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Abstract: The design of interdigital transducers (IDT) for active structural health monitoring (SHM)
systems often requires a tuning of their characteristics for specific applications. IDTs are generally
preferred for the selectivity of Lamb’s guided modes, but the directivity of the radiation pattern
is a design parameter that is often difficult to customize for complex mechanical structures. This
work proposes a comprehensive experimental study of the IDT with regular geometry, highlighting
the dimensional parameters that can optimize the overall performance. From this study, a scaled
electrode geometry emerged as a possible solution to shape the directivity diagram while maintaining
the selectivity of the guided wave modes. This study based on FEM simulators led to a more
versatile design of IDTs built with piezopolymer films of polyvinylidene fluoride (PVDF). The
experimental validation showed the directivity diagrams and the ultrasonic guided mode selection
were in very good agreement with the simulations. Another outcome of the investigation was the
off axis propagation due to the contribution of the bus bars for connecting the IDT fingers to the
excitation electronic circuit.

Keywords: interdigital transducers; scaled geometry; structural health monitoring; polyvinylidene
fluoride; piezopolymer; lamb waves; FEM simulation; directivity diagram; design method

1. Introduction

Structural health monitoring (SHM) is a technique for analyzing the structural integrity
and degradation of a component to increase reliability and safety [1–5].

For metal or composite laminates, the advantages of ultrasonic guided waves (UGWs)
are well known, and the basic theory and applications can be found in [6,7].

Currently, the adoption of UGWs is becoming common for damage monitoring of large
structures (several square meters) such as aircraft wings, space modules or pipelines [8–10].

A challenge for the design of UGW SHM systems is the density of sensors and their
connectivity to reduce the burden of cabling. A comparison of different solutions can
be found in [11]. A common solution is the adoption of isotropic piezoelectric wafer ac-
tive sensors (PWAS) [12–16]. The solution of piezoelectric isotropic transducers has the
advantage of simple fabrication, but its wideband response (typically up to 1 MHz) compli-
cates the signal interpretation due to multimodal excitation and phase velocity dispersion.
Moreover, a high transduction efficiency of a selected UGW mode is necessary to obtain
a high detection sensitivity for a type of damage, in which case IDTs with tunable elec-
trode geometry are preferred. The two main Lamb waves guided modes—antisymmetric
(A0) and symmetric (S0) modes—are commonly used to detect defects on the surface
or within the laminate under test. Some designs of IDT have also explored the shear
horizontal (SH) non-dispersive mode selection propagating at the Rayleigh velocity [17].
For mode selection, there are design models of IDT electrode geometry, with one of the
first published by Monkhouse et al. [18] using a piezopolymer film. More recently, the
advantage of transducer design with mechanically flexible piezopolymers (e.g., PVDF) was
demonstrated to generate Lamb waves in aerospace SHM systems [19–21]. For the sake of
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completeness, tunability at different frequencies can be achieved by a particular electrode’s
geometry being different from IDT, such as the spiral one proposed and validated by
De Marchi et al. [22]. We remind the reader of the importance of mode selection according
to the theory of UGW propagation, which determines the operating frequency based on
the dispersion curves of phase velocity for a given laminate [23,24]. In general IDTs are
used in active mode in the pitch and catch configuration for covering large distances with a
selected UGW mode. The width of fingers is chosen to reach a natural focusing providing
the required narrow beam. In this paper we study the design of the electrode geometry to
expand the use of IDTs in a configuration different from pitch and catch. In this view, the
papers [25–27] provided an extensive review of the technology for tunable IDTs constructed
with piezoelectric micro-fiber-composites (MFCs) and a systematic design approach based
on finite element modelling (FEM). The following works [28,29] introduced the apodization
concept for the finger length of IDTs to achieve the regularization of the frequency response
and the symmetrical radiation pattern along the IDT axis; it is interesting to note that
finger length apodization was first introduced decades ago for surface acoustic wave (SAW)
devices [30] for similar purposes. The adoption of MFC was introduced to overcome the
limitation of the piezopolymer films of a low electrical to acoustic piezoelectric conversion
and gaining resistance to vibrations and extreme temperatures. However, there are several
SHM applications (e.g., ISS habitation modules) where the operative temperature range is
below 100 ◦C and the mechanical stress (vibration, thermal expansion) is large enough that
the choice of piezopolymer films becomes adequate. In fact, piezopolymer film production
has made important progress recently for automotive applications (e.g., see [31]).

