) model can
be expressed as follows [29,30]:

min f (x) =
{

f1(x), f2(x), . . . , fq(x)
}

s.t.


Gi(x) ≤ 0, i = 1, 2, . . . l
hj(x) = 0, j = 1, 2, . . . g

x ∈ {S}

(1)

In the formula,
{

f1, . . . , fq
}

are the objective functions and q is the number of objectives.
Gi(X) is the inequality constraint and l is the number of its constraints; hj(X) is the equality
constraint, and g is the number of its constraints; and {S} is the design space. Different from
the conventional deterministic optimization, the uncertainties of optimization variables and
other relevant design parameters need to be considered during actual processing. Stochastic
probability models are often used to construct uncertainty models, but the distribution
information of uncertainties is unknown due to the lack of test samples. Therefore, the
interval uncertainty model is employed in this study [31]. The multi-objective deterministic
optimization can be transformed into the interval uncertainty problem, as follows:

min f
(

xI , dI
)
=
{

f1

(
xI , dI

)
, f2

(
xI , dI

)
, . . . , fq

(
xI , dI

)}

s.t.


Gi

(
xI , dI

)
≤ 0, i = 1, 2, . . . l

hj

(
xI , dI

)
= 0, j = 1, 2, . . . g

dIC − dIR ≤ dIC ≤ dIC + dIR

x ∈ {S}

(2)

In the formula, xI and dI are interval design variables and other relevant design
parameters, respectively. The superscripts IC and IR represent the nominal value and
interval radius, respectively. The interval radius of an interval value reflects its fluctuation
range and can be expressed as uncertainty deviation. When the design variables and other
relevant parameters are interval values, the relationship of reliability-based possibility
degree Pd can be used to transform the interval uncertainty models into general non-
interval models [31]. For the interval values A1, A2 and A1 ≤ A2,

Pd(A1 ≤ A2) =



0, AIL
1 ≥ AIU

2

0.5· A
IU
2 −AIL

1
AIU

1 −AIL
1
· A

IU
2 −AIL

1
AIU

2 −AIL
2

, AIL
2 ≤ AIL

1 < AIU
2 ≤ AIU

1
AIL

2 −AIL
1

AIU
1 −AIL

1
+ 0.5· A

IU
2 −AIL

2
AIU

1 −AIL
1

, AIL
1 < AIL

2 < AIU
2 ≤ AIU

1
AIL

2 −AIL
1

AIU
1 −AIL

1
+

AIU
1 −AIL

2
AIU

1 −AIL
1
· A

IU
2 −AIU

1
AIU

2 −AIL
2

+ 0.5· A
IU
1 −AIL

2
AIU

1 −AIL
1
· A

IU
1 −AIL

2
AIU

2 −AIL
2

, AIL
1 < AIL

2 ≤ AIU
1 < AIU

2
AIU

2 −AIU
1

AIU
2 −AIL

2
+ 0.5· A

IU
1 −AIL

1
AIU

2 −AIL
2

, AIL
2 ≤ AIL

1 < AIU
1 ≤ AIU

2

1, AIU
1 < AIL

2

(3)



Actuators 2022, 11, 49 4 of 17

The superscripts IL and IU represent the lower and the upper values, respectively. The
reliability-based possibility degree of the interval level should be given beforehand based
on the actual reliable problem. Therefore, the multi-objective uncertainty optimization
model can be expressed as:

min f
(

xIC, dIC
)
=
{

f1

(
xIC, dIC

)
, f2

(
xIC, dIC

)
, . . . , fq

(
xIC, dIC

)}

s.t.


Pd_i(Gi

(
xI , dI

)
≤ 0) ≥ λi, i = 1, 2, . . . l

hj

(
xI , dI

)
= 0, j = 1, 2, . . . g

dIL ≤ dIC ≤ dIU

x ∈ {S}

(4)

In the formula, λi is the requirement of reliability-based possibility degree, and it also
represents the equivalent reliability with different constraints. The main optimization goals
and constraints have been described in Section 3.

Nested optimization design is often used in interval uncertainty optimization, which
treats the uncertainty analysis problem as an internal optimization problem. The purpose
of inner optimization is to evaluate the propagation of uncertainty and feed it back to
the outer optimization route. It is worth considering that adding a new optimization
solver will cause low computational efficiency. Therefore, Taylor expansion, as an effective
decoupling method, is applied to analyze the propagation of uncertainty in this study [32].
The constraint function Gi

(
xI , dI

)
can be approximately constructed by first-order Taylor

expansion, that is:

Gi

(
xI , dI

)
≈ Gi

(
xIC, dIC

)
+

n

∑
i=1

∂Gi

(
xIC, dIC

)
∂xIC

i
xIR

i +
m

∑
j=1

∂Gi

(
xIC, dIC

)
∂dIC

i
dIR

i (5)

Therefore, the lower and upper bounds of the constraint function can be expressed
as follows:

GIL
i

(
xI , dI

)
≈ Gi

(
xIC, dIC

)
−

∣∣∣∣∣∣
n

∑
i=1

∂Gi

(
xIC, dIC

)
∂xIC

i

∣∣∣∣∣∣xIR
i −

∣∣∣∣∣∣
m

∑
j=1

∂Gi

(
xIC, dIC

)
∂dIC

i

∣∣∣∣∣∣dIR
i (6)

GIU
i

(
xI , dI

)
≈ Gi

(
xIC, dIC

)
+

∣∣∣∣∣∣
n

∑
i=1

∂Gi

(
xIC, dIC

)
∂xIC

i

∣∣∣∣∣∣xIR
i +

∣∣∣∣∣∣
m

∑
j=1

∂Gi

(
xIC, dIC

)
∂dIC

i

∣∣∣∣∣∣dIR
i (7)

Generally, the Taylor formula can achieve the best approximation in the case of a small
interval uncertainty. Further, the calculation accuracy can be improved by establishing
a subinterval to compensate for the nonlinear approximation error. For the uncertainty
values U,

Us =

[
U IL +

2(s− 1)U IR

S_n
, U IL +

2sU IR

S_n

]
, s = 1, 2, . . . , S_n (8)

