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Abstract: The dynamic-parameter identification process for developing a suitable precise mathemat-
ical model for the implementation and operation of parallel-link robots has received attention. In
this study, an efficient and reliable system-identification method for a delta robot is proposed. The
parallel-link robot’s dynamic behavior was mathematically modeled according to the principle of
virtual work. The dynamic equations of motion are extended to the system of equations that explicitly
characterizes the inertial and centripetal/Coriolis forces, and the frictional effects on the robot’s
dynamic behavior. Next, the dynamic-parameter identification technique is presented to directly
estimate a set of uncertain parameters that are included in the extended dynamic model. In addition,
the development of the dynamic model with a generalized inertia matrix for determining the impact
of the inertia-coupling characteristic on the robot’s dynamic behaviors is examined. Experimental
results indicate that the proposed parameter-estimation technique is an extremely useful tool that can
achieve the high-quality identification of an analytic dynamic model for a parallel-link robot.

Keywords: delta robots; parallel-link robots; dynamic analytic model; system identification; particle
swarm optimization

1. Introduction

A delta robot comprises a spatial parallel structure with multiple links that is generally
driven by three revolute actuators implemented on actuated links. Such robots comprise
multiple closed-loop kinematic chains that connect the moving platform to the fixed base.
This mechanism enables load sharing among the kinematic chains, thereby affording
benefits such as higher structural rigidity, higher repetitive positioning accuracy, and faster
pick-and-place operations compared with serial robots having sequentially connected
links [1,2].

Modeling this type of parallel structure of the robot requires a complex dynamic
mathematical model consisting of several nonlinear differential equations. The precision of
the system parameters describing the robot’s dynamic model is critical for model-based
controller designs, validation of robotic simulations, and accurate motion-planning tasks [3].
However, the physical data provided by manufacturers for crucial model parameters
are usually limited and inaccurate. Furthermore, important information regarding the
dynamic parameters related to frictional, inertial, centripetal, and Coriolis forces may be
nonexistent. Therefore, the parameters describing the robot dynamic model inevitably
contain uncertainties, resulting in the performance deterioration of the controller, as it is
sensitive to the parameter values [4]. Therefore, a challenge in operating a parallel-link
robot through a real-time model-based controller is to identify the large number of uncertain
model parameters contained in its highly complex dynamic model. Accordingly, several
studies have been conducted in recent years to identify the set of dynamic parameters
included in the analytic model of parallel-link robots.
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Angel and Viola [5] recently suggested a parametric identification method for the
analytic dynamic model of parallel-link robots using a recursive least-squares (RLS) es-
timation algorithm. However, their dynamic model, which was derived by introducing
the Euler–Lagrange formulation approach, disregarded frictional force terms. Therefore,
frictional effects on the dynamic behavior of the robot could not be analyzed explicitly.
Further, their RLS algorithm has several critical drawbacks for practical applications, such
as the requirement of considerable computational power, high sensitivity to initial con-
ditions, and the potential for the numerical instability of the output, particularly with
limited-precision arithmetic. Lastly, their approach was examined using only the Adams–
MATLAB cosimulation model and not an actual parallel-link robot. Liu et al. [6] studied
a parameter-identification methodology for a class of parallel manipulators that was in-
corporated with the truncated singular value decomposition (SVD) algorithm. However,
their identification scheme was intended for developing only the kinematic model, not the
dynamic analytic model, of the robot. Mata et al. [7] proposed parameter-identification pro-
cesses applicable to parallel manipulators. To perform identification, they first transformed
the complex dynamic equations of parallel manipulators into a linear formulation with
respect to uncertain system parameters. The resulting system of equations belonged to a
mathematically overdetermined case because the dimension of the equations of motion
was greater than the number of parameters to be identified. Therefore, the base parameters
that were essential for uniquely determining the system dynamics had to be calculated
in advance. However, recognizing a set of base parameters is usually a major challenge
in dynamic identification. Further, no routine methodology is available for the analytical
determination of such a minimal set of base parameters. Because of such difficulties in
assessing the identifiability of the base parameters, they adopted a method that uses a
simulated manipulator, additionally built using the dynamic simulation program Adams.

The purpose of the present study is to develop an efficient and reliable methodology
for identifying multiple parameters involved in the analytic dynamic model of delta
robots. The complex dynamic equations of motion are derived according to the virtual
work principle and are then extended to a system of equations that explicitly characterize
not only the inertial and centripetal/Coriolis forces, but also the frictional effects on the
dynamic behavior of the robot. To directly identify a set of uncertain parameters included in
such a dynamic model, the proposed scheme employs a particle swarm optimization (PSO)
algorithm with a distributed cyclic neighborhood-search mechanism [8] that was modified
to be applicable to parametric identification. During the identification process, the swarm
of this metaheuristic optimization optimizes the iterative estimation of unknown dynamic
parameters so that the torques computed from the analytic dynamic model using the
resulting parameter estimation are as close as possible to the real torques actually applied
to the parallel-link robot. The prerequisite in most conventional identification methods
for a dynamic model of a delta-type robot is the transformation of complex dynamic
equations into linear formulation concerning uncertain system parameters [5–7]. The RLS
or SVD algorithm can be applied to the unknown parameter identification only after such
a transformation task. In contrast, the proposed approach does not require an additional
task for modifying the system of equations into a linear form, and the nonlinear dynamic
equations are used as-is in the algorithm for parameter identification. This feature can be
attributed to the flexibility of the metaheuristic PSO algorithm. This fact also means that the
challenging problem related to the overdetermined system of equations does not occur in
our identification process. Therefore, our approach can avoid the problem of cumbersome
and time-consuming tasks for developing a simulated manipulator model for simply
checking the identifiability of the base parameters. An experimental setup, namely, a high-
speed pick-and-place parallel-link robot designed at NT Robot, Co. (Moscow, Russian), was
established to evaluate the performance of the proposed direct parametric identification
method for the analytic dynamic model of a robot. The experimental results clearly verify
that our technique provides a simple and efficient approach that can directly achieve high-
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quality identification for an analytic dynamic model of a parallel-link robot without relying
on the model transformation task or simulated manipulator implementation.

