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Abstract: An adaptive neural control for uncertain 2DOF helicopter systems with input saturation
and time-varying output constraints is provided. A radial basis function neural network is used to
estimate the uncertainty terms present in the system. The saturation error and the external disturbance
are considered as a composite disturbance, and an adaptive auxiliary parameter is introduced to
compensate it. An asymmetric barrier Lyapunov function is employed to address the constraint
violation of the system output. The closed-loop stability of the system is then demonstrated by
Lyapunov theory analysis. Simulation results demonstrate the effectiveness of the control strategy.

Keywords: adaptive neural network control; 2DOF helicopter; input saturation; time-varying output
constraint

1. Introduction

Helicopters not only have the characteristics of small size, strong adaptability, and
ease of use, but also have the functions of vertical lifting, hovering, and low-altitude flight
in a small area. They have been widely used in military investigation, civil transportation,
surveying and mapping, and disaster relief [1–3]. However, the helicopter system is a
highly nonlinear multiple-input, multiple-output (MIMO) system, and the difficulties of
system control stability are exacerbated by the presence of uncertainties in the system, high
coupling between axes, and time-varying parameters [4,5]. To improve the control stability
of the helicopter system, it is practical to design an excellent robust control strategy.

Many control methods for helicopter systems have been proposed in the last few
decades. These include linear quadratic regulator-based control, PID control, slip control,
and fuzzy control [6–9]. For example, in [6], for a three-degree of freedom (DOF) helicopter
model, the authors used LQR control to deal with the error system caused by the control
strategy and linearization approximation. In [7], a new proportional-integral derivative
controller based on a new quadrotor model was proposed and comparative tests demon-
strated that the introduced nonlinear PID algorithm has good tracking accuracy. In [8],
the attitude stabilization problem of a tilting three-rotor aircraft was solved by proposing
a nonsingular timed sliding mode surface and designing a continuous fast timed sliding
mode control law. In [9], the nonlinear behavior of the fuzzy controller and the absence
of complex computations were used to test the performance of interference suppression
for a single-azimuth helicopter model. However, in previous studies, the uncertainty in
the helicopter system was neglected, which may lead to the design of helicopter control
strategies that are not well suited for practical situations. Thus, the uncertainty of helicopter
systems is necessary to be considered when designing high performance controllers.

In the last few years, researchers have proposed many outstanding control strategies
for nonlinear systems with uncertainty [10–12]. For instance, in [11], subjected to unmod-
eled uncertainty in nonlinear systems, the authors presented a novel output feedback
control strategy. In [12], an adaptive integral robust control method was designed in order
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to provide high precision trajectory tracking control of the two-bar hydraulic mechanism.
Although there has been a good development of control research for nonlinear systems
with uncertainty, these control strategies require very accurate system models. However,
in practice, the models of many nonlinear systems are not usually accurate. Therefore, in
recent years, neural network (NN) control has been used to solve the control of nonlinear
systems with uncertainty [13,14]. Radial basis function NNs (RBFNNs) are widely used
in control design for uncertain nonlinear systems due to their general approximation ca-
pability on compact sets [15]. For example, in [16], the RBFNN was used to eliminate the
effects of input nonlinearities and external disturbances on the vibration problems of belt
systems. In [17], to improve the tracking performance of the output force of the spacecraft,
the authors developed an innovative multilayer NN adaptive control algorithm. In [18],
the uncertainty and chattering problems of a nonlinear 2DOF helicopter control system
were solved by NN approximation, and the trajectory tracking of the system was achieved.
In [19], an adaptive neural fault-tolerant control strategy was presented for helicopter
nonlinear systems with output error constraints and actuator failures. Although numerous
NN control applications in helicopters and other nonlinear systems have been studied,
few output constraints have been reported for helicopter systems, which prompts us to
investigate further.