In the formula, Us and S_n are the sth subinterval and the subinterval number, respec-
tively. The subinterval number can be determined by referring to the number of uncertain
parameters. The interval range of constraint function Gi(U) is expressed as follows:

Gi(U) =
[
min

(
GIL

i (U1) . . . GIL
i (Us)

)
, max

(
GIU

i (U1) . . . GIU
i (Us)

)]
(9)

GIL
i (U) = min

(
GIL

i (U1) . . . GIL
i (Us)

)
, GIU

i (U) = max
(

GIU
i (U1) . . . GIU

i (Us)
)

(10)

Through the above interval uncertainty analysis method, the uncertain information of
constraint function Gi(U) can be solved by using the approximate direct decoupling method.
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2.2. Improved Evolutionary Algorithm

The classical non-dominated sorting genetic algorithm (NSGA-II) generally uses the
random function to generate the initial population [33], and its population uniformity is
poor. The crossover probability and mutation probability of classical NSGA-II are set to a
fixed value, respectively, and the optimization algorithm falls into the premature problem.
Therefore, this paper adopts the improved NSGA-II designed by using chaotic and adaptive
evolutionary strategies in order to obtain the multi-objective solution set.

Here, a chaotic strategy is used to generate the initial population of a multi-objective
evolutionary algorithm, which can improve the diversity of the population. Tent map is
one of the most commonly used mapping functions for generating chaotic sequences [34].
Here, the main steps of population chaos initialization and assignment, using the Tent
mapping method, are as follows:

Step 1: Randomly generate an N-dimensional random number vector, X1 =(
X11, . . . X1j, . . . X1Nv

)
, X1j ∈ [0, 1], where Nv is the number of optimization variables.

Step 2: The improved Tent mapping method is used to calculate the chaotic component
of each optimized variable, as follows:

X(i+1,j) =

T
(

X(i,j)

)
+ 0.1·rand(0, 1), X(i,j) ∈ [0, 0.25, 0.5, 0.75] or X(i,j) = X(i−δ,j), δ ∈ [1, 2, 3, 4]

T
(

X(i,j)

)
, else

(11)

T
(

X(i,j)

)
=

{
2X(i,j), 0 ≤ X(i,j) ≤ 0.5

2
(

1− X(i,j)

)
, 0.5 < X(i,j) ≤ 1

(12)

In the formula, i = 1, 2, . . . , Ps, and Ps is the population size; j = 1, 2, . . . , Nv.
Step 3: Substitute each chaotic component obtained in Step 2 into the real range of

each optimization variable, as follows:

x(i,j) = xj
lower + X(i,j)

(
xj

upper − xj
lower

)
(13)

In the formula, xj
lower and xj

upper are the lower and upper bounds of the jth optimized
variable respectively.

Here, the adaptive evolutionary strategy mainly improves the crossover and mutation
operators. The adaptive crossover probability and mutation probability are generated
according to the number of iterations, which is helpful to accelerate the convergence of
optimization. In this study, the exponential function is applied to the adaptive adjust-
ment mode of crossover probability and mutation probability. The calculation formula is
described as follows: 

pc(ni) = 1− 1.5e
(− ni

nt
)

1+e
(− ni

nt
)
pc(0)

pm(ni) =
1.5e

(− ni
nt

)

1+e
(− ni

nt
)
pm(0)

, (14)

In the formula, pc(ni) and pm(ni) are the crossover probability and mutation probabil-
ity at the ni

th iteration; pc(0) and pm(0) are the initial crossover probability and mutation
probability respectively; nt is the total evolutionary generation.

2.3. Multi-Criteria Decision Making (MCDM) Method

Usually, the Pareto solution set in multi-objective optimization can provide decision-
makers with numerous feasible design schemes at the early stage of design, but it cannot
directly obtain the most satisfactory solution. In addition, the weight method aggregates
multi-objective optimization into a single comprehensive objective to obtain the ideal opti-
mal solution. However, although some decision-makers are full of engineering experience,
it is nonetheless difficult to assign the optimal weight to each optimization objective. There-
fore, as a multi-criteria decision making (MCDM) model, grey relational analysis (GRA)
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will be applied to select the most satisfactory scheme in Pareto sets [35–37]. Here, the
GRA with entropy weight method is proposed to identify the most satisfactory solution.
The normalization method can be adopted in the grey relation analysis, depending on the
characteristics of the original sequence. When the target value of the original sequence is
“the larger the better”, the original sequence can be normalized as:

y∗i (k) =
yi(k)−min[yi(k)]

max[yi(k)]−min[yi(k)]
(15)

In the formula, y∗i (k) is a new sequence after normalization; max[yi(k)] is the maxi-
mum value of the original sequence; and min[yi(k)] is the minimum value of the original
sequence. When the target value of the original sequence is “the smaller the better”, the
original sequence can be normalized as:

y∗i (k) =
max[yi(k)]− yi(k)

max[yi(k)]−min[yi(k)]
(16)

After normalization, the grey relational coefficient γi(k), which is used to quantify the
relationship between the target and actual normalized results, can be formulated as [26]:

γi(k) =
∇min − ρ∇max

∇oi(k) + ρ∇max
(17)

In the formula, ∇oi(k) is the deviation between reference sequence ∇oi(k) and the
compared sequence x∗i (k), as follows:

∇oi(k) = ‖y∗i (k)− yo(k)‖ (18)

∇min = min
∀j∈i

min
∀k
‖y∗j (k)− yo(k)‖ (19)

∇max = max
∀j∈i

max
∀k
‖y∗j (k)− yo(k)‖ (20)

ρ is the distinguishing coefficient, ρ ∈ [0, 1], and ρ = 0.5 in this study. After obtaining
the grey relational coefficient, the grey relational grade ci is presented in a weighted sum of
the grey relational coefficients, as follows:

ci =
1
n

n

∑
k=1

γi(k) (21)

For the actual engineering requirements, the effect of each criterion on the design
objectives is not exactly the same; resultingly, Equation (25) can be modified to

ci =
n
∑

j=1
wkγi(k)

n
∑

k=1
wk = 1

(22)

In the formula, wk is a weight of kth criterion. In this study, wj is determined by the
entropy weight method. The weight is calculated by using the entropy weight method
according to the variation degree of each criterion.