The remainder of this paper is organized as follows. In Section 2, the evaluation
of the conventional analytic dynamic model for delta robots is presented. In Section 3,
the analytical model structure of the delta robot derived according to the virtual work
principle is presented. Then, the method of direct estimation of the parameters included in
such a dynamic model using PSO in combination with the distributed cyclic neighborhood-
search mechanism is described. Some experimental results are also presented in detail in
this section. A discussion of the presented approach is provided in Section 4. Lastly, we
present our conclusions in Section 5.

2. Evaluation of the Conventional Dynamic Analytic Model of a Parallel-Link Robot

The parallel-link manipulator shown in Figure 1 is a three-degree-of-freedom robot
that usually comprises three closed-loop kinematic chains, a fixed base, and a moving
platform. Owing to the small mass of the manipulator and three actuators on the fixed
base, this parallel-link robot can achieve high precision and high movement speed for
pick-and-place tasks. Figure 2b shows the kinematic chain of this robot.

(a) NPicker: Delta robot

4th Axis Motor

Fixed Base

Motor

Shoulder

Actuated Arm

Elbow

Ball Joint

Driven Arm

Prismatic Joint

Universal Joint

Moving Platform

(b) Structure of a parallel-link robot.

Figure 1. High-speed pick-and-place parallel-link robot designed at NT Robot, Co.

(a) Delta robot diagram. (b) Kinematic chain of the ith limb

Figure 2. Schematics of the Delta robot.

A global reference coordinate system O-xyz is located at the center of the fixed base,
where the x- and y axis lie on the fixed base and the z axis points vertically upward.
Another coordinate system Ai-xiyizi (i = 1, 2, 3) is attached to the fixed base at a distance R
(i.e., fixed base radius) along O-xyz, such that the xi axis is in line with the extension of
−−→
OAi, the yi axis is directed along the revolute joint of the elbow, and the zi axis is parallel
to the z axis of O-xyz. Angle φi for i = 1, 2, 3 is measured from the x axis to the xi axis,
as depicted in Figure 2a, and is a constant parameter of the robot design measured to be
φ1 = π/3, φ2 = π, and φ3 = 5π/3. Let P = [Px Py Pz]T denote the position vector of the
centroid P of the moving platform relative to the O-xyz coordinate system. The three joint
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angles θi1, θi2, and θi3 associated with the ith limb are defined as follows: (1) θi1 defines the
angle of the actuated arm AiBi and is measured from the xi axis to

−−→
AiBi, and (2) θi2 and θi3

represent the rotating angles of the driven arm BiCi. The lengths of the actuated and driven
arms are denoted as L1 and L2, respectively. Let the radii of the fixed base and moving
platform be denoted as R and r, respectively. The masses of the actuated arm, driven arm,
and moving platform are denoted as ma, md, and mp, respectively.

The equations of motion of the considered delta robot can be derived using different
methods such as Lagrangian equations, virtual work principle, and Newton–Euler methods.
Let the vector of the actuator torques to be applied to the active joints at the shoulders
in Figure 1b be denoted as τ = [τ1 τ2 τ3]

T . Then, from the Euler–Lagrange formulation
based on the energy considerations of robotic systems, the dynamic analytic model can be
derived and expressed as follows [9–11]: for i = 1, 2, 3,

τi =
(

γ2 Im + IL1 + L2
1md

)
θ̈i1 − (maL1c + mdL1)g cos θi1

− 2L1λi
[(

Px cos φi + Py sin φi + r− R
)

sin θi1 − Pz cos θi1
]
,

(1)

where Lagrangian multipliers λi (i = 1, 2, 3) are given as follows:λ1
λ2
λ3

 =

Px + rc(φ1)− Rc(φ1)− L1c(φ1)c(θ11) Px + rc(φ2)− Rc(φ2)− L1c(φ2)c(θ21) Px + rc(φ3)− Rc(φ3)− L1c(φ3)c(θ31)
Py + rs(φ1)− Rs(φ1)− L1s(φ1)c(θ11) Py + rs(φ2)− Rs(φ2)− L1s(φ2)c(θ21) Py + rs(φ3)− Rs(φ3)− L1s(φ3)c(θ31)

Pz − L1s(θ11) Pz − L1s(θ21) Pz − L1s(θ31)

−1 (
mp + 3md

)
P̈x/2(

mp + 3md
)

P̈y/2(
mp + 3md

)(
P̈z − g

)
/2

. (2)

where s denotes sin, and c denotes cos in the above expressions. Table 1 lists other parameter
values provided by the manufacturer.

Table 1. Parameter values provided by the manufacturer for the dynamic analytic model in (1).

Parameter Value Unit

Mass of actuated arm (ma) 3.977 kg
Mass of driven arm (md) 0.402 kg

Mass of moving platform (mp) 2.033 kg
Length of actuated arm (L1) 0.3423 m

Length of mass center of actuated arm (L1c) 0.1563 m
Radius of moving platform (r) 0.045 m

Radius of fixed base (R) 0.2 m
Mass moment of inertia of actuated arm (IL1 ) 191.9× 10−4 kg·m2

Motor inertia with gear ratio (γ2 Im) 212 × 2.25× 10−4 kg·m2

Once the path planning of the center of the moving platform determines P = [Px Py Pz]T ,
Ṗ, and P̈, the command signal τi (i = 1, 2, 3), that is, the amount of torque that the motor
should exert on each parallel link to achieve the trajectory-tracking performance, can be
determined as follows:

1. From the inverse kinematics analysis given in Appendix B, three active joint angles
θ11, θ21, and θ31 are numerically obtained.

