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Abstract: Dynamic stall is a critical limiting factor for airfoil aerodynamics and a challenging problem
for active flow control. In this experimental study, dynamic stall was measured by high-frequency
surface pressure tapes and pressure-sensitive paint (PSP). The influence of the oscillation frequency
was examined. Dynamic mode decomposition (DMD) with time-delay embedding was proposed
to predict the pressure field on the oscillating airfoil based on scattered pressure measurements.
DMD with time-delay embedding was able to reconstruct and predict the dynamic stall based on
scattered measurements with much higher accuracy than standard DMD. The reconstruction accuracy
of this method increased with the number of delay steps, but this also prolonged the computation
time. In summary, using the Koopman operator obtained by DMD with time-delay embedding, the
future dynamic pressure on an oscillating airfoil can be accurately predicted. This method provides
powerful support for active flow control of dynamic stall.

Keywords: dynamic mode decomposition; prediction; dynamical airfoil; time-delay embedding

1. Introduction

Stall is one of the most critical limiting factors for airfoil aerodynamics. Static stall
occurs when the airfoil reaches a certain angle of attack. However, in real-world applica-
tions, dynamic stall caused by an unsteady motion is more common. An example of such
motion is the rapid pitch-up of the airfoil in rotor blades and wind turbines. Compared
with static stall, dynamic stall is a more complicated unsteady phenomenon due to the
flow separation caused by the rapid change in the angle of attack and the variable stall
frequency. Thus, it leads to an abrupt decay of aerodynamic forces and a fluctuation of the
structural load on the airfoil. McCroskey et al. [1] comprehensively studied dynamic stall in
an oscillating airfoil and dynamic vortex shedding from the airfoil. Further research [2–5]
has since provided a detailed understanding of the characteristics of dynamic stall with
respect to the lift and pitch moment coefficient. Carr et al. [6] reviewed the significant
progress in dynamic stall and concluded that the key influencing factors of this process
were oscillation amplitude and frequency, Mach number, and the three-dimensional effects
of the airfoil.

Dynamic stall is common in practical engineering and detrimental to the performance
of air vehicles. Many researchers employed vortex generators to realize effective control
of the dynamic stall [7,8]. Vortex generator control is a passive control method, which is
easy-implemented and does not require extra energy injection. However, passive control
cannot adapt to the change in working conditions. Recently, many researchers focused on
active flow control, which is adjustable based on a feedback control loop [9–12]. Therefore,
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real-time sensing of the complicated and unsteady flow, e.g., the dynamic stall, is critical in
the control loop.

The use of pressure tapes for local measurements is considered a promising method
to investigate the flow conditions on an airfoil due to their reliability and ease of imple-
mentation. To reduce the complexity of the algorithm or system, some researchers applied
some conventional and easy-implemented methods to identify the aerodynamic parameters
of the airfoils. Therefore, it is important to predict the flow dynamic based on scattered
pressure data. Patel et al. [13] used a pressure sensor array on the upper surface of an airfoil
to detect the onset of flow separation. Saini et al. [14] predicted the aerodynamic parameters
(i.e., inflow velocity and angle of attack) using discrete surface pressures measured at ports
in the vicinity of the leading edge of an airfoil. Provost et al. [15] used a time-shift linear
model to predict the roll moment using a sparse set of surface pressure measurements.
Juliano et al. [16] found that the pressure field on an oscillating airfoil can have distinct
patterns at different locations that are difficult to capture using pressure sensors. Similarly,
An et al. [17] develop a method for estimating the instantaneous lift coefficient on a rapidly
pitching airfoil that uses a small number of pressure sensors and a measurement of the
angle of attack. Gao et al. [18] detected unsteady boundary layer transition on a pitching
airfoil using a statistical criterion calculated from thirty surface-pressure transducer mea-
surements. With the development of artificial intelligence, the machine learning method
has been successfully applied to sense or predict the aerodynamic parameters [19,20]. How-
ever, machine learning methods, such as a blacked box, cannot provide an interpretable
physical explanation. Therefore, some researchers employed data-driven techniques to
realize the system or parameters identification [21–23]. Zhou et al. [24] explained the
physical relationship of pressure data and then developed an offline-online method to sense
the real-time aerodynamic parameters. Saini et al. [25] developed the leading-edge flow
sensing technique, which uses a few pressures in the airfoil leading-edge to identify and
sense various flow events associated with vortex shedding in unsteady airfoils.