Different from the analytic hierarchy process (AHP) [38], the entropy weight method
can objectively obtain the weight of each criterion according to the amount of information
provided by each criterion and the correlation between the criteria, which overcomes the
subjectivity in determining the weight of the criterion. Assuming Oik is the ith alternative
value of the kth evaluation criterion, and the initial evaluation matrix is O = (Oik)m×n.

The proportion of the ith alternative value of the kth evaluation criterion is [39]:

Pik =
Oik

∑m
i=1 Oik

(i = 1, 2 . . . , m; k = 1, 2, . . . , n) (23)

The entropy ek of the kth criterion is:
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ek = −
m

∑
i=1

pik ln(pik)/ ln(m) (24)

When pik is equal to 0, to ensure that ln(pik) is meaningful, Equation (23) can be
modified to:

Pik =
Oik + 1

m + ∑m
i=1 Oik

. (25)

Therefore, the entropy weight of the kth criterion can be expressed as follows:

wk =
1− ek

∑n
k=1(1− ek)

. (26)

2.4. Main Processes of MUOD

The main steps of the multi-objective uncertainty optimization design (MUOD) frame-
work are as shown in Figure 1:

Step 1: Define multi-objective optimization problems, optimization variables, objec-
tives, and constraint functions. This step is similar to conventional deterministic multi-
objective optimization.

Step 2: The interval optimization problem is transformed into a deterministic opti-
mization problem using the relationship of reliability-based possibility degree. It should be
noted that the interval uncertainty transformation mainly aims at the inequality constraints
in the multi-objective optimization model. The lower and upper values of constraint
functions can be solved directly by using the approximate direct decoupling method.

Step 3: The execution process of the multi-objective evolutionary algorithm. An
improved multi-objective evolutionary algorithm is applied to calculate the transformed
mathematical model in Step 2. The improved NSGA-II is designed in Section 2.2. The initial
crossover probability and mutation probability are 0.8 and 0.1.

Step 4: The execution process of the MCDM method. The MCDM method is described
in Section 2.3. The GRA with entropy weight method is applied to choose the most
satisfactory solution in Pareto sets. The objective weight is calculated by using the entropy
weight method, and the grey relational grade is calculated by Equation (26).
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3. Design Requirements of the Planetary Gear Train
3.1. Main Design Variables and Optimization Objectives

The electric drive system and its planetary gear train are shown in Figure 2. The
planetary gear train is used to reduce the speed and increase the output torque of the motor.
Since the helical gear has the advantages of good meshing, stable transmission, and low
noise, the helical planetary gear train is designed in this study. The main parameters of an
electric commercial vehicle are shown in Table 1, which are provided by a vehicle company.
The transmission ratio of the gear and the final output torque can be calculated according
to the vehicle parameters.
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Table 1. Main parameters of full vehicle design.

Parameters Values

Body size (length, width, height) (mm) 7232, 2240, 2820
Wheelbase (mm) 3935
Curb mass (kg) 5000

Full load mass (kg) 8500
Front/rear wheel track (mm) 1901/1630

Rolling radius (mm) 373
Maximum speed (km/h) 100

Maximum climbing degree 30%
Maximum speed in 30 min (km/h) 90

The planetary gear train should be compact; that is, the overall volume of the planetary
gear train should be small enough to facilitate the arrangement of the electric drive system
in the chassis of the electric vehicle. Smaller gear volume corresponds to lighter weight,
which is more conducive to the improvement of energy efficiency. Therefore, the volume of
the helical planetary gear train is used as the optimization objective function. To simplify
the calculation, the volume v of the ring gear is chosen as the design objective, as follows:

v =
1
4

πbd2
r , (27)

In the formula, dr is the pitch circle diameter of the ring gear; b is the tooth width. In
general, the power loss in gear transmission mainly includes the friction loss caused by gear
tooth surface meshing, the bearing loss, and the stirring loss of lubricating oil. The meshing
friction power loss is the main reason for the gear transmission power loss. Therefore, the
transmission efficiency, considering the meshing friction power loss, is regarded as the
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second design objective. The planetary gear train mainly includes external and internal
meshing of the gear, as shown in Figure 3a,b.
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Here, the transmission efficiency ηex of external meshing can be expressed as [40]:

ηex = 1−
µZp pt

(
1

Zs
+ 1

Zp

)
fex(ε)

Rbp − µRp(εei − εeo) sin αt + µpt fex(ε)
(28)

In the formula, µ is the friction coefficient; Zs is the number of teeth of the sun gear;
Zp is the number of teeth of the planet gear; αt is the transverse pressure angle; pt is the
transverse circular pitch; Rbp and Rp are the base circle radius and pitch circle radius of
planet gear respectively; and εei and εeo are the meshing in and meshing out contact ratio
of the gear external meshing, respectively, as follows:

εei =
Zs(tgαas − tgα′)

2π
(29)

εeo =
Zp
(
tgαap − tgα′

)
2π

(30)

In the formula, α′ is the working pressure angle; αas and αap are the tooth top pressure
angle of sun gear and planet gear respectively. As shown in Figure 3c, assuming that the
load distribution coefficient in the regions “a-b” and “c-d” is 0.5, fex(ε) can be expressed
as follows:

fex(ε) = 0.5
(

ε2
ei + ε2

eo − εei − εeo + 1
)

(31)

Similarity, the transmission efficiency ηin of internal meshing can be expressed as
follows [40]:

ηin = 1−
µZP pt

(
1

Zp
− 1

Zr

)
fin(ε)

Rbp − µRp(εii − εio) sin αt + µpt fin(ε)
(32)

In the formula, Zr is the is the number of teeth of the ring gear; εii and εio are the
meshing in and meshing out contact ratio of the gear external meshing, respectively,
as follows:

εii =

√
R2

ap − R2
bp − Rp sin αt

pt
(33)

εio =
Rr sin αt −

√
R2

ar − R2
br

pt
(34)

Same as Equation (31), assuming that the load distribution coefficient is 0.5, fin(ε) can
be expressed as follows:

fin(ε) = 0.5
(

ε2
ii + ε2

io − εii − εio + 1
)

. (35)
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Therefore, the transmission efficiency ηp of the planetary reduction gear train can be
expressed as follows [41]:

ηp =
Rs

2(Rr − Rp)
+

[
1− Rs

2(Rr − Rp)

]
ηexηin (36)

In this study, six main parameters are considered as design variables to find the
minimum volume and maximum transmission efficiency. These design variables Xv include
the teeth number of the sun gear Zs, the teeth number of the planet gear Zp, the teeth
number of the ring gear Zr, helix angle β, face width b, and normal module mn. Zs, Zp, and
Zr are integers, β and b are continuous, and mn is discrete. The alternative modulus mn is
shown in Equation (38). Table 2 shows the detailed information of all design variables.