In practice, the output of helicopter systems is affected by various constraints, and
violation of constraints may reduce the stability of the system and even lead to serious
safety accidents [20]. Therefore, in order to overcome the effects of various constraints
on the system output, researchers have proposed many brilliant control methods [21,22].
For example, in [23], the hybrid problem of input backlash and system uncertainty of a
2DOF helicopter nonlinear system model was dealt with by approximating the nonlinear
error and unknown function used the RBFNN. In [24], the RBFNN was used to estimate
the uncertainty of a 2DOF helicopter and solve the problem with unknown backlash-like
hysteresis and output constraints. However, the output constraints mentioned above
were studied for constant constraints, while in real situations, most of the systems were
subjected to time-varying constraints, so it is necessary to examine the time-varying output
constraints. In [25], for a nonlinear uncertain continuous stirred reactor model, a time-
varying barrier Lyapunov function (TVBLF) was used to handle the time-varying output
constraints to ensure that all signals in the system are bounded. In [26], an asymmetric
time-varying BLF was designed to remove the effect of the time-varying output constraint
and keep the deflection of the ship within the prescribed constraints. In [27], an NN control
strategy with a prescribed performance function was developed in order to meet the output
performance requirements of a real plant. Although there have been many studies on time-
varying output constraints for the above-mentioned nonlinear systems, to our knowledge,
there are few reports on time-varying output constraints for 2DOF helicopter systems.
Moreover, in practical situations, neglecting input saturation may affect the system stability.
Therefore, it is worthwhile to explore the design of a control strategy to compensate for the
saturation nonlinearity for helicopter systems with input saturation.

In a real helicopter system, the input signal is always limited to a certain range due
to the physical limitations of the actuator. Among them, input saturation is a common
input constraint limitation in control design, and if the effect of saturation nonlinearity is
neglected, it will lead to reduced control performance and stability of the system [28–30].
Therefore, researchers have conducted extensive investigations on the effects of input
saturation. For instance, in [31], the authors introduced an auxiliary system to solve the
input saturation problem in a quadrotor UAV trajectory tracking control scheme. In [32],
the authors presented a discrete-time neural control of a quadrotor UAS with external
disturbances and input saturation. In [33], the authors introduced an adaptive NN fault-
tolerant control to solve the input saturation and external disturbances in an unmanned
helicopter system. In [34], for quadrotor UAV tracking control with external disturbances
and input saturation, an anti-jamming filter control was proposed. Although there have
been abundant studies on the control of helicopters and other nonlinear systems with
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input saturation, few studies have been conducted for 2DOF helicopter systems with both
time-varying output constraints and input saturation, which deserves further exploration.

With the above analysis and discussion, the objective of this paper is to propose an
adaptive NN control for the 2DOF helicopter systems with time-varying output constraints
and input saturation. The main contributions of this work compared to existing studies are
as follows:

(i) The time-varying output of the system is solved using TVBLF to keep the system
output within a time-varying region.

(ii) Unlike [28–30,32,33], in this study, we consider the input saturation error and external
perturbation as a composite perturbation and compensate it using adaptive parameters.

(iii) In the simulation results, the superiority of the control strategy proposed in this study
is demonstrated based on the comparison results of multiple sets of simulations.

2. Problem Formulation and Preliminaries
2.1. Problem Formulation

Figure 1 displays the model for the 2DOF helicopter. Based on [35], we know the
following equations for the dynamics of a 2DOF helicopter:

θ̈ =
−Mogolo cos θ − Dopp θ̇ −Mol2

o ψ̇2 sin θ cos θ

(Jopp + Mol2
o )

+
KoppVp + KopyVy

(Jopp + Mol2
o )

, (1)

ψ̈ =
−Doyyψ̇ + 2Mol2

o ψ̇θ̇ sin θ cos θ

(Joyy + Mol2
o cos2 θ)

+
KoypVp + KoyyVy

(Joyy + Mol2
o cos2 θ)

, (2)

where θ and ψ denote pitch and yaw angle, respectively. Vp and Vy represent the voltages
of the front and back motors, respectively. In addition, the parameters Mo, go, lo, Dopp, Doyy,
Jopp, Joyy, Kopp, Kopy, Koyy, and Koyp are available in the Quanser Technical Manual [36].