2. The actuated joint velocity θ̇1 for θ1 = [θ11 θ21 θ31]
T can be obtained from Ṗ = Jθ̇1,

where J denotes the Jacobian matrix described subsequently (see (16)). Further, angu-
lar acceleration θ̈1 can be determined from P̈ = Jθ̈1 + J̇θ̇1 (see (23) and (24)).

3. By using P and θ1 and their time derivatives Ṗ, P̈, θ̇1, and θ̈1, Lagrangian multipliers
λi for i = 1, 2, 3 can be obtained from (2).

4. Command signals τ1, τ2, and τ3 for accomplishing the torque control of motors
mounted on the fixed base, as shown in Figure 1b, can be determined from (1).

Command signals τi (i = 1, 2, 3) that are numerically calculated using (1) by the
aforementioned procedure should perfectly match the corresponding actual torque τi

actual
for guaranteeing that the centroid P of the moving platform perfectly tracks the three-
dimensional trajectory P. In other words, an imprecise τi value can never provide high
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tracking performance for the predesigned trajectory of P. Therefore, a thorough similarity
evaluation between τi and τi

actual is an essential prerequisite for the practical application of
delta robots. In this respect, the accuracy of τi obtained using (1) with the parameter values
provided by the manufacturer, as listed in Table 1, is evaluated as follows. The actual torque
τi

actual that is delivered by the implemented motor to the actuated arm cannot be directly
determined. Thus, the well-known fact that the torque is proportional to the square of the
operating voltage (i.e., τi

actual ≈ (vi
actual)

2) was introduced in the following experiments.
First, the user-selected vi

actual (i = 1, 2, 3) was supplied to each motor to activate the parallel-
link robot. The dashed line in Figure 3a indicates such a v1

actual value that is approximately
equal to the square root of τ1

actual. Second, the active joint angle θi1 was directly measured
by sensors during robot operation. Angular velocity θ̇i1 and acceleration θ̈i1 were calculated
from the joint angle data by using central finite difference methods. Lastly, the computed
command signal τi in (1) was obtained by using the parameter values listed in Table 1
and the θi1, θ̇i1, and θ̈i1 values. The solid line in Figure 3a denotes the computed voltage
that is equivalent to the square root of the computed torque τ1. The discrepancy between
τ1

actual and τ1 in Figure 3a implies that the amount of torque exerted by the motor with a
computed voltage input vi

computed(=
√

τi) cannot achieve the high-precision tracking of
the predetermined reference trajectory P. By contrast, the reference-tracking errors may
become small upon the implementation of a suitably designed controller. For example,
inverse dynamic control or computed torque control is one of the most effective, well-
accepted, and widely used control schemes for rigid robotic manipulator systems to drive
the manipulator along the given trajectory as precisely as possible [12]. The key idea
of such a control scheme is to introduce feedback linearization to cancel the nonlinear
robot dynamics under the assumption that all parameters of the system model are exactly
known. Therefore, the inexactness of the model parameters, which can be verified from
the discrepancy between τ1

actual and τ1 in Figure 3a, results in the degradation of robot
performance, even when a model-based motion controller is implemented. Accordingly,
the development and identification of a dynamic analytic model of the delta robot are
indispensable for calculating actuator torques with high precision. In addition, such
an exact dynamic model can contribute to reducing the control effort of model-based
controllers required for the trajectory-tracking behavior of robot manipulators.
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Figure 3. Measured actual torque τ1
actual is compared with (a) torque τ (1) calculated using the param-

eters listed in Table 1 and (b) torque τ1(k) computed using (26) with the estimated parameters in (36).
(a) The behavior of τ1(k) computed using (1) with the parameters listed in Table 1. (b) The behavior
of τ1(k) computed using (26) with the parameters listed in (36).

3. Construction of an Identification-Based Dynamic Model of the Delta Robot

The analytic model structure of the delta robot shown in Figures 1 and 2b was derived
using the virtual work principle as follows. Vector FGP for the gravitational force of the
moving platform is given as follows:

FGP = m̃P
[
0 0 g

]T , (3)

where g denotes the gravitational acceleration. m̃P denotes the equivalent mass of the
moving platform and is defined as m̃P ≈ mp + 3md, where mp and md are the masses of the
moving platform and the driven arm, respectively. Vector FIP for the inertia force of the
moving platform is obtained as follows:

FIP = m̃PP̈ = m̃P
[
P̈x P̈y P̈z

]T . (4)

Further, vector MGA for the gravity torque of the actuated arm is given as follows:

MGA = m̃AgL1
[
cos θ11 cos θ21 cos θ31

]T , (5)

where L1 denotes the length of the actuated arm. m̃A denotes the equivalent mass of the
actuated arm and is defined as m̃A ≈ ma + 0.5md, where ma is the mass of the actuated arm.
Vector MIA for the inertia torque of the actuated arm is

MIA = IAθ̈1 = IA
[
θ̈11 θ̈21 θ̈31

]T , (6)

where IA denotes the inertia matrix of the actuated arm with respect to the fixed frame and
is approximately given as follows:

IA =

I1 0 0
0 I2 0
0 0 I3

 ≈ m̃AL2
1 I, (7)

where I is an identity matrix of order 3. Let the vector of the virtual angular displacements
of joints A1, A2, and A3 be denoted by δθ1 = [δθ11 δθ21 δθ31]

T . The vector of the virtual
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linear displacement of the moving platform is denoted by δP = [δPx δPy δPz]T . Then,
the following dynamic model can be derived by applying the virtual work principle [13]:

τTδθ1 + MT
GAδθ1 + FT

GPδP−MT
IAδθ1 − FT

IPδP = 0, (8)

where τ = [τ1 τ2 τ3]
T . Next, δP is defined in terms of δθ1 as follows. The relationship

between the velocity of the centroid of the moving platform, Ṗ, and the actuated joint
velocity, θ̇1, can be written as follows:

Ṗ = Jθ̇1, (9)

where J denotes the Jacobian matrix, which is derived as follows. Consider the following
constraint condition that can be confirmed easily from Figure 2b [14]: for i = 1, 2, and 3,

‖−−→BiCi‖2 − L2
2 = 0, (10)

where L2 denotes the length of the driven arm. Let si be the vector
−−→
BiCi written as

si =
−→
OP− (

−−→
OAi −

−→
PCi +

−−→
AiBi) =

Px
Py
Pz

−
c(φi) −s(φi) 0

s(φi) c(φi) 0
0 0 1

R− r
0
0

+

L1c(θi1)
0

L1s(θi1)

, (11)

where R and r are the radii of the fixed base and moving platform, respectively. Then, (10)
can be rewritten as

sT
i si − L2

2 = 0 (12)

The time derivative of (12) becomes

sT
i ṡi + ṡT

i si = 0, (13)

where

ṡi =

Ṗx
Ṗy
Ṗz


︸ ︷︷ ︸

Ṗ

−

c(φi) −s(φi) 0
s(φi) c(φi) 0

0 0 1

−L1s(θi1)
0

L1c(θi1)


︸ ︷︷ ︸

Πi

θ̇i1 = Ṗ−Πi θ̇i1 (14)

Then, from (14) and the commutative property for vector inner products, (13) becomes
equivalent to

sT
i ṡi = sT

i (Ṗ−Πi θ̇i1) = sT
i Ṗ− sT

i Πi θ̇i1 = 0 (15)

Therefore, (9) can be derived from (15) as follows:

Ṗ =

sT
1

sT
2

sT
3

−1sT
1 Π1 0 0
0 sT

2 Π2 0
0 0 sT

3 Π3


︸ ︷︷ ︸

J

θ̇1 = Jθ̇1 (16)

si, defined as (11), depends not only on φi and θi1, but also on the three-dimensional
coordinate P = [Px Py Pz]T of the terminal moving platform. Such a positional coordinate
can be obtained by measuring the actuated joint angles θi1 (i = 1, 2, 3), as described in
Appendix A. The derivative of P and θ1 with respect to time t can be represented as the
ratio of an infinitesimal change in time-varying variables. From this fact, it follows that (16)
can be expressed as

δP = Jδθ1 (17)

Thus, substituting (17) into (8) gives

τTδθ1 + MT
GAδθ1 + FT

GP Jδθ1 −MT
IAδθ1 − FT

IP Jδθ1 =
(

τT + MT
GA + FT

GP J −MT
IA − FT

IP J
)

δθ1 = 0 (18)
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Because (18) holds for any virtual displacement δθ1,

τ = MIA + JT FIP −MGA − JT FGP (19)

By contrast, the dynamic model in (19) does not cover all the forces acting on the
parallel-link robot; that is, (19) includes only some forces that can be readily analyzed
from the rigid-body mechanics [15]. The important forces that are not considered in the
aforementioned derivation are those due to friction. Therefore, the aforementioned dynamic
model should be extended to at least roughly include the frictional forces in order to render
such a model reflect the reality of the physical behavior of the robot and thereby improve
the model quality. First, the mathematical model of viscous friction in which each torque in
τv caused by frictional force is proportional to the corresponding actuated joint velocity in
θ̇1, is given as follows:

τv =

cv1 0 0
0 cv2 0
0 0 cv3


︸ ︷︷ ︸

Cv

θ̇11
θ̇21
θ̇31

 = Cvθ̇1, (20)

where cvi (i = 1, 2, 3) are viscous friction coefficients. Second, the Coulomb friction model
is represented as

τc =

cc1 0 0
0 cc2 0
0 0 cc3


︸ ︷︷ ︸

Cc

sgn(θ̇11)
sgn(θ̇21)
sgn(θ̇31)

 = Ccsgn(θ̇1), (21)

where cci (i = 1, 2, 3) are Coulomb friction coefficients, and sgn(·) denotes a signum
function. This model shows that each torque in τc due to Coulomb friction is constant
except for the sign, which depends on the actuated joint velocity. Therefore, the extended
formula for joint torques that considers the forces due to friction can be derived from (19),
(20), and (21) as follows:

τ = MIA + JT FIP −MGA − JT FGP − τv − τc (22)

Because Ṗ = Jθ̇1, as shown in (16), it holds that

P̈ = Jθ̈1 + J̇θ̇1, (23)

where

J̇ =

sT
1

sT
2

sT
3

−1ṡT
1 Π1 + sT

1 Π̇1 0 0
0 ṡT

2 Π2 + sT
2 Π̇2 0

0 0 ṡT
3 Π3 + sT

3 Π̇3

−
ṡT

1
ṡT

2
ṡT

3

J

 (24)

Then, from (3)–(6), (20), (21), and (23), (22) can be rewritten as follows:

τ =IAθ̈1 + JTm̃PP̈− m̃AgL1︸ ︷︷ ︸
Tg

c(θ11)
c(θ21)
c(θ31)

− JTm̃P

0
0
g

− Cvθ̇1 − Ccsgn(θ̇1)

=IAθ̈1 + JTm̃P Jθ̈1 + JTm̃P J̇θ̇1 − Tg

c(θ11)
c(θ21)
c(θ31)

− JTm̃P

0
0
g

− Cvθ̇1 − Ccsgn(θ̇1),

(25)

where Tg := m̃AgL1. In conclusion, (25) results in the following form of the joint space
dynamic model:

τ = D(θ)θ̈1 + C(θ, θ̇)θ̇1 + N(θ, θ̇), (26)
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where

D(θ) =

I1 0 0
0 I2 0
0 0 I3

+ JTm̃P J, (27)

C(θ, θ̇) = JTm̃P J̇ −

cv1 0 0
0 cv2 0
0 0 cv3

, (28)

N(θ, θ̇) = −JTm̃P

0
0
g

− Tg

c(θ11)
c(θ21)
c(θ31)

−
cc1 0 0

0 cc2 0
0 0 cc3

sgn(θ̇11)
sgn(θ̇21)
sgn(θ̇31)

, (29)

where D(θ) ∈ R3×3 is the inertia matrix, C(θ, θ̇) ∈ R3×3 is the matrix of viscous friction
coefficients and Coriolis forces, and N(θ, θ̇) ∈ R3 is the vector of gravity forces and
Coulomb friction forces.