Most of the researches mentioned above focused on the flow field around static objects.
The associated and available methods typically combine proper orthogonal decomposition
(POD) with other algorithms, such as linear stochastic estimation [26] and particle filter [27].
However, it is difficult to predict the evolution of the aerodynamics of dynamic airfoil over
time. In this regard, the dynamical system concept should be taken into consideration,
and dynamic mode decomposition (DMD) can provide some inspiration, which is an
equation-free and data-driven method to model dynamical systems. DMD was initially
proposed by Schmid [28] to decompose the flow field into both spatially and temporally
coherent structures and has the capability of predicting dynamic systems in the temporal
domain. Berger et al. [29] successfully applied DMD to control robotic movement parame-
ters by predicting human–robot interactions based on initial-state input data. However,
it is difficult for standard DMD to make predictions based on scattered measurements
because the method relies on an infinite-dimensional linear dynamic approximation for a
finite-dimensional nonlinear dynamic system. It, therefore, may not provide an accurate
result or may even fail when applied to highly nonlinear systems with low-dimensional
measurement data [30]. To solve this problem, some data-driven methods have been pro-
posed. The theory of DMD with delay embedding was proposed by Brunton et al. [31]
to decompose a three-dimensional chaotic Lorenz system into a linear model in the delay
coordinates using a single variable. Mohammad et al. [32] utilized DMD in time delay
coordinates to capture the dynamics of a compressible signal containing oscillation perfectly.
In addition, Susuki et al. [33] conducted this method to realize the prediction of the voltage
dynamics of the rudimentary model directly from the single-bus measurement. The time
delay embedding [34] has been investigated in detail on the structure and conditioning
of linear models of nonlinear dynamics. Yuan et al. [35] developed DMD with a delay
embedding method to predict high temporal and spatial resolved flow fields based on
local particle image velocimetry (PIV) measurement. Arbabi et al. [36] applied the delay
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embedding method to sparse measurements and realized predictive control of nonlinear
flow based on a Koopman model framework.

In the current work, the scattered data obtained from pressure tapes on the surface
of an airfoil were used to predict the surface pressure of the airfoil during the oscillation
process. Pressure-sensitive paint (PSP) surface measurement provided a qualitative vi-
sualization to verify the dynamic stall on the oscillating airfoil. Based on the scattered
pressure tape measurements, DMD with time-delay embedding was applied to reconstruct
the spatiotemporal pressure distribution on the oscillating airfoil and predict the future
data in real-time.

2. Experimental Setup and Methodology
2.1. Measurement Setup

The experiment was conducted in an open-circuit low-speed wind tunnel at the China
Aerodynamics Research and Development Center. The test section of the wind tunnel has a
cross-section of 1.8 m × 1.4 m. In the experiment, the freestream velocity was U∞ = 34 m/s.
The two-dimensional airfoil model OA309, made of high-strength carbon fiber composite
materials, with a chord length of c = 0.4 m and span length of s = 1.8 m, was mounted on
a pitching testing platform. The freestream Reynolds number based on the chord length
c was Re = 0.9 × 106. The airfoil model was subjected to an unsteady periodic motion.
As shown in Figure 1, the pitching motion mechanism was composed of a servo motor,
planetary reducer, and encoder. The mechanism allowed control over motion parameters,
such as mean angle of attack α0, pitching amplitude α1, and oscillation frequency f. In the
experiment, α0 was set as 10◦, α1 was set as 10◦, and f was varied as 1, 2, 3, and 4 Hz. The
reduced frequency was defined as k = πfc/U∞, with values of 0.037, 0.074, 0.111, and 0.148.
The formula for the angle of attack α can be expressed as follows:

α = α0 + α1sin(2π f t) (1)
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Figure 1. Schematic of a measurement system using pressure and PSP. 
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is 1 psi, and the measurement inaccuracy is ±0.05% of full scale. Locations of these 40 
pressure sensors are detailed in Table 1. These pressure sensors adopted a dynamic sam-
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10 0.18 20 0.93 30 0.2 40 1 

Figure 1. Schematic of a measurement system using pressure and PSP.