Let x = [x1, x2]
T , x1 = [θ, ψ]T , and x2 = [θ̇, ψ̇]T . According to the 2DOF helicopter

system, it can be converted to the general form of MIMO as follows:

ẋ1 = x2, (3)

ẋ2 = N(x) + ∆N(x) + M(x)u + d(t), (4)

y = x1, (5)

where ∆N(x) represents an unknown smooth function vector, u = [Vp, Vy]T denotes the
control input, and d(t) is unknown external disturbance. Moreover, N(x) and M(x) are
given by

N(x) =

 −Mo go lo cos(x11)−Doppx21−Mo l2
o ẋ2

22 sin(x11) cos(x11)

Jopp+Mo l2
o

−Doyyx22+2Mo l2
o x22x21 sin(x11) cos(x11)

Joyy+Mo l2
o cos2(x11)

, (6)

M(x) =

 Kopp

Jopp+Mo l2
o

Kopy

Jopp+Mo l2
o

Koyp

Joyy+Mo l2
o cos2(x11)

Koyy

Joyy+Mo l2
o cos2(x11)

. (7)

Remark 1. The aim is to design a controller in such a way that the output of the system follows the
desired trajectory, xd, while ensuring that the time-varying output constraint is not violated. In this
paper, the system output is constrained as

κc(t) ≤ x1 ≤ κc(t), ∀t ≥ 0, (8)

where κc = [κc1, κc2]
T and κc = [κc1, κc2]

T .
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Figure 1. Schematic of the 2DOF helicopter model.

Consider the channel control input u = [u1, u2]
T subject to the following constraints:

uLi ≤ ui ≤ uHi, i = 1, 2, (9)

where uLi and uHi are the upper and lower bounds of the control inputs. Thus, the control
input ui is defined as

ui =


uHi if ui ≥ uHi

u0i if uLi ≤ u0i < uHi

uLi if u0i < uLi.

(10)

The control input u is rewritten as

u = u0 + u∆, (11)

where u0 = [u01, u02]
T is the controller input signal to be designed later, and the unknown

part u∆ is expressed as

u∆ =


uHi − u0i if ui ≥ uHi

u0i if uLi ≤ u0i < uHi

uLi − u0i if u0i < uLi.

(12)

Substituting (11) into (4), we derive

ẋ2 = N(x) + ∆N(x) + M(x)u0 + M(x)u∆ + d(t). (13)

2.2. Preliminaries

Assumption 1 ([37]). The gain function M(x) satisfies ‖M(x)‖ ≤ M̄ with M̄ being a posi-
tive constant.

Assumption 2 ([38]). Based on a practical environment, it is assumed that the external disturbance
d(t) is continuous and bounded.

Assumption 3 ([39]). We suppose that the unknown part u∆ is bounded and satisfies ||u∆|| ≤ ū∆
with ū∆ > 0 being an unknown constant.

Lemma 1 ([40]). For any q ∈ R that satisfies |x| < |q| and x ∈ R, the following inequalities hold:

ln
q2

q2 − x2 ≤
x2

q2 − x2 . (14)

Lemma 2 ([41]). For a continuous smooth function, we can use RBFNN to estimate the following:

p(Z) = ΨTΦ(Z), (15)
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where Φ(Z) = [Φ1(Z), Φ2(Z), . . . , φm(Z)]T represents the basis function. In addition, Ψ ∈ Rm

and Z ∈ Rq are the weight and input vector of the RBFNN, respectively.
As is well known, the RBFNN has the advantage of fast learning and strong estimation

capability, so that the unknown continuous smooth function p(Z) can be represented as

p(Z) = Ψ∗TΦ(Z) + δ(Z), ||δ(Z)|| ≤ δ̄, (16)

where Ψ∗ denotes an ideal weight vector, δ(Z) is an approximation error, and δ̄ is an unknown
positive constant.