The PSO algorithm was inspired by the social and biological behaviors of bird flocks
searching for food sources. In this nature-based algorithm, individuals are referred to as
particles and fly through the search space seeking the best global position that minimizes
(or maximizes) a given problem. The classical PSO algorithm is summarized in Appendix C.
Next, the direct estimation of parameters in the derived dynamic model (26) with (27)–(29)
using the PSO algorithm in combination with a distributed cyclic neighborhood search,
which is a new variant of the aforementioned classical PSO algorithm, is described. Let the
vector of the uncertain model parameters to be identified be defined as

MPAR :=
[
m̃p Tg I1 I2 I3 cv1 cv2 cv3 cc1 cc2 cc3

]T ∈ R11 (30)

Let M`
PARi

∈ R11 represent the position vector of each particle in the swarm at the
iteration step `(= 0, 1, 2, · · · , `max), where `max denotes the maximum number of iterations
and i(= 1, 2, · · · , np) denotes the particle index. The vector of the sampled measure-
ment of the supplied torques, τactual(t) = [τ1

actual(t) τ2
actual(t) τ3

actual(t)]
T , is denoted by

τactual(k) = [τ1
actual(k) τ2

actual(k) τ3
actual(k)]

T , where k = 1, 2, · · · , Nk. Further, the sampled
measurements of θ1(t), θ̇1(t), and θ̈1(t) are denoted by θ1(k), θ̇1(k), and θ̈1(k), respec-
tively. Then, the estimation of τactual(k) is denoted by τ̂(k) = [τ̂1(k) τ̂2(k) τ̂3(k)]T . The
identification process for developing the dynamic model of a delta robot involves the
following steps.

Step 0. Initialize the iteration number as ` = 0. The position vectors of Np particles are
initialized with randomly chosen M0

PARi
∈ R11. Then, M0

PARpbest,i
and M0

PARsbest,i
are,

respectively, set as follows:

M0
PARpbest,i

←M0
PARi

(31)

M0
PARsbest,i

← arg min
MPAR∈{M0

PARj
|j=i− Ns

2 ,··· ,i+ Ns
2 }
F (MPAR) (32)

where the predefined even-valued Ns(< Np) is the number of neighbors of the ith
particle, M`

PARj
:= M`

PAR(j−1 mod Np)+1
for j < 1 or Np + 1 ≤ j. Further, F (MPAR) is

the objective function that is defined as follows:

F (M`
PARi

) :=
3

∑
ζ=1

Nk

∑
k=0
|τζ

actual(k)− τ̂ζ(M`
PARi

; k)| (33)

where the ζth torque estimation denoted by τ̂ζ(M`
PARi

; k) is calculated from (26)–(29)
using the identified parameters in M`

PARi
and the discrete measurement data of
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θ1(k), θ̇1(k), and θ̈1(k). The aim of the objective function in (33) is to minimize
the deviation between the measurement of the supplied torques and their estima-
tion by employing the joint space dynamic model in (26) with (27)–(29) at each
sampling time.

Step 1. Once the termination criterion, set as the total number of iterations performed,
is satisfied, the identification process is terminated with the optimal parameters
given by

M∗PAR := arg min
MPAR∈{M

j
PARi
|i=1,··· ,Np ; j=0,··· ,`}

F (MPAR)

Otherwise, the optimization process continues until the termination criterion is satisfied.
Step 2. Each particle in the swarm evolves according to the following equation:

M̂`+1
PARi

← c0M̂`
PARi

+ c1r`1,i(M
`
PARpbest,i

−M`
PARi

) + c2r`2,i(M
`
PARsbest,i

−M`
PARi

) (34)

where c0, c1, and c2 are the inertial factor, cognitive-scaling factor, and social-
scaling factor, respectively; r`1,i and r`2,i are uniformly distributed random numbers
generated separately in the unit interval [0, 1] at each iteration step `; and the initial
M̂`

PARi
equals M̂0

PARi
= 0 ∈ R11. Then, M`+1

PARi
is updated as follows:

M`+1
PARi

←M`
PARi

+ M̂`+1
PARi

(35)

Lastly, M`+1
PARpbest,i

and M`+1
PARsbest,i

are, respectively, updated as follows:

M`+1
PARpbest,i

← arg min
MPAR∈{M

j
PARi
|j=0,1,··· ,`}

F (MPAR)

M`+1
PARsbest,i

← arg min
MPAR∈{M`

PARj
|j=i− ns

2 ,··· ,i+ ns
2 }
F (MPAR)

Next, go to Step 1 with `← `+ 1.