The PSP measurement system and pressure tapes are shown in Figure 1. Part of the
upper surface of the airfoil was painted with PSP to evaluate the changes in pressure
distribution when the airfoil was oscillating. The PSP was excited by a UV LED (UHP-
T-385-EP from Prizmatix Ltd., Givat Shmuel, Israel), and images were captured by a
camera (PCO 1600) with a filter. Using a synchronizer (BNC-575) and potentiometer, PSP
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images were captured during certain phases of the oscillating airfoil. During the PSP
measurement process, exposure signals from the camera were acquired simultaneously
with measurements from the potentiometer, which contained the angle of attack of the
airfoil. Using these two signals, every PSP frame was assigned to a certain angle of attack.
Then, the phase-locked pressure distribution of the upper surface of the airfoil could be
obtained by PSP measurement.

The pressure tape measurements and PSP measurements were taken simultaneously.
Forty dynamic differential pressure sensors (8510B, ENDVECO) were arranged chordwise
at the midspan of the airfoil model. The measurement range of these pressure sensors
is 1 psi, and the measurement inaccuracy is ±0.05% of full scale. Locations of these
40 pressure sensors are detailed in Table 1. These pressure sensors adopted a dynamic
sampling frequency to sample 256 data points per oscillation cycle of the dynamic airfoil.
The acquisition time was approximately 30 s. The aerodynamic parameters, such as lift and
pitching moments, were obtained by the integration of the pressure data. Aerodynamic
loads can be calculated based on the integration of the surface pressure coefficient. The
pressure coefficients can be calculated from the following expression:

Cpi =
Pi − P∞

1
2 ρU∞

(2)

where ρ is the air density, Pi is the static pressure obtained from a single pressure tap, P∞ is
the static pressure of the incoming flow. The detailed process of the integration can refer to
previous material [37].

Table 1. Locations of the pressure transducers on the OA209 airfoil.

Upper Surface Lower Surface

No. x/c No. x/c No. x/c No. x/c

1 0.01 11 0.24 21 0 31 0.25
2 0.02 12 0.3 22 0.0125 32 0.3
3 0.03 13 0.36 23 0.025 33 0.35
4 0.04 14 0.42 24 0.0375 34 0.4
5 0.05 15 0.48 25 0.05 35 0.5
6 0.06 16 0.57 26 0.075 36 0.6
7 0.09 17 0.66 27 0.1 37 0.7
8 0.12 18 0.75 28 0.125 38 0.8
9 0.15 19 0.84 29 0.15 39 0.9
10 0.18 20 0.93 30 0.2 40 1

2.2. Dynamic Mode Decomposition with Time-Delay Embedding

DMD is an efficient method of decomposing a dynamical system into specific spa-
tial modes that evolve at a certain frequency and growth–decay rate in time. In DMD,
the measurement data obtained by sensors at time j are arranged into a column vector
xj = (x1,j, x2,j, . . . , xn,j), where xj is a data snapshot and n denotes the number of measure-
ment points (in this case, the number of sensors). All m snapshots were sampled with a
constant time interval (sampling time step) ∆t. DMD describes a discrete-time system as:

xj+1 = Axj (3)

where matrix A reflects the dynamical characteristics of the system. The first step of
DMD is to arrange all m snapshots into two matrices, X1 = (x1, x2, . . . , xm−1) and
X2 = (x2, x3, . . . , xm). Then, the linear approximation A may be written in terms of matrices
based on Equation (4) as:

X2 ≈ AX1 (4)
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Using matrix A, known as the Koopman operator, future data can be predicted from
current data. Thus, the core of DMD is to search for the optimal linear approximation A
of the nonlinear dynamical system. The crucial step of the DMD algorithm is obtaining
the rank-reduced representation of A in terms of a POD-projected matrix Ã, which can be
written as follows:

Ã = UT AU = UTX2VΣ−1 (5)

where U ∈ Rn×r, Σ ∈ Rr×r, and V ∈ Rm×r are obtained by singular value decomposition
(SVD). Here, r is defined as the truncated number and represents the rank of approximation
to X1 using SVD reduction. The next step is to compute the eigen-decomposition of Ã,
which is similar to A:

ÃW = WΛ (6)

where the columns of W are eigenvectors of Ã and Λ is a diagonal matrix containing
the eigenvalues λk, which capture the time dynamics of the corresponding DMD modes.
These eigenvalues and eigenvectors of Ã can be related back to the similarity-transformed
eigenvalues and eigenvectors of A to reconstruct the DMD modes given by:

Φ = X2VΣ−1W (7)

where Φ is the matrix whose columns each represent a DMD mode. Then, a snapshot at
any time can be reconstructed from the DMD modes and eigenvalues:

xj = ΦΣj−1b (8)

where b = Φ−1 ×
1 contains the initial values of DMD modes. As shown above, the DMD

method relies on the linear approximation of a nonlinear dynamic system. When the sub-
domains are of limited spatial dimensionality, it is difficult for DMD to provide accurate
predictions. In this study, the direct use of discrete sensor measurements as the observables
creates a system that is far removed from the infinite-dimensional linear approximation of
highly nonlinear systems. To solve this problem, extended DMD [38] and kernel DMD [39]
have previously been proposed. These methods use new observables to provide a set
of coordinates in which the dynamical systems appear linear. However, a universal and
systematic approach needs to be found. The details of time delay embedding methods
can refer to the works of Brunton et al. [31]. Time-delay embedding augments the limited
spatial observables by embedding future measurements into the current measurements.
Therefore, more information can be captured to construct the linear Koopman operator.

A requirement of time-delay embedding is to have access to at least nd + 1 consecutive
snapshots, where nd is the number of delay steps. The time-delay-embedded matrices X1
and X2 can be transformed into H1 and H2 as follows:

H1 =


x1 x2 · · · xm−nd

x2 x3 . . . xm−nd+1
...

...
. . .

...
xnd xnd+1 · · · xm−1

 =
[
y1, y2 · · · ym−nd

]
, (9)

H2 =


x2 x3 · · · xm−nd+1
x3 x4 . . . xm−nd+2
...

...
. . .

...
xnd+1 xnd+2 · · · xm

 =
[
y2, y3 · · · ym−nd+1

]
, (10)

where yj is a new snapshot after delay embedding, and xm occupies the last n rows ym−nd+1.
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The dimensions of the matrices after delay embedding H1 and H2, are (n× nd) × (m− nd).
When nd = 1, the matrix after delay embedding is the same as the original matrix. Analo-
gously to Equation (4), the linear mapping of H1 and H2 can be written as follows:

H2 ≈ BH1 (11)

Then, the time-delay-embedded matrices H1 and H2 are used to build the DMD model.
The matrix B is the Koopman operator and reflects the dynamical characteristics. Therefore,
standard DMD can be applied to find the corresponding eigenvalues and eigenvectors of B.
Using the matrix B as follows:

yj+1 ≈ Byj (12)

The current new snapshot yj at time nd + j− 1 can be used to predict the future new
snapshot yj+1, which contains the data at time nd + j.

3. Results and Discussion
3.1. Dynamic Stall
3.1.1. Flow Visualization

To examine the two-dimensional pressure field on the oscillating airfoil, the images
from PSP measurement were phase-averaged over 15 periods. The evolution of the pressure
field during the oscillation of the clean airfoil is shown in Figure 2 at two typical AoAs
under an oscillation frequency of f = 1 Hz. It should be noted that these PSP measurements
only provided a qualitative visualization because the PSP data was influenced by the
temperature of the incoming flow.