Lemma 3 ([42]). For v > 0 and a ∈ R, the following inequality holds

0 ≤ |a| − a tanh(
a
v
) ≤ 0.2785v. (17)

3. Controller Design and Stability Analysis

We define the first error variable as z1(t) = x1(t)− xd(t), where xd(t) = [xd1(t), xd2(t)]T

is the desired trajectory. The time derivative of z1(t) is given as

ż1(t) = ẋ1(t)− ẋd(t). (18)

We define the second error variable as z2(t) = x2(t)− α(t), where α(t) = [α1(t), α2(t)]T

is a virtual control signal. The time derivative of z2(t) is given by

ż2(t) = ẋ2(t)− α̇(t). (19)

The time-varying boundary of z1 is

κa(t) ≤ z1(t) ≤ κb(t), (20)

where κa(t) = xd(t)− κc(t) and κb(t) = κc(t)− xd(t). Consider a TVBLF as follows [43]:

V1 =
2

∑
i=1

(
h(i)

2
ln

κ2
bi

κ2
bi + z2

1i
− 1− h(i)

2
ln

κ2
ai

κ2
ai − z2

1i
), (21)

where

h(i) =

{
0 if z1i ≤ 0
1 if z1i > 0.

(22)

Define the transformation of error coordinates as follows:

ξai =
z1i
κai

, ξbi =
z1i
κbi

, ξi = h(i)ξbi + (1− h(i))ξbi. (23)

We rewrite (21) as follows [43]:

V1 =
2

∑
i=1

(
1
2

ln
1

1− ξ2
i
). (24)

We know from (22) and (23) that |ξi| < 1. In addition, the time derivative of V1 is
given as

V̇1 =
2

∑
i=1

(
ξbih(i)

(1− ξ2
bi)κbi

(z2i + αi − ẋdi − z1i
κ̇bi
κbi

)

+
ξaih(i)

(1− ξ2
ai)κai

(z2i + αi − ẋdi − z1i
κ̇ai
κai

)). (25)
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The virtual control signal is designed as

α =

[
xd1 − k11z11 − k̄11z11
xd2 − k12z12 − k̄12z12

]
, (26)

and

k̄1i =

√
γi + (

κ̇bi
κbi

)2 + (
κ̇ai
κai

)2, (27)

where γi is a small positive constant. In addition, inserting (26) and (27) into (25), we obtain

V̇1 =
2

∑
i=1

(
ξbih(i)

(1− ξ2
bi)κbi

(z2i − c1iz1i − (k̄1i+
κ̇bi
κbi

)z1i)

+
ξaih(i)

(1− ξ2
ai)κai

(z2i − c1iz1i − (k̄1i+
κ̇ai
κai

)z1i))

≤ −
2

∑
i=1

c1i
ξ2

i
1− ξ2

i
+

2

∑
i=1

ϕiz1iz2i, (28)

where ϕi is set to

ϕi = (
h(i)

κ2
bi − z2

1i
+

1− h(i)
κ2

ai − z2
1i
), (29)

and ϕ = diag{ϕ1, ϕ2}.
Substituting (13) into (19) yields

ż2 = N(x) + ∆N(x) + M(x)u0 + M(x)u∆ + d(t)− α̇(t)

= N(x) + M(x)u0 + M(x)u∆ + d(t) + P(x, t), (30)

where P(x, t) = ∆N(x)− α̇. Since ∆N(x) is an unknown smooth function vector, we use
NN to estimate it:

P(x, t) = Ψ∗TΦ(Z) + δ(Z), (31)

where Z = [xT
1 , xT

2 , ẋT
d , ẍT

d , αT ]T and Ψ∗ are the input and weight vectors of the NN, respec-
tively. In addition, δ(Z) is the approximation error and satisfies ||δ(Z)|| ≤ δ̄ with δ̄ being
an unknown positive constant. Substituting (31) into (30), we obtain

ż2 = N(x) + M(x)u0 + M(x)u∆ + d(t) + Ψ∗TΦ(Z) + δ(Z)

= N(x) + M(x)u0 + Ψ∗TΦ(Z) + D(x, t) + δ(Z), (32)

where D(x, t) = M(x)u∆ + d(t).