Xv =
{

Zs, Zp, Zr, β, b, mn
}

, (37)

mn ∈ {2, 2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5} (38)

Table 2. Design variables.

Design Variables Lower Bound Upper Bound

Zs 20 30
Zp 20 30
Zr 60 80
β 20 30
b 30 50

mn / /

3.2. Main Design Constraints

The gear design should meet the specified constraints to meet the actual geometric,
load, and material requirements. The main constraints of the planetary gear train in this
study are as follows.

3.2.1. Equally Spaced Planets

To prevent the gear teeth from interfering with the mating gear, the gear teeth of all
gears must mesh with the center gear teeth at the same time. The installation requirement
needs to meet the following conditions:

Zs + Zr

np
= integer, (39)

In the formula, np is the number of planet gears.

3.2.2. Equally Spaced Planets

According to the actual power requirement of an electric vehicle, the transmission
ratio ri of the planetary gear train needs to meet the following conditions:

4.1 ≤ ri ≤ 4.6, (40)

ri = 1 +
Zr

Zs
. (41)

3.2.3. Tooth Width Coefficient

The size of the tooth width is related to the strength of the gear; the larger the tooth
width, the higher the strength. However, it should be noted that, if the tooth width is too
large, there will be a larger number of tooth contact errors as well as a more uneven load
distribution in the tooth direction. Therefore, it is critical to select an applicable tooth width.
Here, the tooth width coefficient Φd is the primary indicator of the tooth width design,
which needs to meet the following constraints [42]:
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0.7 ≤ Φd ≤ 4, (42)

Φd =
b
ds

. (43)

3.2.4. Minimum Teeth of No-Undercut

Gear undercutting not only weakens the root of gear teeth while reducing the bending
strength, but it also reduces the coincidence degree. Therefore, undercutting should be
avoided in the gear design stage. The minimum number of teeth without undercutting of
the helical cylindrical gear needs to meet the following constraints:{

Zs, Zp, Zr
}
≥ 17 cos3 β. (44)

3.2.5. Concentric Constraint

The center distance between sun gear, ring gear, and planetary gear should be equal.
The concentric constraint is:

Zs + Zp = Zr − Zp. (45)

3.2.6. Adjacency Constraint

To prevent the planet gears from colliding with each other, it is necessary to ensure
that the planet gears have a certain clearance on their connecting lines; that is, the sum
of the tooth top circle radius of two adjacent planetary gears shall be less than the center
distance of two adjacent planetary gears. The adjacency constraint is:

dap < 2lsp sin
(

π

np

)
, (46)

In the formula, dap is the addendum circle diameter of planet gear; lsp is the center
distance between the sun gear and the planet gear.

3.2.7. Contact Stress Requirement

The planetary gear train should be able to resist material failure (deformation and
fracture) during contact behavior. The real contact stress requirement σc needs to meet the
following constraint [43]:

σc = 0.418

√
FnE

(
1
ρa

+
1
ρp

)
/b ≤ [σc] (47)

In the formula, Fn is the normal load; E is the elastic modulus of the material; [σc]
is the allowable contact stress, and the gear material is 40Cr in this study; and ρa and ρp
denote the radius of curvature at the nodes of the driving and driven gears, respectively. In
the planetary gear system, the contact stress mainly occurs between the sun gear and the
planetary gear, and between the planetary gear and the ring gear. However, considering
that the dangerous position is usually present between the sun gear and the planetary gear,
this study will focus on the contact stress between the sun gear and the planetary gear.

3.2.8. Bending Stress Requirement

The bending stress requirement σw_s needs to meet the following constraint [42]:

σw_s =
2TtKσ/d
bπmnYKε

≤ [σw_s], (48)

In the formula, Tt is the transmitted torque; d is the pitch circle diameter; Kσ is the
stress concentration factor of contact ratio, Kσ = 1.5; Kε is the influence factor of contact
ratio, Kε = 2.0; and Y is the tooth profile coefficient. According to the empirical formula,
the tooth profile coefficient of the sun gear can be expressed as follows:
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Y = 0.1735− 0.717
Zv
− 8.37

Z2
v

+
53.84

Z3
v

, (49)

In the formula, Zv is a virtual number of teeth pertaining to the helical gear, Zv = Z/ cos3 β.

4. Optimization Results and Discussions

In this study, the helix angle β, face width b, elastic modulus E, and input torque T
are considered uncertain. The uncertain helix angle β and face width b are regarded as
the uncertainty of manufacturing size. The uncertain elastic modulus E is regarded as the
uncertainty of material. The uncertain input torque T is regarded as the uncertainty of
load input. This study defines three uncertainty cases with different uncertainty deviations,
which correspond to different degrees of uncertainty deviations, as shown in Table 3.
Therefore, the constraint functions related to the above uncertain values can be regarded
as uncertainty constraints. Uncertainty constraints mainly include tooth width coefficient,
minimum teeth of no-undercut, adjacency constraint, contact stress constraint, and bending
stress constraint. The nominal values of elastic modulus EIC and input load T IC

t are 210 GPa
and 3936 N·m, respectively. All requirements of reliability-based possibility degree λ are
defined as 0.8.

Table 3. Three uncertainty cases.