The task is now to determine the optimal parameter vector M∗PAR of MPAR in (30) that
renders the torque τ computed from (26) with M∗PAR as close as possible to the applied
actual torque τactual obtained from Nk measurements from (θ(1), θ̇(1), θ̈(1)) to (θ(Nk),
θ̇(Nk), θ̈(Nk)). Such a parameter estimation is performed by using the aforementioned
PSO-based optimization algorithm and the dataset of [θ(k), θ̇(k), θ̈(k)] used for the com-
parison illustrated in Figure 3a. Figure 4 shows a schematic overview of the experimental
setup designed at NT Robot, Co., to measure the actual torque τactual(k) and [θ(k), θ̇(k),
θ̈(k)] and update the dynamic model parameters via the proposed identification proce-
dure. These data are acquired when the moving platform follows the trajectory shown in
Figure 5a. The optimization task for parameter estimation is performed with c0 = 0.72984,
c1 = c2 = 1.49618, Np = 300, Ns = 60, and the maximum iteration number of PSO
`max = 1000. Then, the identified parameters of the dynamic model (26) with (27)–(29) are
obtained as follows:

M∗PAR = [m̃∗p, T∗g , I∗1 , I∗2 , I∗3 , c∗v1
, c∗v2

, c∗v3
, c∗c1

, c∗c2
, c∗c3

]T (36)

≈ [4.3963, 5.3480, 0.3823, 0.3237, 0.3047, 3.2111, 1.1688, 3.1343, − 9.1037, − 7.6127, − 9.2628]T

The solid line in Figure 3b shows the characteristics of the computed torque deter-
mined from (26) with the estimated parameters in (36). A comparison with the measured
actual torque τi

actual(k) indicates the good fidelity of the derived dynamic model providing
τi(k). This high model fidelity is attributed to the PSO-based identification scheme intro-
duced for nonlinear dynamic modeling (26) that includes the forces due to viscous and
Coulomb frictions.
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Figure 4. Schematic overview of the system structure for identification of the dynamic analytic model.

Reference trajectory for moving platform

(a)

Reference trajectory for moving platform

(b)

Figure 5. Reference trajectories of moving platform used for identification of the dynamic analytic
model and model validation. (a) Reference trajectory for model parameter identification. (b) Reference
trajectory for model validation.

In summary, our study presented a simple and efficient approach that can directly
achieve high-quality identification of an analytic dynamic model for a parallel-link robot.
The phrase “simple and efficient” can be characterized from two aspects. First, PSO itself has
the advantages of fast search speed, memory, limited parameters, and simple structure. In
addition, it is easier to implement at the validation stage than other optimization algorithms
are. In addition, the use of PSO facilitates generalized cost functions, which enables
the direct identification of a large number of model parameters involved in the analytic
dynamic model of delta robots. Second, our identification procedure does not require
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cumbersome and time-consuming tasks, such as model transformation or development
of simulated manipulators used in conventional studies, which can be mainly attributed
to the aforementioned flexibility of the PSO algorithm. Thus, our approach is simple and
efficient and can directly identify the model parameters effectively. By contrast, the phrase,
“high-quality identification”, can be explained as follows. Most robot-related studies that
are not based on identification approaches use the physical data provided by manufacturers
as model parameters. These physical parameter values often lead to a large discrepancy
between the calculated and measured signals, as depicted in Figure 3a. However, with the
application of our proposed approach for estimating model parameters, the model can
be obtained with high accuracy. This result is experimentally demonstrated in Figure 6,
wherein the discrepancy between the calculated and measured signals is considerably
smaller than that in Figure 3a. This experimentally demonstrates that our approach enables
the achievement of high-quality identification performance.
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Figure 6. Comparison of the measured actual torque τactual and the torque τ computed using (26)
with the identified parameter values in (36).

Remark 1. The performance degradation of the classical PSO algorithm may mainly be due to the
poor particle diversification characteristics, which, in practical implementation, often leads to the
potential problem of premature convergence of the swarm to local optima. Diversification enables
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the optimizer to efficiently explore different regions, possibly resulting in a global search for a good
optimum. However, most population-based evolutionary computation techniques, including PSO,
depend on the principle of reducing the search space in the progression toward the global optima.
Because of the swarm-movement pattern, after a certain number of evolutionary iterations, offspring
that outperform their parents can no longer be produced; thus, all the particles remain trapped in
a region that may not even contain the local optima. In such cases, if population diversity is not
enhanced, particles evolving according to the conventional PSO mechanism may find reaching the
true global optimal position challenging. On the basis of this background, the distributed cyclic
neighborhood-search mechanism serves as a diversity-boosting tool in our PSO algorithm. This
mechanism enables a particle to share information through a “nearby-neighbor” interaction with a
series of successively numbered particles, with the particle as the center. In this structure, a particle’s
nearby neighbors are not necessarily particles that are close to each other in the hyperdimensional
search space. Instead, nearby neighbors are particles that share information on individual fitness
values. Thus, the key improvement in the particles’ exploration abilities (or population diversity) in
our PSO method can be attributed to their local social learning from their respective neighborhoods,
rather than their learning from only one global best particle in the swarm, as in the canonical
star topology.

Remark 2. Although the total number of particles, Np, is selected through an empirical approach,
a systematic method may be required for our PSO algorithm to be more successful. Recently,
Kononova et al. [16] revealed and quantified structural bias that, if present, would predispose
the algorithm toward limiting its search to specific regions of the solution space. Their result
would be useful in determining the suitable swarm size in this PSO scheme. However, the system-
identification problem for a delta robot is solved via a one-run optimization process, which implies
that the dynamic model is obtained through off-line system identification. Therefore, compared to
online identification requiring computational efficiency, the computational complexity may not
be a critical issue in this approach. Accordingly, the maximal number of iterations was set as a
termination criterion in our study.