Remark 2. According to Assumption 1, we know that M(x) is bounded and satisfies ||M(x)|| ≤ M̄,
with M̄ being an unknown positive constant. Based on Assumption 2, we know that d(t) is bounded.
From Assumption 3, we conclude that u∆ is bounded and satisfies ||u∆|| ≤ ū∆, with ū∆ > 0 being
an unknown constant.

Define Ψ̃ = Ψ̂−Ψ∗ and ˜̄D = D̄− ˆ̄D. We design the controller input as follows:

u0 = −M−1(N + Ψ̂TΦ(Z) + ˆ̄D tanh(
z2

d0
) + ϕz1 + c2z2). (33)
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Then, the adaptive laws are designed as

˙̂Ψ = Γ1(Φ(Z)zT
2 − η1Ψ̂), (34)

˙̄̂D = Γ2(zT
2 tanh(

z2

d0
)− η2

ˆ̄D), (35)

where Γ1 = ΓT
1 ∈ R2×2 is a diagonal matrix, and η1 > 0, Γ2 > 0, η2 > 0, and d0 > 0 are

design parameters.
Based on the adaptive neural control strategy designed above, we derive the follow-

ing theorem.

Theorem 1. Considering a 2DOF helicopter system with input saturation and time-varying
output constraints, we propose an adaptive neural control strategy. The update law of the adaptive
parameters is (35), the update law of the NN weights is (34), and the controller input for adaptive
neural control is (33). With the developed control strategy, the control signals in the closed-loop
system are all consistently bounded. In addition, the outputs of the system remain with time
constraints, and no constraints are violated.

Proof. Consider the Lyapunov function as follows:

V2 = V1 +
1
2

zT
2 z2 +

1
2

tr{Ψ̃TΓ−1
1 Ψ̃}+ 1

2Γ2

˜̄D2. (36)

Substituting (32)–(35) into the time derivative of V2 gives

V̇2 = V̇1 + zT
2 ż2 + tr{Ψ̃TΓ−1

1
˙̂Ψ} − 1

Γ2

˜̄D ˙̄̂D

≤ V̇1 − zT
2 Ψ̃TΦ(Z)− zT

2
ˆ̄D tanh(

z2

d0
)− zT

2 ϕz1 − zT
2 c2z2

+ zT
2 D + zT

2 δ(Z) + tr{Ψ̃T(Φ(Z)zT
2 − η1Ψ̂)}

− ˜̄D(zT
2 tanh(

z2

d0
)− η2

ˆ̄D). (37)

We regard an inequality as follows:

zT
2 D ≤

2

∑
i=1
|z2i|D̄. (38)

In addition, one has

zT
2 tanh(

z2

d0
) =

2

∑
i=1

(z2i tanh(
z2i
d0

)). (39)

According to Lemma 3, we obtain

2

∑
i=1
|z2i| −

2

∑
i=1

(z2i tanh(
z2i
d0

)) ≤ 0.557d0. (40)

Putting (38)–(40) into (37) yields

V̇2 ≤ V̇1 − zT
2 ϕz1 − zT

2 c2z2 + zT
2 δ(Z)− η1tr{Ψ̃TΨ̂}

+ 0.557d0D̄ + η2
˜̄DD̄− η2

˜̄D2. (41)
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Applying Youth’s inequalities, one can obtain

−η1tr{Ψ̃TΨ̂} ≤ −η1

2
||Ψ̃||2F +

η1

2
||Ψ∗||2F, (42)

˜̄DD̄ ≤ 1
ι

˜̄D2 + ιD̄2, (43)

zT
2 (Z)δ ≤ 1

2
zT

2 z2 +
1
2

δ̄2. (44)

