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Abstract: Based on ensuring the steady-state performance of the system, some dynamic performance
indicators that have not yet been realized in linear stochastic systems with time-delay are discussed
in this paper. First, in view of the relationship between system eigenvalues and system performances,
the region stability is provided, which can reflect the dynamic performance of the systems. Second,
the design scheme of the region stabilization controller is given based on the region stability, so that
the closed-loop system has the corresponding dynamic performance. Third, this paper also designs
an algorithm to deal with the situation in which the eigenvalues are located in the non-connected
region in order to obtain more accurate control system dynamic performance. Finally, an example
shows how the precise control method dominates the dynamic performance of the system.

Keywords: linear stochastic time-delay system; damping coefficient; convergence rate; region stability;
region stabilization

1. Introduction

Linear stochastic time-delay systems (LSTDSs) have always been the focus of research
in the field of control, and various subfields have also been developed. The time-delay
and stochastic terms are usually the important reasons for system instability or poor
performance. Due to their complexity and comprehensive application fields, LSTDSs have
become very active and have developed in various areas based on different focuses, such as
stability analysis and stabilization [1–3], control system synthesis [4–6], uncertain system
control [7–9], filter design [10–12], etc.

Regardless of the branch of LSTDSs, stability is the most vital element for the devel-
opment of LSTDSs. Up to now, almost all stability analyses for LSTDSs can only provide
asymptotically stable conditions, that is the state of the system approaches zero as time
tends to infinity. These methods often fail to help us regulate dynamic performance in-
dicators of the system. In practical engineering, the system is often required to have
certain dynamic performance. For example, some systems do not allow oscillating re-
sponses; some systems wish to have moderate damping; some systems wish to have a
faster response speed.

As is well known, there are pole assignment and regional pole assignment of the
linear time-invariant systems, which can control the dynamic performance of the system
very well. The dynamic performances of the system are strongly linked with the dis-
tribution position of the system eigenvalues. As a generalization of the pole allocation
method, spectrum criteria have made great progress in recent years. A robust regional
pole placement was investigated in [13]. By the spectrum technique, interval stability and
stabilization of the stochastic systems (LSSs) were explored in [14–17]. The Pth moment
region stability/stabilization and some related control questions for LSSs were addressed
in [18–20].

Although the research on region stability and stabilization has made great progress,
it is not easy to generalize these conclusions to LSTDSs because of the influence of time-
delay terms and stochastic terms. There are currently no results on the regionally stable

Actuators 2022, 11, 325. https://doi.org/10.3390/act11110325 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act11110325
https://doi.org/10.3390/act11110325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-3972-4674
https://doi.org/10.3390/act11110325
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act11110325?type=check_update&version=3


Actuators 2022, 11, 325 2 of 17

conditions of LSTDSs, nor the design of region controllers, as far as we know. Based on the
previous discussion, this paper proposes the regional stability conditions and controller
design, which can reflect the system stability characteristics in more detail and regulate the
dynamic performance of the closed-loop system. The main innovations of this paper are
as follows:

First, a new region stability for LSTDSs is given based on the properties of LSTDSs,
which describes more accurate system performance.

Second, important region stability criteria of LSTDSs are presented by LMIs, which are
convenient to calculate. As a finer partition, the stability criteria for unconnected regions
are also investigated by an algorithm. The criteria can be thought of as a generalization of
the existing stability criteria for LSTDSs.

Third, the region stabilization method of LSTDSs is addressed. Using this new method,
different controllers can be designed according to the actual system’s requirements for
performance indicators. There is no relevant conclusion that can achieve this as far as
we know.

The main body of this paper consists of seven parts. The description of the system, the
definition of region stability/stabilization, and some lemmas are presented in Section 2.
Section 3 presents the sufficient conditions for the region stability of LSTDSs. Section 4 dis-
cusses the region stabilization controllers of LSTDSs. An unconnected region stabilization
algorithm and a pole assignment algorithm for LSTDSs are presented in Section 5. Section 6
provides an example to illustrate the advantages of region stabilization. A summary of the
main points is given in Section 7.

Notation: ‖ · ‖: two-norm. tr(A): the sum of the principal diagonals of matrix A.
det(A): the determinant of matrix A. =(λ): the imaginary part of the complex number
λ. <(λ): the real part of the complex number λ. E(·): mathematical expectation operator.
σ(A): the spectrum set of A.