Uncertainties Case 1 Case 2 Case 3

βIR (◦) 2 3 4
bIR (mm) 2 3 4
EIR (GPa) 10.5 21 31.5
T IR

t (N·m) 393.6 590.4 787.2

Here, the classical NSGA-II and multi-objective particle swarm optimization (MOPSO)
are implemented in order to explore the feasibility of the improved NSGA-II. The initial
population size is 400, the maximum number of iterations is 200, and the objective number
of non-dominated solutions is 200. Figure 4 shows the iterative history of MDOD by
using MOPSO, NSGA-II, and improved NSGA-II. The number of non-dominated solutions
obtained by improved NSGA-II increases steadily, and improved NSGA-II can obtain non-
dominated solutions more efficiently than MOPSO and NSGA-II. Therefore, the improved
NSGA-II designed in this paper is effective, and it contains better optimization potential
than the classical NSGA-II and MOPSO. The improved NSGA-II will be implemented
for MUOD.

Figure 5 shows the optimal Pareto solution sets of MDOD and MUOD. There is an
intense conflict between volume and transmission efficiency, which cannot achieve the
common optimization; that is, the further improvement of one objective will inevitably
worsen the other objective. The Pareto solution set of deterministic optimization design
is lower than that of uncertainty optimization design, and the optimization objective of
deterministic optimization design is better than uncertainty optimization design. In general,
the inequality constraint of deterministic optimization is mainly concentrated near the
constraint boundary, so its Pareto solution set has more loose space, and it is easier to
obtain the better solution. It should be noted that, with the increase of uncertainty, the
optimization results of MUOD tend to be conservative. To obtain the optimal solutions
in different multi-objective optimization models, this study makes a trade-off analysis on
the Pareto solution set by using the MCDM method. The optimal results of MDOD and
MUOD are shown in Appendix A. Table A1 presents the optimization results of MDOD,
and Tables A2–A4 present the optimization results of MUOD. The alternatives of different
optimization methods are sorted according to the grey correlation degree, and the optimal
solutions of all optimization methods are shown in bold. It is found that all moduli are
2, which means that the optimization space for modulus is small. Here, three uncertainty
cases are substituted into all optimization results, and the obtained constraints are shown
in Table 4. The optimal result of MDOD shows that the λ of the upper bound of tooth width
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coefficient is less than 0.8, and the bending stress is less than 0.8 when the uncertainty range
is the largest (Case 3). From another perspective, the bending stress constraint and the tooth
width coefficient constraint are the most prone to failure types. In the three uncertainty
cases, MUOD meets the reliability requirements for all uncertainty constraints. A higher
λ indicates that the farther the optimization result is from the boundary of the inequality
constraint, the higher its reliability. Compared with the conventional MDOD, the MUOD
proposed in this study can design a more reliable planetary gear train and reduce the risk
of constraint failure. The results show that MUOD sacrifices certain performance, but it is
more reliable than MDOD.

Actuators 2022, 11, 49 13 of 18 
 

 

load input. This study defines three uncertainty cases with different uncertainty devia-
tions, which correspond to different degrees of uncertainty deviations, as shown in Table 
3. Therefore, the constraint functions related to the above uncertain values can be re-
garded as uncertainty constraints. Uncertainty constraints mainly include tooth width co-
efficient, minimum teeth of no-undercut, adjacency constraint, contact stress constraint, 
and bending stress constraint. The nominal values of elastic modulus 𝐸  and input load 𝑇  are 210GPa and 3936 N · m, respectively. All requirements of reliability-based possi-
bility degree λ are defined as 0.8. 

Table 3. Three uncertainty cases. 

Uncertainties Case 1 Case 2 Case 3 𝛽  (°) 2 3 4 𝑏  (mm) 2 3 4 𝐸  (GPa) 10.5 21 31.5 𝑇  (N m) 393.6 590.4 787.2 

Here, the classical NSGA-II and multi-objective particle swarm optimization 
(MOPSO) are implemented in order to explore the feasibility of the improved NSGA-II. 
The initial population size is 400, the maximum number of iterations is 200, and the objec-
tive number of non-dominated solutions is 200. Figure 4 shows the iterative history of 
MDOD by using MOPSO, NSGA-II, and improved NSGA-II. The number of non-domi-
nated solutions obtained by improved NSGA-II increases steadily, and improved NSGA-
II can obtain non-dominated solutions more efficiently than MOPSO and NSGA-II. There-
fore, the improved NSGA-II designed in this paper is effective, and it contains better op-
timization potential than the classical NSGA-II and MOPSO. The improved NSGA-II will 
be implemented for MUOD. 

 
Figure 4. Iterative history of non-dominated solutions. 

Figure 5 shows the optimal Pareto solution sets of MDOD and MUOD. There is an 
intense conflict between volume and transmission efficiency, which cannot achieve the 
common optimization; that is, the further improvement of one objective will inevitably 
worsen the other objective. The Pareto solution set of deterministic optimization design is 
lower than that of uncertainty optimization design, and the optimization objective of de-
terministic optimization design is better than uncertainty optimization design. In general, 
the inequality constraint of deterministic optimization is mainly concentrated near the 
constraint boundary, so its Pareto solution set has more loose space, and it is easier to 
obtain the better solution. It should be noted that, with the increase of uncertainty, the 

Figure 4. Iterative history of non-dominated solutions.

Actuators 2022, 11, 49 14 of 18 
 

 

optimization results of MUOD tend to be conservative. To obtain the optimal solutions in 
different multi-objective optimization models, this study makes a trade-off analysis on the 
Pareto solution set by using the MCDM method. The optimal results of MDOD and 
MUOD are shown in Appendix A. Table A1 presents the optimization results of MDOD, 
and Table A2 ~ A4 present the optimization results of MUOD. The alternatives of different 
optimization methods are sorted according to the grey correlation degree, and the optimal 
solutions of all optimization methods are shown in bold. It is found that all moduli are 2, 
which means that the optimization space for modulus is small. Here, three uncertainty 
cases are substituted into all optimization results, and the obtained constraints are shown 
in Table 4. The optimal result of MDOD shows that the 𝜆 of the upper bound of tooth 
width coefficient is less than 0.8, and the bending stress is less than 0.8 when the uncer-
tainty range is the largest (Case 3). From another perspective, the bending stress constraint 
and the tooth width coefficient constraint are the most prone to failure types. In the three 
uncertainty cases, MUOD meets the reliability requirements for all uncertainty con-
straints. A higher 𝜆 indicates that the farther the optimization result is from the boundary 
of the inequality constraint, the higher its reliability. Compared with the conventional 
MDOD, the MUOD proposed in this study can design a more reliable planetary gear train 
and reduce the risk of constraint failure. The results show that MUOD sacrifices certain 
performance, but it is more reliable than MDOD. 