Inserting (28) and (42)–(44) into (41) and invoking Lemma 1, we can obtain

V̇2 ≤
2

∑
i=1

c1i ln
1

1− ξ2
i
− zT

2 (c2 −
1
2

I2×2)z2 −
η1

2
||Ψ̃||2F

− η2(1−
1
ι
) ˜̄D2 + 0.557d0D̄ +

η1

2
||Ψ∗||2F + ιD̄2 +

1
2

δ̄2

≤ −βV2 + H, (45)

where

β =min

{
2λmin(c1i), 2λmin(c2 −

1
2

I2×2),
η1

λmax(Γ−1
1 )

,

2Γ2η2(1−
1
ι
)

}
, (46)

H = 0.557d0D̄ +
η1

2
||Ψ∗||2F + ιD̄2 +

1
2

δ̄2. (47)

In order to ensure that the closed-loop system is bounded, the parameters c1i, c2, η1,
Γ2, and η2 need to satisfy the following conditions:

λmin(c1i) > 0, λmin(c2 −
1
2

I2×2) > 0,

η1 > 0, 2Γ2η2(1−
1
ι
) > 0. (48)

According to (45), we know that z1, z2, Ψ̃, and ˜̄D are bounded. Moreover, invoking (45),
we obtain

0 ≤ V2 ≤
H
β
+ [V2(0)−

H
β
]e−βt. (49)

Considering (45), we derive lim
t→∞

V2 = H
β , which yields that V2 is bounded. Thus, z1,

z2, Ψ̃, and ˜̄D are uniformly bounded. Furthermore, according to (8) and (49), we know that
the output variable x1 of the system eventually converges to a smaller domain and does
not violate the time-varying constraints.

4. Simulation

For the 2DOF helicopter system represented by (1)–(5), simulations are conducted to
prove the effectiveness of the developed adaptive NN control strategy. Table 1 represents
the parameters of the 2DOF helicopter system. Moreover, we choose the initial value of the
output variable to be x1(0) = [0.5, 0.8]T (rad/s), and the desired trajectory is selected as
xd = [1.4 sin(0.5t), 1.4 cos(0.5t)]T (rad/s).

The design parameters in this control strategy are selected as c11 = 10, c12 = 15,
c2 = diag{15, 15}, Γ1 = 64I64×64, σ1 = 0.1, Γ2 = 1, σ2 = 0.05, d0 = 0.5, and γi = 0.1,
i = 1, 2. In the time-varying output constraint, we choose κc = [−1.1 + 0.4 sin(0.5t),−1.1 +
0.4 cos(0.5t)]T and κc = [2 + 0.6 cos(0.5t), 2 + 0.6 sin(0.5t)]T . The external disturbance is
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selected as d(t) = [1.5 + 0.3 sin(t), 1.8 + 0.9 cos(t)]T . The parameters of input saturation
are chosen as uHi = 24 and uLi = −24, i = 1, 2.

Table 1. System parameters.

Symbol Parameter Value Unit

Jopp Pitch axis moment of inertia 0.0215 kg ·m2

Joyy Yaw axis moment of inertia 0.0237 kg ·m2

Mo Weight of the body 1.0750 kg

Dopp Pitch axial coefficient of viscous friction 0.0071 N/V

Doyy Yaw axial coefficient of viscous friction 0.0220 N/V

lo Length from the center of mass to the fixing point of the body frame 0.002 m

Kopp Torque thrust gain 0.022 N·m/V

Kopy Torque thrust gain 0.0221 N·m/V

Koyp Torque thrust gain −0.0227 N·m/V

Koyy Torque thrust gain 0.0022 N·m/V

go Gravitational acceleration 9.8 m/s2

4.1. Case 1: Under the Proposed Control

Figure 2a represents the response of the output variable following the desired signal
and that the output variables do not violate the time-varying constraint. Figure 2b shows
the response of the tracking errors and satisfies κa ≤ z1 ≤ κb. Figure 2c,d depict the
controller and control input signal, respectively. As can be seen from Figure 2d, the
control input generates a large voltage at the start of system operation. However, the
antisaturation compensator keeps the voltage within a certain range, while the system
maintains good stability. In summary, the control strategy proposed in this study is both
effective and reliable.
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Figure 2. The control performance. (a) tracking performance of x1; (b) tracking error: z1; (c) controller
input signal: u0; (d) control input: u.
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4.2. Case 2: Under the Proposed Control without Time-Varying Output Constraint