The upper panels represent the downstroke, and the lower panels represent the
upstroke. The low-pressure region is indicated in blue, and high pressures are shown
in yellow. At α = 9◦, the pressure distribution in the downstroke is similar to that in the
upstroke. However, when α increases to 13◦, an obvious low-pressure region forms at the
leading edge of the airfoil in the upstroke, as can be seen in Figure 2d. The color intensity
shows that the pressure at the leading edge in the downstroke is higher than that in the
upstroke at the same angle of attack, which suggests the onset of flow separation and the
decrease in lift. The phenomenon that flow separation occurs at the leading edge in the
downstroke but does not occur in the upstroke is consistent with the dynamic stall was
also investigated by Heine et al. using PIV measurement [8].

3.1.2. Aerodynamic Loads

The angle of attack of the airfoil was varied to examine the influence of the VGs
mounted at the leading edge of the airfoil on the static aerodynamic loads. In our study, the
aerodynamic loads of static and dynamical airfoil were measured to verify the phenomenon
of dynamic stall. The measurement results of static airfoil are shown in Figure 3. Note that
there is no oscillation frequency for this static case. As shown in Figure 3, the curves of
the lift and pitch moment show a relatively constant trend until α ≈ 13.5◦. With a further
increase in the angle of attack, the lift and pitch moment drop abruptly. An increase of 0.5◦

in the angle of attack leads to a drop of approximately 0.39 in the lift coefficient and 0.08 in
the pitch moment coefficient. Therefore, α = 13.5◦ can be considered as the stall angle with
respect to flow separation. These results were in line with our common perception and are
consistent with the findings of previous studies [8,40].

The influence of the oscillation frequency f of the dynamical airfoil on the aerodynamic
loads was examined in this study. The lift and moment coefficients under different AoA for
the oscillating airfoil at different f are shown in Figure 4. It should be reminded that the
relevant aerodynamic load data were phase-averaged from 10 measurement periods, and
the resolution was improved by interpolation. In the present work, instantaneous pressure
data at different periods are similar, so phase-averaged data based on 10 periods is credible.
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Figure 4. Phase-averaged lift coefficient (Cl) at frequencies of (a) f = 1 Hz, (b) f = 2 Hz, (c) f = 3 Hz,
and (d) f = 4 Hz for oscillating airfoils.

When f = 1 Hz, the lift coefficient of the upstroke is higher than that of the downstroke
by up to 0.8 under the same angle of attack. There was a crucial characteristic feature in
the curve of loop hysteresis, which was related to a certain α = 6◦ when f = 1 Hz. When
α < 6◦, the lift coefficients of the upstroke is lower than that of the downstroke under
the same AoA. Once α > 6◦, the lift coefficients of the upstroke is higher than that of the
downstroke. Therefore, we can say that there are two hysteresis loops during the oscillating
process. It can be assumed that the pressure of the lower surface of airfoil can be higher
under small AoA due to the downstroke of the airfoil. When increasing the oscillation
frequency to 2 Hz (Figure 4b), the certain AoA which decided the two-loop hysteresis
became smaller. Continuing to improve the oscillation frequency f to 3 Hz (Figure 4c), only
one loop hysteresis is left. However, when α= 0, 1, 2◦, the lift moments under upstroke and
downstroke were close. When the oscillation frequency f was increased to 4 Hz (Figure 4d),
the lift coefficients under even a small angle of attack during the downstroke were smaller
than that during the upstroke. With increasing oscillation frequency f, the loop hysteresis
becames more pronounced, and the shapes of the hysteretic loops changed. In detail, the
increase of oscillation frequency f induced the slight increase of upstroke and downstroke
in the lift coefficient under larger AoAs, but the lift coefficient under smaller AoAs in the
downstroke decreased slightly.