This paper reports a design method for piezopolymer IDTs based on FEM simula-
tions with a comprehensive analysis of the influence on mode selection and beam pattern.
This work shows how the metallization pattern dimensions and shape can be designed to
customize the IDT for monitoring complex structures where the simple pitch and catch con-
figuration is not suitable for active monitoring. Both mode selection and beam divergence
are the main design parameters that need to be treated with a systematic design approach
for optimizing the performance of the IDTs. The authors also showed in previous papers
that any electrode geometry can easily be fabricated by laser ablation on piezopolymer
films, and it represents a quick and cheap technology [25]. In addition to some specific
design choices related to the adoption of laser ablation, the results presented in this work
can be extended to different IDT fabrication technologies based on different piezoelectric
materials such as PZT, MFC or sprayed piezoelectric powders [26].

The paper is organized as follows. Section 2 reports the analysis of IDT electrode
geometry also including the effects of the electrical connections of the fingers. Section 3 is
a detailed description of the solutions for building an IDT FEM. In Section 4, the results
are reported for the analysis of varying all dimensions of the rectangular geometry of a
comb type IDT and the advantages of a scaled electrode geometry for achievement of a
shaped beam pattern. Section 5 describes the experimental setup used for the validation of
the simulated results for piezopolymer IDTs, and finally the discussion of results with a
comparison between simulations and experiments on a laboratory mock-up.

2. Analysis of IDT Geometries

This section first reports the geometrical characteristics of the regular geometry of
an interdigital electrode pattern. Later we will show how this basic design approach
can be improved by understanding the influence of other dimensional parameters. Cita-
tions [27,29,32] are state-of-the-art investigations of the influence of electrode geometry on
IDT characteristics. For a comb type IDT, the beam divergence angle γ can be designed
according to:

γ = arcsin
(

λ

L

)
(1)
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where λ represents the wavelength of selected UGW and L defines the length of the comb
elements. Thus, γ defines the equivalent aperture of the longitudinal beam pattern, centered
in the middle of active electrodes.

For an IDT mounted on a laminate with thickness d, the propagation mode selection
is defined by the intersection between laminate dispersion curves, phase velocity Vp
versus frequency–laminate thickness product f x d, and can be predicted by the following
relationship between λ, d and Vp:

Vp( f d)
f0d

=
λ

d
(2)

where f0 is the transducer operating frequency.
It is well known that Equation (2) defines a straight line in the phase velocity vs f x d

domain, and the intersections with the different dispersion modes define the selection of
the desired mode [33,34].

As shown in Figure 1, for an isotropic and homogeneous laminate material, there
are many different types of modes that can be excited. It is worth remembering that A0
and S0 dispersive modes are typically used for damage detection and monitoring, but the
excitation of the S′0 (known as Shear Horizontal or SH mode) is of interest in achieving a
quasi-nondispersive (quasi—Rayleigh) mode in the higher range of frequency x thickness
product. This could be an advantage when the same transducers are used on a planar structure
with different thickness; from the aim of a design of a multimodal IDT, it is also important to
analyze and verify the different conversion efficiency of the modes A0, S0 and S′0.
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Figure 1. Dispersion curves for A0, S0, SH and higher order modes for 1.5 mm aluminum plate
generated by MATLAB Tool “Dispersion Calculator” [35].

Conversely, modes S0 and A0, have dispersive characteristics and the selection of a
specific mode depends on the project requirements, including the defect type.

The authors of [18] demonstrated the defect detection capability of an SHM for com-
posite pressure vessels, using a set of piezopolymers (PVDF-TrFE), using signal processing
based on a frequency sweep and excitation mode selection by a programmable electronic
AFE. The results were encouraging, but also showed some limitations for area coverage
with low transducer spatial density and adaptability to the different thickness of the com-
posite pressure vessel. The basic design of an IDT with a regular geometry with comb
patterned electrodes designed according to Equations (1) and (2), was determined to be
insufficient for optimizing the performance of the whole system.

The authors then deepened the analysis of the UGW generation from an IDT with
regular comb geometry, and the main outcomes are reported in the next section.
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As an example, in Figure 2 (top), a regular comb pattern design for the IDT electrodes
is shown, where the distance between two elements is λ = 4 mm, for operating on an
aluminium plate with thickness d = 1.5 mm; according to Equations (1) and (2) we obtain
gamma and λ/d.
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Figure 2. IDT with standard design and relative principal characteristics. Dimensions in mm.