2. Preliminaries

Consider 
dx(t) = [Ax(t) + Adx(t− ν(t)) + C1u1(t)]dt

+ [Bx(t) + Bdx(t− ν(t)) + C2u2(t)]dw(t),

:= ϕ(x(t), t)dt + ψ(x(t), t)dw(t),

x(t) = ρ(t), t ∈ [−l, 0]

(1)

where d· is the differential symbol, x(t) ∈ Rn is a state vector, and w(t) is an independent
stochastic variable, a standard one-dimensional Wiener process. ρ(t) is the initial condition
in L2

F0
([−l, 0];Rn). τ(t) satisfies

0 ≤ ν(t) ≤ l, ν̇(t) ≤ µ, (2)

where µ and l are known. A, Ad, B, Bd, C1, and C2 are given matrices,

u1(t) = KAx(t) + KAd x(t− τ(t)), (3)

u2(t) = KBx(t) + KBd x(t− τ(t)). (4)

The special case of the system (1),{
ẋ(t) = Ax(t),

x(0) = x0,
(5)

is very instructive for the control strategy of the system, although it is very simple.
We first investigate the system (5) and present sufficient conditions for its region

stability. Then, according to the region stability conditions of System (5), the control
strategy and controller design of System (1) are addressed.
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Definition 1. System (5) has region (−b,−a)× (c, d) and (−b,−a)× (−d,−c) stability, if Sys-
tem (5) is stable and

<[σ(A)] ∈ (−b,−a), |=[σ(A)]| ∈ (c, d).

As a particular case of Definition 1, the definition of interval stability is shown below.

Definition 2. System (5) has interval (−b,−a) stability, if

<[σ(A)] ∈ (−b,−a),

and System (5) is stable.

Definition 3 ([1]). The LSTDS (1) is asymptotically stable, if, for arbitrary initial state x0,

lim
t→∞
E‖x(t, t0)‖2 = 0

can be obtained.

Definition 4. The LSTDS (1) has region (−b,−a)× (c, d) and (−b,−a)× (−d,−c) stabiliza-
tion, if

lim
t→∞
E‖x(t, t0)‖2 = 0, (6)

Re[σ(A + C1KA)] ∈ (−b,−a), (7)

|Im[σ(A + C1KA)]| ∈ (c, d), (8)

(Ad + C1KAd)
T(Ad + C1KAd) < εI, (9)

(B + C2KB)
T(B + C2KB) < εI, (10)

(Bd + C2KBd)
T(Bd + C2KBd) < εI, (11)

where ε is a very small positive number.

Remark 1. Compared with the mean square stability, the region stability condition can describe the
dynamic and steady-state performance of the system more accurately, rather than just judging its
stability. Of course, the judgment conditions of regional stability are also more complex. Conditions
(9)–(11) reduce the effects of the time-delay term and the stochastic term in the system (1) to a
negligible degree by designing the controller. Then, according to Definition 1, we can restrict the
eigenvalues to the corresponding regions by adding the controller to the rest of the system. In short,
we simplified System (1) to System (5) by adding controllers and then carried out region stability
control for System (5).

Lemma 1 ([20]). For any positive definite matrix Q ∈ Rn×n and any P ∈ Rn×n, then

−PTQ−1P ≤ Q− P− PT .

3. Region Stability

In this section, the sufficient conditions for System (5)’s region stability are presented.
Meanwhile, a sufficient and necessary condition for the interval stability is presented.

Theorem 1. The linear system (5) has asymptotically rectangle region (−b,−a) × (c, d) and
(−b,−a) × (−d,−c) stability, that is |=[σ(A)]| ∈ (c, d) and <[σ(A)] ∈ (−b,−a), if the
following LMI:

(A + aI)T P + P(A + aI) < 0, (12)

(−A− bI)T P + P(−A− bI) < 0 (13)
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has a solution P > 0, and

(c2 +
(a− b)2

4
)I < (A +

a + b
2

I)T(A +
a + b

2
I) < d2 I, (14)

where 0 ≤ a < b and 0 ≤ c < d.

Proof. First, let us prove Re[σ(A)] ∈ (−b,−a), if and only if (12) and (13) hold.
Re[σ(A)] ∈ (−b,−a) iff the next two systems are stable. That is to say,{

ẋ(t) = (A + aI)x(t),

x(0) = x0,
(15)

and {
ẋ(t) = −(A + bI)x(t)

x(0) = x0,
(16)

are asymptotic stability. According to the Lyapunov stability criteria, the interval has
(−b,−a) stability if and only if (12) and (13) hold.

Secondly, assuming σ(A) = αk + βki(k = 1, · · · , n), then

σ[(A +
a + b

2
I)(A +

a + b
2

I)T ] = (αk +
a + b

2
)2 + β2

k.

Due to Re[σ(A)] ∈ (−b,−a), i.e., −b < αk < −a, such that

β2
k < (αk +

a + b
2

)2 + β2
k < (

a− b
2

)2 + β2
k.

On the basis of (14), we have
c2 < β2

k.

β2
k < d2 can be obtained in parallel. According to the above two inequalities,
|Im[σ(A)]| ∈ (c, d) can be obtained. Finally, the satisfaction of (12–14) ensures that the

system (5) has region (−b,−a)× (c, d) stability. The proof is complete.