In addition to the lift coefficients, the characteristics of pitch moment were also investi-
gated, as shown in Figure 5. For f = 1 Hz, there is no abrupt drop in the moment coefficient
such as the static case during the upstroke. The moment coefficient of both upstroke and
downstroke was very close, i.e., the difference of moment coefficient between upstroke and
downstroke was small. It is worth noting that compared to the static case, the moment
coefficient under large AoAs decreased dramatically, which suggested that dynamic stall
influenced the moment coefficient. For example, when α = 20◦, the moment coefficient in
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the static case was about −0.055 but it decreased to about −0.085 in the dynamical case.
With increasing oscillation frequency f, the curve of moment coefficient formed two-loop
hysteresis. The moment coefficient of upstroke and downstroke showed a huge difference,
suggesting that high oscillation frequency leads to a large fluctuation in pitch moment.
Combined with the change in lift coefficient, it can be inferred that not only did the dynamic
stall exert a negative influence on the aerodynamic load, the oscillation frequency f also
did. More importantly, high oscillation frequency f makes the aerodynamic performance
more intricate (i.e., two-loop hysteresis in a coefficient curve). This problem is detrimental
to the performance of real-time active flow control. Therefore, real-time perception, even
the prediction of aerodynamic parameters, is challenging and meaningful. In Section 3.2,
we will use a novel data-driven method to reconstruct the time-resolved pressure data and
then realize the prediction of future pressure.
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3.2. Prediction of Future Data

In this section, DMD with time delay embedding was used to reconstruct the history
of pressure data of the oscillating airfoil. The high time-resolved pressure data collected
by 20 sensors on the upper surface (see Table 1) were used in this method because the
leading edge is the region with the most obvious pressure fluctuations. To examine the
performance of this method, the error rate e between reconstructed data and true data is
defined as:

e =
1
m

m

∑
t=1

‖Preconstructed,t − Ptrue,t‖2

‖Ptrue,t‖2
(13)

where m is the number of used snapshots, Preconstructed,t is the reconstructed pressure field
at time t, and Ptrue,t is the true velocity field on the subdomain at time t.
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POD analysis was applied to the time delay embedded dataset, and the mode energy
spectrum is shown in Figure 6. The core of time delay embedding is the improvement of
data dimensionality to capture more phase information. Therefore, the first three POD
modes contained more than 98% energy. With the increase of the number of delay steps nd,
more POD modes were needed to reconstruct the data accurately. It should be noted that
when the number of delay steps was increased to 200, the POD energy spectrum tended to
be similar. In this experiment, one period contains 256 snapshots. Therefore, when nd > 200,
most of the phase information was included in the time delay embedded matrix.
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The raw and reconstructed pressure data of sensor #1 were used to compare the
reconstruction performance of the standard DMD and DMD with delay embedding. Sensor
#1 is located at the leading edge, where the most obvious pressure fluctuations happen.
The standard DMD (i.e., nd = 0) and DMD with time-delay embedding were then applied to
reconstruct the whole-time sequence of the pressure data. As shown in Figure 7a, standard
DMD cannot accurately predict the dynamic pressure on sensor #1 even at the initial stage
of the oscillation cycle. With time-delay embedding, the prediction performance is clearly
improved. With nd = 50 delay steps, DMD can capture the periodic trend, but with an
underprediction of the oscillation amplitude and e ≈ 43%. With nd increased to 200, the
predicted values agree closely with the ground truth both in periodic trend and amplitude
for more than six cycles and e ≈ 7%. Thus, DMD with time-delay embedding demonstrates
the ability to reconstruct the periodic single-point pressure data over a long period. With
an increasing number of delay steps nd, the accuracy of the reconstruction is improved.
However, an excessive number of delay steps will lead to too large a dimensionality of
the matrix, which will not only consume computing and storage resources but negatively
affect the real-time performance of the prediction algorithm. Therefore, the duration of the
prediction cycle should be balanced with the requirement for computation time. In fact, the
accurate prediction of just one cycle, that is, the next cycle, is usually helpful for effective
decision-making in real-time control systems.