4. Discussion

To demonstrate the superiority of the proposed identification scheme, the conventional
identification of a parallel robot proposed by Angel and Viola [5] is introduced. Their
techniques for the parametric identification of the analytical dynamic model were mainly
based on the RLS algorithm. With the aforementioned aim, the nonlinear dynamic model
for a delta robot is formulated in the form of the linear regression model. From (1), we have

τ1 = θ̂1θ̈11 − θ̂2Pxs(θ11)− θ̂3Pys(θ11) + θ̂4Pzc(θ11)− θ̂5c(θ11) + θ̂6s(θ11),

τ2 = θ̂1θ̈21 − θ̂7Pxs(θ21)− θ̂8Pys(θ21) + θ̂9Pzc(θ21)− θ̂5c(θ21) + θ̂10s(θ21),

τ3 = θ̂1θ̈31 − θ̂11Pxs(θ31)− θ̂12Pys(θ31) + θ̂13Pzc(θ31)− θ̂5c(θ31) + θ̂14s(θ31),

(37)

where

θ̂1 := γ2 Im + IL1 + L2
1md, θ̂2 := 2L1λ1 cos φ1, θ̂3 := 2L1λ1 sin φ1, θ̂4 := 2L1λ1,

θ̂5 := maL1c + mdL1, θ̂6 := 2L1λ1(R− r), θ̂7 := 2L1λ2 cos φ2, θ̂8 := 2L1λ2 sin φ2,

θ̂9 := 2L1λ2, θ̂10 := 2L1λ2(R− r), θ̂11 := 2L1λ3 cos φ3, θ̂12 := 2L1λ3 sin φ3,

θ̂13 := 2L1λ3, θ̂14 := 2L1λ3(R− r).

(38)

Then, the following linear regression model is derived from (37):

τ1
τ2
τ3

 =: τ = Ψθ̂ :=

ψ1
ψ2
ψ2


 θ̂1

...
θ̂14

 (39)
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where ψT
j ∈ R14 and

ψ =

 θ̈11 −Pxs(θ11) −Pys(θ11) Pzc(θ11) −c(θ11) s(θ11) 0 0
θ̈21 0 0 0 −c(θ21) 0 −Pxs(θ21) −Pys(θ21)
θ̈31 0 0 0 −c(θ31) 0 0 0

0 0 0 0 0 0
Pzc(θ21) s(θ21) 0 0 0 0

0 0 −Pxs(θ31) −Pys(θ31) Pzc(θ31) s(θ31)

 (40)

For the above linear regression model, the RLS algorithm presented in Islam and Bern-
stein [17] is applied, which yields the computed torque τi

RLS(k) (i = 1, 2, 3) shown in
Figure 7, where τi

PSO denotes the torque computed using our identification results. These
experimental results clearly demonstrate that our identification scheme outperforms the
conventional RLS-based method.
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Figure 7. Comparison of the measured actual torque τactual, the torque τi
RLS(k) obtained from RLS-

based identification, and the torque τi
PSO(k) computed using (26) with the identified parameter values

in (36).

To further validate the high-quality identification performance of the proposed scheme,
two other identification methods are examined. The first is the damped least-squares (DLS)
method-based identification [18], and the second is the SVD method for least-squares iden-
tification [19]. Figures 8 and 9 present the computed torques τi

DLS(k) and τi
SVD(k), respec-
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tively, for i = 1, 2, 3. The above examinations clearly verify that the proposed identification
scheme for a delta robot achieved better performance compared with the identification
results obtained via conventional DLS- and SVD-based identification methods.
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Figure 8. Comparison of the measured actual torque τactual, the torque τi
DLS(k) obtained from

damped least-squares (DLS)-based identification, and the torque τi
PSO(k) computed using (26) with

the identified parameter values in (36).

Lastly, to further illustrate the superiority of the presented identification scheme, the
model validation is performed by using the actual torque τactual(k) and [θ(k), θ̇(k), θ̈(k)],
which are measured when the moving platform follows the reference trajectory given in
Figure 5b. Figure 10 summarizes the model validation results of the PSO-, RLS-, DLS-,
and SVD-based identification methods, which demonstrates the validity of our PSO-based
identification scheme. The normalized root mean square error (NRMSE) index is introduced
to quantitatively evaluate the model fitness, and results were calculated on the basis of the
following equation for i = 1, 2, 3 and are listed in Table 2:
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Model fitness = 1−

√
∑

Nk
k=1 (τi∗(k)−τi

actual(k))
2

Nk

τi∗,max − τi
∗,min

(41)

where the notation “∗” denotes PSO, RLS, DLS, or SVD, and τ
ζ
∗,max and τ

ζ
∗,min are the

maximal and minimal elements of the sampled data from the computed torque τ
ζ
∗ (k).

A value for (41) close to 1 indicates less variance between the actual torque and model-
based computed torque; thus, Table 2 verifies that the proposed scheme outperforms the
conventional identification method.
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Figure 10. Comparison of the actual torque τactual, the torque τi
RLS(k) obtained from RLS-based

identification, the torque τi
DLS(k) obtained from DLS-based identification, the torque τi

SVD(k) obtained
from SVD-based identification, and the torque τi

PSO(k) computed using (26) with the identified
parameter values in (36).

Table 2. Identified model fitness evaluated for each actuator torque.

Identification This Study RLS-Based DLS-Based SVD-Based
Methods Method Method Method

Model fitness for τ1 0.9240 0.8724 0.8714 0.8545
Model fitness for τ2 0.9053 0.8679 0.8684 0.8001
Model fitness for τ3 0.9228 0.8761 0.8751 0.8604
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5. Conclusions

In this study, an efficient and reliable parameter-identification method was proposed
for the analytic dynamic model of a delta robot. The complex dynamic equations of motion
were derived according to the virtual work principle and then extended to characterize the
inertial and centripetal/Coriolis forces and the frictional effects on the robot’s dynamic
behavior. To directly identify the set of uncertain parameters included in such a dynamic
model, the PSO algorithm with a distributed cyclic neighborhood-search mechanism was
employed. Compared to conventional methods, our identification technique exhibits the
following distinctive features: (i) Owing to the flexibility of the PSO algorithm, the task of
transforming the system of equations into a linear formulation with respect to the uncertain
system parameters is not necessary. (ii) No cumbersome and time-consuming tasks, such as
developing an additional robot-simulation model solely for identifying the parameters in
an overdetermined set of equations, are required. The experimental results indicate that the
proposed technique can directly achieve high-quality identification of an analytic dynamic
model for a parallel-link robot.
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Appendix A. Forward Kinematics of the Delta Robot