   
Figure 5. The Pareto front results with different uncertainties. 

Table 4. Reliability-based possibility degree 𝜆 of four solution sets under three uncertainty cases. 

Constraint MDOD 
(Case 1) 

MUOD 
(Case 1) 

MDOD 
(Case 2) 

MUOD 
(Case 2) 

MDOD 
(Case 3) 

MUOD 
(Case 3) 

Lower bound of tooth 
width coefficient 

1 1 1 1 1 1 

Upper bound of tooth 
width coefficient 0.64 0.80 0.60  0.81 0.57 0.81 

Minimum teeth of no-un-
dercut for 𝑍  1 1 1 1 1 1 

Minimum teeth of no-un-
dercut for 𝑍  1 1 1 1 1 1 

Minimum teeth of no-un-
dercut for 𝑍  

1 1 1 1 1 1 

Adjacency constraint 1 1 1 1 1 1 
Contact stress 1 1 1 1 1 1 
Bending stress 1 1 0.84 0.85 0.76 0.98 

Figure 5. The Pareto front results with different uncertainties.



Actuators 2022, 11, 49 14 of 17

Table 4. Reliability-based possibility degree λ of four solution sets under three uncertainty cases.

Constraint MDOD
(Case 1)

MUOD
(Case 1)

MDOD
(Case 2)

MUOD
(Case 2)

MDOD
(Case 3)

MUOD
(Case 3)

Lower bound of tooth
width coefficient 1 1 1 1 1 1

Upper bound of tooth
width coefficient 0.64 0.80 0.60 0.81 0.57 0.81

Minimum teeth of
no-undercut for Zs

1 1 1 1 1 1

Minimum teeth of
no-undercut for Zp

1 1 1 1 1 1

Minimum teeth of
no-undercut for Zr

1 1 1 1 1 1

Adjacency constraint 1 1 1 1 1 1
Contact stress 1 1 1 1 1 1
Bending stress 1 1 0.84 0.85 0.76 0.98

5. Conclusions

In order to design a reasonable planetary reduction gear system, matching the elec-
tric vehicle motor, this study proposes a multi-objective uncertainty optimization design
(MUOD) framework for the planetary gear train of an electric vehicle. An approximate
direct decoupling model, based on subinterval Taylor expansion, is applied to evaluate the
propagation of uncertainties; the improved evolutionary algorithm is designed by using
chaotic and adaptive evolutionary strategies. The volume and transmission efficiency of the
planetary gear are optimization objectives. The optimization results of MUOD show that
the Pareto front gradually moves to the upper right corner with the uncertainty increases.
The most satisfactory solutions (improving lightweight and improving transmission ef-
ficiency) pertaining to different multi-objective optimization models can be obtained by
the MCDM method. Compared with the conventional multi-objective deterministic opti-
mization design (MDOD) method, the uncertainty optimization design of the planetary
gear train sacrifices certain performance. When the reliability-based possibility degree λ

is defined as 0.8, the optimization results of MUOD always meet this requirement, but
at least one constraint violates this requirement in MDOD. As the degree of uncertainty
increases, the optimization results of MUOD tend to be conservative, but MUOD is more
reliable than MDOD. The uncertainty of planetary gear trains of electric vehicles is very
complex in actual working conditions. The MUOD framework proposed in this study
is able to continue carrying out optimization design with more complex high dimension
uncertainties and objectives in order to ensure that the structure has better potential to
resist the risk of failure.
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Appendix A. Optimization Results

Table A1. Optimization results from MDOD.

Ranking b (mm) β (◦) mn (mm) Zp Zr Zs ci

1 31.60 24.91 2 22 64 20 0.9333
2 31.63 25.32 2 22 64 20 0.9195
3 31.63 25.46 2 22 64 20 0.9153
4 32.00 22.52 2 25 71 21 0.6758
5 32.00 22.55 2 25 71 21 0.6753
6 31.94 22.69 2 25 71 21 0.6752
7 32.00 22.56 2 25 71 21 0.6751
8 31.96 22.66 2 25 71 21 0.6751
9 31.95 22.69 2 25 71 21 0.6748
10 32.01 22.83 2 25 71 21 0.6709
...

...
...

...
...

...
...

...

Table A2. Optimization results from MUOD (Case 1).

Ranking b (mm) β (◦) mn (mm) Zp Zr Zs ci

1 34.81 22.38 2 24 70 22 0.9333
2 34.81 22.39 2 24 70 22 0.9331
3 34.87 22.38 2 24 70 22 0.9247
4 34.86 22.51 2 24 70 22 0.9241
5 34.87 22.59 2 24 70 22 0.9201
6 34.87 22.60 2 24 70 22 0.9200
7 34.87 22.61 2 24 70 22 0.9193
8 34.95 22.67 2 24 70 22 0.9106
9 35.11 22.70 2 24 70 22 0.8968
10 35.11 22.74 2 24 70 22 0.8951
...

...
...

...
...

...
...

...

Table A3. Optimization results from MUOD (Case 2).

Ranking b (mm) β (◦) mn (mm) Zp Zr Zs ci

1 32.56 22.31 2 22 64 20 0.9333
2 32.56 22.50 2 22 64 20 0.9292
3 32.69 22.57 2 22 64 20 0.9214
4 32.73 22.67 2 22 64 20 0.9175
5 32.69 23.01 2 22 64 20 0.9117
6 32.69 23.02 2 22 64 20 0.9114
7 32.69 23.03 2 22 64 20 0.9114
8 32.73 23.16 2 22 64 20 0.9064
9 32.73 23.21 2 22 64 20 0.9055
10 32.73 23.28 2 22 64 20 0.9039
...

...
...

...
...

...
...

...
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Table A4. Optimization results from MUOD (Case 3).