Based on the predicted pressures at single measurement points, DMD with time-delay
embedding was then used to reconstruct the time-resolved pressure field on the upper
surface of the airfoil. The ground truth of the pressure field obtained by 20 pressure sensors
is shown in Figure 8a. The values reconstructed using DMD with time-delay embedding
are shown in Figure 8b and match well with the measured data and accurately show the
shape and peak of the three-dimensional surface.
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Figure 8. Pressure field on the upper surface of the oscillating airfoil: (a) ground-truth data from
pressure sensors, (b) reconstruction using DMD with time-delay embedding.

The core of DMD is to find the Koopman operator, which allows the prediction
of future data based on past data. The above section has demonstrated the accurate
reconstruction of time-resolved pressure data using DMD with time-delay embedding, from
which an optimal Koopman operator was obtained. Using the Koopman operator, real-time
prediction can be realized. In Figure 9, the black line represents the ground-truth pressure
data measured by sensor #1 over one oscillation period. The blue markers represent the past
sampled pressure data that were used to build a new snapshot yj. The future new snapshot
yj+1 was obtained based on the Koopman operator B provided by DMD with time-delay
embedding, which had been verified in the above cases. Then, the future pressure data at
the position of sensor #1 could be extracted from yj+1. Furthermore, future snapshot yj+2
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can also be calculated with the help of a predicted snapshot yj+1 in the same way. When this
operation is repeated, the data for a long period of time in the future can be predicted. In
Figure 9, 256 snapshots (a whole oscillation period) were predicted. The predicted next-step
value accurately matches the ground-truth value, indicating the feasibility and potential of
DMD with time delay embedding. The computation was implemented in MATLAB, and
all the cases are run on an Intel Xeon E5-1620 at 3.50 GHz. Every prediction took 0.09 s.
Admittedly, it is difficult to meet real-time requirements, but high-performance industrial
computers can realize real-time prediction in practical applications. Work is ongoing to
further improve the rapidity and adaptability of this method.
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4. Conclusions

In this study, dynamic stall of oscillating airfoils was measured by dynamic pressure
tapes and PSP visualization. The influence of the oscillation frequency was examined.
Dynamic mode decomposition (DMD) with time-delay embedding was proposed to predict
the pressure field on the oscillating airfoil based on scattered measurements. The major
findings are as follows:

(1) Under the dynamic conditions of the oscillating airfoil, with increasing oscilla-
tion frequency, although lift coefficient can be improved at large AoAs, the aerodynamic
characteristics showed a huge difference between upstroke and downstroke. The specific
performance is that the loop hysteresis of both the lift and pitch moment coefficients were
enlarged, which is detrimental to aerodynamic performance.

(2) DMD with time-delay embedding was able to reconstruct and predict dynamic
stall based on scattered measurements with much higher accuracy than standard DMD.
The reconstruction accuracy of this method increased with the number of delay steps, but
this also prolonged the computation time. With the help of the Koopman operator obtained
by DMD with time-delay embedding, the future dynamic pressure for a long time of an
oscillating airfoil can be accurately predicted.
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Nomenclature

α angle of attack, ◦

α0 mean angle of attack, ◦

α1 pitching amplitude, ◦

c chord length, m
Cl lift coefficient
Cm pitching moment coefficient
e the error rate between reconstructed data and true data
f pitching frequency, Hz
nd the number of delay steps
U∞ freestream velocity, m/s
s span length, m
k reduced frequency, Hz
Re Reynolds number
ρ air density, kg/m3Pi = the static pressure obtained from a pressure tap, Pa
P∞ the static pressure of the incoming flow, Pa
H1, H2 time-delay-embedded matrices
X1, X2 raw data matrices
A, B Koopman operator
Acronyms
DMD dynamic mode decomposition
PIV particle image velocimetry
POD proper orthogonal decomposition
PSP pressure sensitive paint
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