We disregard the time-varying output constraint in this case in order to demonstrate
the superiority of Case 1. In addition, we choose the same design parameters as in Case 1.
Figure 3a indicates the tracking response of the output variables against the desired trajec-
tory. The tracking errors are shown in Figure 3b. The performance of the controller and
control input signals are illustrated in Figure 3c,d.
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Figure 3. The control performance. (a) tracking performance of x1; (b) tracking error: z1; (c) controller
input signal: u0; (d) control input: u.

In contrast to Case 1, we know that, when the condition of time-varying constraint is
not regarded, the output variables of the system violate the constraint several times over a
longer period of time at the beginning of the system run, and the tracking errors do not
satisfy κa ≤ z1 ≤ κb. From Figure 3c, the controller input produces a larger overshoot
over a long period of time. The control input in Figure 3d has an antisaturation effect for a
period of 0–18 s, which may make the system very unstable during operation.

4.3. Case 3: Under the Proposed Control without Input Saturation

The impact of saturation nonlinearity is not considered in this subsection. According
to (4), we can treat the external disturbance and the error of the NN as a composite
disturbance D and compensate it using bounded estimation and a smooth function.

Let

ζmax = sup
t≥0
||D|| (50)

We consider the following inequality

zT
2 D ≤ zT

2 z2 +
1
4

ζ2
max. (51)

where  is a design parameter.
The adaptive neural controller is designed as follows:

u = −M−1(N + Ψ̂TΦ(Z) + ϕz1 + c2z2 + z2) (52)
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where the design parameters of the system are selected as c11 = 10, c12 = 18,
c2 = diag{20, 20}, and  = 0.5, and other design parameters remain the same as Case 1.

Figure 4a–c show the simulation results of Case 3. The tracking performance of
the system output variables with respect to the desired signal is presented in Figure 4a.
Figure 4b,c indicate the tracking errors and control input performance.

Although in the proposed control strategy the output variables do not violate the time-
varying constraint boundaries, the control input to the system generates a large overshoot
at the beginning, potentially leading to an excessive input voltage to the system with
no antisaturation compensator for regulation, which could make the system operation
unstable or even damage the components of the helicopter system.

0 10 20 30 40 50

Time [s]

-2

0

2

x
1

1
 [

ra
d

]

0 10 20 30 40 50

Time [s]

-2

0

2

x
1

2
 [

ra
d

]

(a)

0 10 20 30 40 50

Time[s]

-2

0

2

4

z
1

1
[r

a
d

]

0 10 20 30 40 50

Time [s]

-2

0

2

4

z
1

2
[r

a
d

]

(b)

0 10 20 30 40 50

Time [s]

0

50

100

C
o

n
tr

o
l 
In

p
u

t 
[V

]

0 10 20 30 40 50

Time [s]

-60

-40

-20

0

20

C
o

n
tr

o
l 
In

p
u

t 
[V

]

(c)

Figure 4. The control performance. (a) tracking performance of x1; (b) tracking error: z1; (c) control
input: u.

5. Conclusions

An adaptive neural control scheme was proposed considering the effects of time-
varying output constraints and input saturation. The RBFNN was used to estimate the
uncertainty in the system. The saturation error and external disturbances were considered
as composite disturbances and an adaptive auxiliary parameter was introduced to compen-
sate it. The effect of time-varying output was handled using TVBLF. The Lyapunov stability
proved that the closed-loop system was bounded. Finally, simulation results verified the
superiority and effectiveness of the control strategy proposed in this study. Motivated
by [44,45], in the future, we will focus on the study of model-free sliding mode control of
2DOF helicopters with prescribed performance that treats the whole model and external
perturbations as uncertainties.
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