Ranking b (mm) β (◦) mn (mm) Zp Zr Zs ci

1 34.84 22.33 2 23 67 21 0.9333
2 34.86 22.33 2 23 67 21 0.9319
3 35.15 23.05 2 23 67 21 0.8859
4 35.15 23.14 2 23 67 21 0.8823
5 35.17 23.17 2 23 67 21 0.8798
6 35.17 23.18 2 23 67 21 0.8795
7 35.27 23.28 2 23 67 21 0.8699
8 35.27 23.42 2 23 67 21 0.8652
9 35.33 23.46 2 23 67 21 0.8592
10 35.38 23.49 2 23 67 21 0.8558
...

...
...

...
...

...
...

...
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5. Sedak, M.; Rosić, B. Multi-objective optimization of planetary gearbox with adaptive hybrid particle swarm differential evolution

algorithm. Appl. Sci. 2021, 11, 1107. [CrossRef]
6. Patil, M.; Ramkumar, P.; Shankar, K. Multi-objective optimization of the two-stage helical gearbox with tribological constraints.

Mech. Mach. Theory 2019, 138, 38–57. [CrossRef]
7. Savsani, V.; Rao, R.V.; Vakharia, D.P. Optimal weight design of a gear train using particle swarm optimization and simulated

annealing algorithms. Mech. Mach. Theory 2010, 45, 531–541. [CrossRef]
8. Sun, G.; Zhang, H.; Fang, J.; Li, G.; Li, Q. A new multi-objective discrete robust optimization algorithm for engineering design.

Appl. Math. Model 2018, 53, 602–621. [CrossRef]
9. Xu, X.; Chen, X.; Liu, Z.; Yang, J.; Xu, Y.; Zhang, Y.; Gao, Y. Multi-objective reliability-based design optimization for the reducer

housing of electric vehicles. Eng. Optim. 2021, 1–17. [CrossRef]
10. Xu, X.; Chen, X.; Liu, Z.; Xu, Y.; Zhang, Y. Reliability-based design for lightweight vehicle structures with uncertain manufacturing

accuracy. Appl. Math. Model 2021, 95, 22–37. [CrossRef]
11. Fang, J.; Gao, Y.; Sun, G.; Xu, C.; Li, Q. Multiobjective robust design optimization of fatigue life for a truck cab. Reliab. Eng. Syst.

Saf. 2015, 135, 1–8. [CrossRef]
12. Dawood, T.; Elwakil, E.; Novoa, H.M.; Delgado, J.F.G. Soft computing for modeling pipeline risk index under uncertainty. Eng.

Fail. Anal. 2020, 117, 104949. [CrossRef]
13. Li, W.; Gao, L.; Xiao, M. Multidisciplinary robust design optimization under parameter and model uncertainties. Eng. Optim.

2020, 52, 426–445. [CrossRef]
14. Chen, Z.; Li, T.; Xue, X.; Zhou, Y.; Jing, S. Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy

comprehensive evaluation method. Eng. Fail. Anal. 2021, 127, 105357. [CrossRef]
15. Yuan, R.; Tang, M.; Wang, H.; Li, H. A Reliability analysis method of accelerated performance degradation based on bayesian

strategy. Access 2019, 7, 169047–169054. [CrossRef]
16. Xian, J.; Su, C. Stochastic optimization of uncertain viscous dampers for energy-dissipation structures under random seismic

excitations. Mech. Syst. Signal Process. 2022, 164, 108208. [CrossRef]
17. Lü, H.; Yang, K.; Huang, X.; Yin, H.; Shangguan, W.-B.; Yu, D. An efficient approach for the design optimization of dual uncertain

structures involving fuzzy random variables. Comput. Methods Appl. Mech. Eng. 2020, 371, 113331. [CrossRef]
18. Baek, S.M.; Lee, W.J. Design method for radar absorbing structures using reliability-based design optimization of the composite

material properties. Compos. Struct. 2021, 262, 113559. [CrossRef]
19. Fang, J.; Gao, Y.; Sun, G.; Li, Q. Multiobjective reliability-based optimization for design of a vehicledoor. Finite Elem. Anal. Des.

2013, 67, 13–21. [CrossRef]
20. Zhang, Y.; Xu, X.; Sun, G.; Lai, X.; Li, Q. Nondeterministic optimization of tapered sandwich column for crashworthiness. Thin

Walled Struct. 2018, 122, 193–207. [CrossRef]
21. Li, F.; Luo, Z.; Sun, G.; Zhang, N. An uncertain multidisciplinary design optimization method using interval convex models. Eng.

Optim. 2013, 45, 697–718. [CrossRef]

http://doi.org/10.1016/j.jpowsour.2010.11.160
http://doi.org/10.3390/act10080184
http://doi.org/10.1016/j.mechmachtheory.2020.104045
http://doi.org/10.1016/j.mechmachtheory.2018.03.012
http://doi.org/10.3390/app11031107
http://doi.org/10.1016/j.mechmachtheory.2019.03.037
http://doi.org/10.1016/j.mechmachtheory.2009.10.010
http://doi.org/10.1016/j.apm.2017.08.016
http://doi.org/10.1080/0305215X.2021.1923704
http://doi.org/10.1016/j.apm.2021.01.047
http://doi.org/10.1016/j.ress.2014.10.007
http://doi.org/10.1016/j.engfailanal.2020.104949
http://doi.org/10.1080/0305215X.2019.1590564
http://doi.org/10.1016/j.engfailanal.2021.105357
http://doi.org/10.1109/ACCESS.2019.2952337
http://doi.org/10.1016/j.ymssp.2021.108208
http://doi.org/10.1016/j.cma.2020.113331
http://doi.org/10.1016/j.compstruct.2021.113559
http://doi.org/10.1016/j.finel.2012.11.007
http://doi.org/10.1016/j.tws.2017.09.028
http://doi.org/10.1080/0305215X.2012.690871


Actuators 2022, 11, 49 17 of 17

22. Xu, X.; Chen, X.; Liu, Z.; Zhang, Y.; Xu, Y.; Fang, J.; Gao, Y. A feasible identification method of uncertainty responses for vehicle
structures. Struct. Multidiscip. Optim. 2021. [CrossRef]