Figure 2 also introduces other geometrical parameters that influence the IDT perfor-
mance and will be studied in Section 4. These parameters are listed below:

- N, number of active elements of the same electrode;
- LINT , distance between the end of finger electrodes and the bus bars;
- w, width of elements.

All these parameters affect the operation of the transducer. In the case of N, the more
elements, the greater the active surface below the electrodes layer. However, too many
elements generate spurious phenomena due to coupling between nonadjacent elements.
LINT also defines a constructive interference of excitation system between combs. Lastly, a
different width element, w, defines a different active area but increases the lambda gap, ∆λ,
of excitable UGWs.

∆λ = |(λ + w/2)− (λ− w/2)| = |λMAX − λMIN | (3)

A consequence of the choice of the dimensions of the above parameters is obviously
the dimension of the active area of the IDT which influences the piezoelectric conversion
factors. The shape of electrodes is a crucial part of the IDT design and one of the main
motivations for a specific modelling process for the shape of the electrodes. An analysis of
the influence on the symmetrical beam pattern was published by Wang et al. [36].

3. Finite Element Analysis and Software Simulations

In this section we described the main developments carried out for the implementa-
tion of an FEM of IDTs on an aluminum plate: FEM of a 1.5 mm-thick aluminum plate
(200 × 200 × 1.5) mm with mounted IDT, which was used for the simulation of the Lamb
wave propagation [37,38], as shown in Figure 3.

As always with FEM-based study, the first critical step is the selection of the size of
the mesh elements. In our case, we chose a tetrahedral element whose dimensions were
generated by the COMSOL solver to optimize the use of the hardware. For the simulation
we selected the most adequate physics. Moreover, we adopted only solid mechanics and
electrostatics approach physics modules, and the acoustic pressure inside the laminate
for the radiation pattern study. This modification made it possible to import the acoustic–
structural interface. Finally, the following constraints were defined for the project, some of
which led to the good convergence of the solver:
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• Low reflection boundary, applied to edges of the aluminum laminate. This allowed
minimization of the amplitudes of the return modes from the ends of the plane;

• Rigid connector plane-IDTs. This mechanical constraint defined a solid connection
between transducers and laminate. This is an optimal situation for ultrasound propa-
gation;

• Inertial terms for objects inside solid mechanics. Due to the mass of the laminate,
vibration damping effects must be considered.
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Figure 3. The simulated propagation of modes in longitudinal and transversal directions of guided
waves generated by the IDT in Figure 2. The dimensions of aluminum plate are: (200× 200× 1.5) mm
It shows the propagation of modes in longitudinal and transversal directions.

4. Simulation Analysis of Different Electrode Pattern Geometries

Through the study in a simulated environment, numerous wave generation and
propagation phenomena have been studied, first the effects introduced by the electrical
connections capable of bringing equipotential to the elements of the same comb. In several
previous works [39–41] they have been considered as N active elements of area w × L,
leading to radiation patterns along the main axis of the transducer.

In this analysis, the effects introduced by two additional rectangular elements of width
wCON will be considered. The study of the whole device led to a cross radiation pattern as
in Figure 4, which shows the comparison between the same geometry with and without
electrical connections.
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The authors had already observed the importance of the transversal propagation
of piezopolymer IDTs in a previous experimental study [42] where a 3D laser–doppler
vibrometer was used to map the Lamb wave mode propagation on a 2 mm thick metal
laminate with a with an IDT designed to excite the A0 mode at 450 kHz.

In this experimental condition, in fact, a propagation of the beam along the directions
orthogonal to the transducer was highlighted. The explanation of this behavior is important
not only for a scientific purpose, but also for fully exploiting the characteristics of an IDT
used for SHM applications

As noted in Figure 4, the transition from an axial to a cross pattern is mainly due to the
introduction of the two lateral elements which connect all of N comb elements electrically.
This is essential for the correct operation of the piezopolymer IDT obtained with laser beam
ablation of the film metallization. Furthermore, the extremely thin layer of gold (about
0.1 µm thick), requires the sizing of the parameter wCON large enough to ensure a low
resistance for conducting current towards the fingers (typically lower than 10 Ohm).