In this section, the forward kinematics of the delta robot is derived. The vector
loop-closure equation of the kinematic chain for the ith limb is expressed as follows:

−→
OP +

−→
PCi =

−−→
OAi +

−−→
AiBi +

−−→
BiCi (A1)

Rewriting the vector components of (A1) in the coordinate system Ai-xiyizi gives c(φi) s(φi) 0
−s(φi) c(φi) 0

0 0 1

Px
Py
Pz

+

r
0
0

 =

R
0
0

+ L1

c(θi1)
0

s(θi1)

+ L2

s(θi3)c(θi2 + θi1)
c(θi3)

s(θi3)s(θi2 + θi1)

 (A2)

Three equations in (A2) are squared and summed to eliminate the passive joint angle
θi2 as follows:

(Px + Pxi )
2 +

(
Py + Pyi

)2
+ (Pz + Pzi )

2 = L2
2 (A3)

where

Pxi := (r− R− L1 cos θi1) cos φi, Pyi := (r− R− L1 cos θi1) sin φi, Pzi := −L1 sin θi1 (A4)

Then, subtracting Equation (A3) of the first kinematic chain (i.e., i = 1) from those of
the second (i = 2) and third (i = 3) kinematic chains gives

Px12 Px + Py12 Py + Pz12 Pz = ∆Px12 , (A5)

Px13 Px + Py13 Py + Pz13 Pz = ∆Px13 , (A6)

respectively, where Px1` = 2(Px1 − Px`), Py1` = 2(Py1 − Py`), Pz1` = 2(Pz1 − Pz`), and
∆Px1` = P2

x` + P2
y` + P2

z` − P2
x1
− P2

y1
− P2

z1
for ` = 2, 3. Then, Equations (A5) and (A6) can

be written in matrix form as follows:
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[
Px12 Py12

Px13 Py13

][
Px
Py

]
=

[
∆Px12 − Pz12 Pz
∆Px13 − Pz13 Pz

]
(A7)

Therefore, Px and Py can be obtained in terms of Pz as follows:[
Px
Py

]
=

1
Px12 Py13 − Py12 Px13

[
Py13 ∆Px12 − Py12 ∆Px13 + (−Py13 Pz12 + Py12 Pz13)Pz
−Px13 ∆Px12 + Px12 ∆Px13 + (Px13 Pz12 − Px12 Pz13)Pz

]
(A8)

Lastly, the three-dimensional position coordinate P = [Px Py Pz]T can be derived from
(A3) and (A8).

Appendix B. Inverse Kinematics of the Delta Robot

In this section, the derivation of the inverse kinematics of a delta robot is presented.
Consider Equation (A2). From the second row of (A2), angle θi3 is calculated as

θi3 = cos−1
(−Px sin φi + Py cos φi

L2

)
(A9)

By contrast, rewriting (A2) givesL1c(θi1) + L2s(θi3)c(θi2 + θi1)
L2c(θi3)

L1s(θi1) + L2s(θi3)s(θi2 + θi1)

 =

P̃x
P̃y
P̃z

 :=

 c(φi) s(φi) 0
−s(φi) c(φi) 0

0 0 1

Px
Py
Pz

+

r− R
0
0

 (A10)

Then, three equations in (A10) are squared and summed to obtain

L2
1 + L2

2 + 2L1L2 sin θi3 cos θi2 = P̃2
x + P̃2

y + P̃2
z (A11)

Because θi3 is determined from (A9) and θi2 is the only unknown parameter in (A11),
the joint angle θi2 can be obtained as follows:

θi2 = cos−1

(
P̃2

x + P̃2
y + P̃2

z − L2
1 − L2

2

2L1L2 sin θi3

)
(A12)

Once θi3 and θi2 are determined from (A9) and (A12), respectively, two equations with
θi1 as the only unknown parameter can be derived from (A10). Thus, the joint angle θi1 can
be obtained numerically.

Appendix C. Classical Particle Swarm Optimization Algorithm

The classical PSO algorithm is a population-based stochastic computational tech-
nique with a powerful global-search capability for resolving the following form of the
optimization problem without constraints:

min
x∈Rn

f (x), f (x) : Rn 7→ R (A13)

where the linear or nonlinear objective function f (x) is minimized with respect to the vector
of the design variables x ∈ Rn. Therefore, a particle in the PSO algorithm represents a
potential solution x in (A13). Let D denote the limited subregion of an entire n-dimensional
Euclidean space and be assumed to contain the optimal solutions. The conventional
evolutionary PSO searching mechanism is initiated with a swarm randomly generated
over the space D. Thereafter, each particle moves in a coordinated manner through the
D-dimensional search space. The behavior of each particle is mainly influenced by both
its own best previous experience and a social compulsion to move toward a single best
particle from the entire swarm as follows:
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xk+1
i = xk

i + vk+1
i , (A14)

vk+1
i = c0vk

i + c1rk
1,i(xpbest,i−xk

i ) + c2rk
2,i(xgbest−xk

i ) (A15)

where i = 1, 2, · · · , np denotes the index of the particle; k = 1, 2, · · · , kmax represents
the iteration number; xk

i ∈ Rn and vk
i ∈ Rn denote the position and velocity vectors,

respectively, for the ith particle at the kth iteration; xpbest,i denotes the vector of the best
previous position yielding the minimum fitness value f (·) for the ith particle; xgbest denotes
the vector of the global best position determined by the entire swarm; c0 denotes the
inertia weight, with c1 and c2 representing the cognitive and social-scaling parameters,
respectively; and rk

1,i and rk
2,i are the random parameters generated uniformly in the range

of [0, 1].
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