23. Inuiguchi, M.; Sakawa, M. Minimax regret solution to linear programming problems with an interval objective function. Eur. J.
Oper. Res. 1995, 86, 526–536. [CrossRef]

24. Fu, C.; Liu, Z.; Deng, J. A direct solution framework for structural optimization problems with interval uncertainties. Appl. Math.
Model. 2020, 80, 384–393. [CrossRef]

25. Wu, J.; Gao, J.; Luo, Z.; Brown, T. Robust topology optimization for structures under interval uncertainty. Adv. Eng. Softw. 2016,
99, 36–48. [CrossRef]

26. Wang, L.; Yang, G.; Li, Z.; Xu, F. An efficient nonlinear interval uncertain optimization method using legendre polynomial chaos
expansion. Appl. Soft Comput. 2021, 108, 107454. [CrossRef]

27. Hou, Y.; Xiong, Y.; Zhang, Y.; Liang, X.; Su, L. Vessel energy efficiency uncertainty optimization analysis in ice zone considering
interval parameters. Ocean Eng. 2021, 232, 109114. [CrossRef]

28. Lü, H.; Yu, D. Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization. J. Sound
Vib. 2014, 333, 7313–7325. [CrossRef]

29. Fonseca, C.M.; Fleming, P.J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms I. A
unified formulation. Trans. Syst. Man Cybern. Part A Syst. Hum. 1998, 28, 26–37. [CrossRef]

30. Fonseca, C.M.; Fleming, P.J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms II.
Application example. Trans. Syst. Man Cybern. Part A Syst. Hum. 1998, 28, 38–47. [CrossRef]

31. Jiang, C.; Han, X.; Liu, G.R.; Liu, G.P. A nonlinear interval number programming method for uncertain optimization problems.
Eur. J. Oper. Res. 2008, 188, 1–13. [CrossRef]

32. Meng, D.; Hu, Z.; Guo, J.; Lv, Z.; Xie, T.; Wang, Z. An uncertainty-based structural design and optimization method with interval
taylor expansion. Structures 2021, 33, 4492–4500. [CrossRef]

33. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans. Evol. Comput.
2002, 6, 182–197. [CrossRef]

34. Paknejad, P.; Khorsand, R.; Ramezanpour, M. Chaotic improved PICEA-g-based multi-objective optimization for workflow
scheduling in cloud environment. Futur. Gener. Comput. Syst. 2021, 117, 12–28. [CrossRef]

35. Ju-Long, D. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [CrossRef]
36. Li, C.H.; Tsai, M.J. Multi-objective optimization of laser cutting for flash memory modules with special shapes using grey

relational analysis. Opt. Laser Technol. 2009, 41, 634–642. [CrossRef]
37. Wei, G.-W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making. Expert Syst. Appl. 2011, 38,

11671–11677. [CrossRef]
38. Emovon, I.; Oghenenyerovwho, O.S. Application of MCDM method in material selection for optimal design: A review. Results

Mater. 2020, 7, 100115. [CrossRef]
39. Kumar, R.; Singh, S.; Bilga, P.S.; Singh, J.; Singh, S.; Scutaru, M.-L.; Pruncu, C.I. Revealing the benefits of entropy weights method

for multi-objective optimization in machining operations: A critical review. J. Mater. Res. Technol. 2021, 10, 1471–1492. [CrossRef]
40. Li, C.; Qin, D.T.; Shi, W.K. Reference Efficiency of Planetary Gear Train. J. Chongqing Uni. 2006, 29, 11–14.
41. Chen, Y.; Ishibashi, A.; Sonoda, K.; Matubara, M. Studies on noise and vibration of planetary gear drives for automatic

transmission of passenger cars. Trans. Jpn. Soc. Mech. Eng. Ser. C 2000, 66, 634–639. [CrossRef]
42. Lin, Z.; Zhang, J.; Xu, X.; Chen, J.; Chen, X. Optimization design of distributed drive vehicle reducer based on improved

particle swarm optimization algorithm. In Proceedings of the 3rd World Conference on Mechanical Engineering and Intelligent
Manufacturing (WCMEIM), Shanghai, China, 4–6 December 2020; IEEE: Piscataway, NJ, USA, 2020. [CrossRef]

43. Wang, J. Automotive Design, 4th ed.; China Machine Press: Beijing, China, 2011.

http://doi.org/10.1007/s00158-021-03065-0
http://doi.org/10.1016/0377-2217(94)00092-Q
http://doi.org/10.1016/j.apm.2019.11.029
http://doi.org/10.1016/j.advengsoft.2016.05.002
http://doi.org/10.1016/j.asoc.2021.107454
http://doi.org/10.1016/j.oceaneng.2021.109114
http://doi.org/10.1016/j.jsv.2014.08.027
http://doi.org/10.1109/3468.650319
http://doi.org/10.1109/3468.650320
http://doi.org/10.1016/j.ejor.2007.03.031
http://doi.org/10.1016/j.istruc.2021.07.007
http://doi.org/10.1109/4235.996017
http://doi.org/10.1016/j.future.2020.11.002
http://doi.org/10.1016/S0167-6911(82)80025-X
http://doi.org/10.1016/j.optlastec.2008.09.009
http://doi.org/10.1016/j.eswa.2011.03.048
http://doi.org/10.1016/j.rinma.2020.100115
http://doi.org/10.1016/j.jmrt.2020.12.114
http://doi.org/10.1299/kikaic.66.634
http://doi.org/10.1109/WCMEIM52463.2020.00162

	Introduction 
	Methodology 
	Multi-Objective Uncertainty Optimization Problem 
	Improved Evolutionary Algorithm 
	Multi-Criteria Decision Making (MCDM) Method 
	Main Processes of MUOD 

	Design Requirements of the Planetary Gear Train 
	Main Design Variables and Optimization Objectives 
	Main Design Constraints 
	Equally Spaced Planets 
	Equally Spaced Planets 
	Tooth Width Coefficient 
	Minimum Teeth of No-Undercut 
	Concentric Constraint 
	Adjacency Constraint 
	Contact Stress Requirement 
	Bending Stress Requirement 


	Optimization Results and Discussions 
	Conclusions 
	Appendix A
	References