In addition to the importance of the resistance of the finger connections (bus bars),
the overall capacitive value is also crucial [43], both between combs of the same layer, and
between comb and the lower ground plane (see Figure 5).
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Figure 5. (Top)—a representation of the of the IDTs electrodes on opposite surfaces of comb type.
(Bottom)—electrical connections: differential voltage on the comb electrodes on the top surface, and
ground connection (GND) for the comb electrodes on the bottom surface.

The ohmic value represents a negligible impedance at the frequency of interest
(e.g., 500 kHz) for IDTs with respect to the capacitive reactance of the piezopolymer film [44].
For example, in our design with 110 µm piezofilm thickness and εr_piezopolymer = 10, the
impedance module is in the order of kΩ. In this way the two bars with low ohmic resistance
have a low voltage drop and guarantee the same electric potential is applied to all the
electrodes. We observed that the piezoelectric material under the bars became an active
area of the IDT which was not negligible and contributed to the radiation along the angular
directions ±90◦.

In this study on the analysis of geometries, we focused on understanding the phe-
nomena related to the distances between elements of the same comb and then the distance
between combs. Specifically, the parameters w e Lint, shown in Figure 2, were varied within
0.5 mm. Such resolution is easily achievable with IDTs fabricated through the laser ablation
process [45], and the minimum value is assumed to guarantee electrical insulation between
the combs when the applied differential voltage in the transmission mode can reach up
to 100 V. In the simulation, we excited the device with a five-cycle burst signal 90 Vpp to
which the Hann window was applied. For probing the acoustic pressure, we set a point
probe at 20 cm from the transmitter in both tests. This simplification allowed significant
reduction in the computational complexity as it did not require the creation, in a simulated
environment, of another IDT capable of converting the mechanical quantity back into an
electrical equivalent.

In Figure 6 on the left of the bottom row, three spectral peaks can clearly be observed,
two of which are undesirable. Similarly, as can be seen in the same figure on the right, with
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a smaller distance between active elements, a better coherence between combs is obtained,
managing to generate a more selective ultrasonic front, almost exclusively concentrated
in the spectrum of the desired A0 mode; therefore, greater peaks are obtained in terms of
Fourier coefficients, managing to pass from a peak of 20 to 40 units.

Furthermore, we will present simulations with pairs of IDTs, to recreate a pitch–catch
configuration. In this way, the same conversion will be performed in reception, allowing
detection of the electric potential values directly on the electrodes of the receiver.

To date, we have characterized transducers with lambda 4, however in terms of the
dispersion curves, there is a particular closeness between the characteristic line of λ = 4 mm
and that of its double 2λ. This could be a problem when trying to excite only one mode of
Lamb, when searching for mode selectivity. In fact, we considered switching to λ = 5 mm
to increase the slope of the characteristic lines of λ. Another positive consequence is a
relative increase in the aperture of the radiation beam, according to Equation (1). In the
case of aluminum of width d = 1.5 mm it is possible to see the two characteristic lines of λ
and 2λ, and relative crossing of the Lamb modes. It can be seen in Figure 7 that the distance
between the excitation frequencies of the A0 and S0 modes is about 130 kHz, as opposed to
the 90 kHz obtained by designing a geometry with λ = 4 mm.

The set of information obtained allowed us to model what is shown in Figure 8.
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FEM Modelling of an Interdigital Transducer with Scaled Electrodes

In general, the beam divergence can be narrowed by increasing the parameter L
in agreement with Equation (1), but this increases the overall transducer area. In some
SHM systems, the available area for placing the array of transducers is limited and the
transducer’s dimension becomes important. An example is reinforced aluminum panels
where the transducers are placed inside a rectangular area formed by the reinforcing ribs.
Keeping in mind this constraint, we started an investigation of an IDT with scaled length
of fingers by 3D FEM modelling. The effects of the finger length apodization was already
introduced in [28] for an MFC IDT, while in this work we exploited the superposition of
the effects on beam divergence of each single finger pair in order to achieve a desired beam
pattern. While for the pitch and catch configuration, the IDT can provide a symmetrical
beam pattern, there are complex structures where the IDT beam pattern needs to be focused
on a certain area, while in the other directions it needs to be divergent for obtaining a large
area coverage.

The concept of scaled geometry is shown in Figure 9, where the parameter L for each
of the finger pairs varies progressively from a maximum of 14.45 mm to a minimum of
1.64 mm. The set of values for the six fingers (N = 6) is {14.45, 12.44, 9.74, 7.04, 4.34, 1.64}
(mm). We can point out that for the largest value of L, according to Equation (1), we obtain
a value for γ = 20◦, while for the smallest value we had a quasi-point-like acoustic source
with a very divergent beam. The superposition of these effects provides an asymmetrical
beam pattern as expected by the scaled electrode geometry, as shown in Figure 9 (bottom).
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Figure 9. Example of an IDT with scaled electrodes geometries. In this case, the L parameter varies
in the range [14.45–1.64] mm. In the bottom figure, the relative radiation pattern of scaled IDT is
presented.

The overall effect in this case study is a remarkable variation of the beam divergence
pattern relative to the regular IDT geometry considered in Figure 8. The asymmetrical
behavior provides a divergent beam (on the 0◦ angular direction of Figure 8), while in the
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opposite direction we obtain a focusing effect reaching a value only to 12◦. It is of interest
to compare the radiation of the scaled geometry along the angular directions ±90◦ with the
results published in the papers [39,46] where the beam patterns of the MFC transducers
did not exhibit a significant lateral radiation; the latter characteristics derived from the
adoption of macro fiber composite technology that implies a high electric field only along
the fiber direction. The design based on scaled electrode geometry implemented based on
PVDF piezofilm demonstrated the capability to generate quasi-isotropic beams that are a
typical advantage of PWAS for monitoring large areas with a reduced number of elements.

The versatility of the scaled electrode geometry is counterbalanced by a reduction in
the active area of the transducer. By the example in Figure 9, we can estimate that is 43% less
than that of a regular IDT. For quantitative analysis of this effect, the FEM modelling allows
estimation of the decrease in radiated power in the directions of 0◦ and 180◦ corresponding
to 4 dB and 12 dB, respectively, while for the case reported in Figure 8, the calculated values
are about 22 dB. The validation of the FEM simulations has been performed experimentally
by placing a receiving transducer of the same type as the transmitter, at different angular
positions along a circle of radius r = 80 mm and oriented to the transmitting transducer
from the focusing side. Figure 10 shows the time domain signals for three different values
of γ {0◦, 6◦, 12◦}. The decrease in amplitude relative to 0◦ remains less than 3 dB.
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Figure 10. Acquisition of three different signals at distance 80 mm. The full width half maximum
(FWHM) corresponds to 6◦ (solid blue line).

5. Experimental Results to Validate Different Electrode Pattern Geometries

We adopted a setup consisting of a waveform generator and an amplifier module to
provide a four-cycle burst with amplitude of Vpp ∼= 90 V. More details of this setup are re-
ported in a previous work [11]. The electronic boards for receiving the ultrasonic signal con-
sist of an amplifier module with gain AV = 56 dB and bandwidth B = [100 kHz− 1 MHz].
Removable piezopolymer IDTs have been coupled with the aluminum plate using a bi-
adhesive tape, produced by Eurocel—SICAD group, for carrying out multiple tests without
spoiling the aluminum plate surface.

The first tests were intended to directly compare transducers designed with different
geometries, such as λ = 4 mm, and produced in [11], and the IDT proposed in Figure 8 with
λ = 5 mm. In this comparison, a voltage signal eight times larger was detected with the
same setup using the same laminate.

Nevertheless, for all the reported cases using a double-sided adhesive layer, lower
acoustic coupling was observed. Therefore, all the acquisitions present in this document
were affected by a loss factor that would be easily observable through the adoption of a
rigid attachment using epoxy bonding. The result of this experiment points out a small
discrepancy between simulations relative to the value of central frequency used for the
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transmitting signal: we found an appropriate value of 350 kHz relative to the 400 kHz used
for the design of the transducer.

Further tests were carried out to evaluate the attenuation of the ultrasonic signal
propagating inside the laminate. In the case of regular geometry (see Figure 8), we found
an attenuation value of 30

[
mV
cm

]
. This result is shown in Figure 11.
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In Figure 11, we can observe that the receiving transducer Rx2, placed next to the
edge of the laminate, acquires both the direct ultrasonic signal from the transmitter and the
reflected signal from the edge.

Other tests were carried out to verify the effects of the bus bars reported in Figure 4.
We arranged a setup using two transducers with regular electrode geometry, shown in
Figure 8, in pitch–catch configuration with receiving IDT positioned in two manners:
first with electrodes parallel to the transmitting transducer, and second with electrodes
perpendicular to the transmitting transducer.

In Figure 12, a comparison is proposed between acquisitions with IDTs placed at
the same distance of 120 mm, but with different rotation. In the first case, we positioned
the transducers in an optimal way, i.e., aligned with each other with respect to the main
direction of the transducer. In the second case, they were repositioned following a 90-
degree rotation in place. In both cases, longitudinal and perpendicular, the transducers
were placed at the same distance of 120 mm. The amplitude of the acquired signal was
3.7 Vpp in parallel placement (0◦), and about 800 mVpp in perpendicular placement (90◦).
This result was in good accordance with simulations in terms of the ratio between the
parallel arrangement of the IDTs at 0◦ and the perpendicular one at 90◦. The last experiment
reported the characterization of the radiation pattern.
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Figure 12. Comparison between longitudinal and orthogonal/transversal signal at distance 120 mm.
Experimental attenuation is 13 dB while the simulated attenuation is 10 dB.

Figure 13 shows the acquired signal at various positioning angles of the receiver IDT
with respect to the transmitter. The reference signal (blue color) represents the acquisition
at 0◦; the other acquisitions correspond to different angles γ between the transmitter and
receiver placed at a distance of 150 mm. Moreover, in Figure 13, we validate the radia-
tion pattern of the focused geometry: the attenuation recorded for the focused geometry
corresponds to a spread angle of 6◦ (γ−6dB = 12◦ ), which is the same as reported in
Figure 10.
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Figure 13. Three different signal acquisitions in pitch–catch configuration at various angles, to
validate the radiation pattern of the focused geometry as reported in the bottom left-side of Figure 7.

The results of the investigation of the regular and scaled geometries for IDTs are
summarized in Tables 1 and 2: we observed an excellent agreement between simulations
and experimental tests that validated the design according to the FEM approach. The only
discrepancy occurred for the maximum values of amplitude of the acquired signal which
we could explain by the variability of losses introduced by the mechanical coupling of the
bi-adhesive tape used for bonding the transducers on the laminate.



Actuators 2022, 11, 326 13 of 15

Table 1. Main features of the regular IDT.

IDT Regular Geometry

Beam spread angle @ 0◦ ∼= 20◦

Beam spread angle @ 180◦ ∼= 20◦

Maximum amplitude of the acquired signal (AV = 60 dB, dTx−Rx = 15 cm) 4 V
Attenuation factor 30

[
mV
cm

]
Table 2. Main features of the scaled IDT.

IDT Scaled Geometry

Beam spread angle @ 0◦ ∼= 12◦

Beam spread angle @ 180◦ ∼= 30◦

Maximum amplitude of the acquired signal (AV = 60 dB, dTx−Rx = 15 cm) 230 mV
Maximum amplitude of the acquired signal (AV = 60 dB, dTx−Rx = 15 cm) 140 mV

6. Conclusions

In this work, a detailed analysis of the geometry and dimensions of the electrodes of
interdigital transducers was carried out, and a new design approach for their fabrication
was presented. Interesting results were the extension of the application of IDTs in SHM
systems where both the propagation mode selection and the beam configuration must be
tailored to specific requirements. The study used finite element modeling software and
considered a piezopolymer film material; this study highlighted the influence of all the
dimensional parameters of the electrode pattern on IDT characteristics.

Finally, the scaled geometry of the electrodes was proposed to obtain an asymmetrical
beam pattern able to focus and blur the beam in a given direction, or alternatively, to
obtain an almost isotropic radiation pattern. In this regard, IDTs, commonly designed for
pitch and catch configuration, become more flexible devices to be used in SHM systems.
The FEM-simulated results of piezopolymer IDTs with regular and scaled geometry were
compared with IDTs fabricated with laser ablation technology and the results were in
good agreement. It was also shown that such transducers were able to generate dispersive
(A0 and S0) and non-dispersive (SH) modes of propagation with different transduction
efficiency. To complete this experimental work, a theoretical modelling is needed to validate
the results of FEM, and once it is performed, it will be possible to optimize the choice of the
electrodes scaled geometry and bus bars dimensions for the target application.
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