Remark 2. The asymptotic stability in the sense of Lyapunov can only reflect the steady-state
performance of the system, but cannot reflect the dynamic performance of the systems. Based on the
relationship between the system poles and system performance indicators, region stability can not
only reflect the steady-state performance, but also reflect the dynamic performance of the system.
That is to say, regional stability grasps the dynamic performance of the system by examining the pole
distribution of the system. Only asymptotic stability with the poles in the left half-plane guarantees
that the system is stable.

Remark 3. Most of the current region stability studies focus on convex regions, because convex
regions can be easily calculated by means of efficient methods for solving linear matrix inequalities.
Theorem 1 gives a disconnected region. It will be more precise to judge the dynamic performance of
the system, but it will bring great difficulties to the subsequent controller design. The disconnected
region is shown in Figure 1. If c = 0, then region (−b,−a)× (c, d) and (−b,−a)× (−c,−d)
turn into a convex region (−b,−a)× (−d, d).
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−b

d
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Figure 1. Rectangle region (−b,−a)× (c, d) and (−b,−a)× (−c,−d).

Remark 4. In engineering applications, it is usually desirable for the system to have a fast response
speed, moderate damping, and a shorter regulation time. As a consequence, the general requirements
are generally from 0.4 to 0.8 (see Reference [21] for details). In other words,

0.4 < arctan α1 < arctan α2 < 0.8

as in Figure 1.

As mentioned in Remark 3, the stability analysis and control of non-convex regions are
often complicated. For the ease of calculation, we first deal with the case of convex regions.
The case of disconnected regions will be discussed in detail in Section 4 by designing
the algorithm.

Theorem 2. The system (5) has region (−b,−a)× (−d, d) stability, i.e., =[σ(A)] ∈ (−d, d) and
<[σ(A)] ∈ (−b,−a), if the following LMI:

(A + aI)T P + P(A + aI) < 0, (17)

(−A− bI)T P + P(−A− bI) < 0 (18)

has a solution P > 0, and

(A +
a + b

2
I)T(A +

a + b
2

I) < d2 I, (19)

where b > a ≥ 0 and d ∈ R+.

When only considering the convergence or divergence of the system and the rate of
convergence, a sufficient and necessary condition can be addressed below as a particular
case of Theorem 1.

Corollary 1. System (5) has interval (−b,−a) stability, i.e., <[σ(A)] ∈ (−b,−a), iff

(A + aI)T P + P(A + aI) < 0,

(−A− bI)T P + P(−A− bI) < 0

has a solution P > 0, where b > a ≥ 0.
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Remark 5. The stability of the interval can judge the stability of the system, and it can also
determine the convergence speed of the system. The farther the interval is from the imaginary axis
on the negative half-plane, the faster the system converges. Theorem 1 is transformed into a stable
condition in the usual sense as a = 0 and b = ∞.

4. Region Stabilization

Region (−b,−a)× (−d, d) stabilization of System (1) is investigated in this section,
which could dominate the convergence speed of the system states and could adjust the
damping ratio to an extent.

Theorem 3. For given invariants µ, l > 0, and ε > 0, LSTDS (1) has asymptotic region
(−b,−a)× (−d, d) stabilization; if (2) holds, there are symmetric matrices Q̂ > 0, L > 0, R̂ > 0,

Y =

 Ŷ11 Ŷ12 Ŷ13
∗ Ŷ22 Ŷ23
∗ ∗ Ŷ33

 ≥ 0

and arbitrary matrices with appropriate dimensions N̂j, M̂j, T̂j, Ŝj(j = 1, 2, 3), such that

Ξ1 =

[
ε(I − 2L) VT

2 CT
1 + LAT

d
∗ −I

]
< 0, (20)

Ξ2 =

[
ε(I − 2L) VT

3 CT
2 + LBT

∗ −I

]
< 0, (21)

Ξ3 =

[
ε(I − 2L) VT

4 CT
2 + LBT

d
∗ −I

]
< 0, (22)

∆̂ =


∆̂11 ∆̂12 ∆̂13 LBT + VT

3 CT
2 hT̂T

1
∗ ∆̂22 ∆̂23 0 hT̂T

2
∗ ∗ ∆̂33 LBT

d + VT
4 CT

2 0
∗ ∗ ∗ −L 0
∗ ∗ ∗ ∗ −hR̂

 < 0, (23)

Λ̂ =


Ŷ11 Ŷ12 Ŷ13 Ŝ1
∗ Ŷ22 Ŷ23 Ŝ2
∗ ∗ Ŷ33 Ŝ3
∗ ∗ ∗ 2L− R

 ≥ 0, (24)

Θ = −(A + bI)L− C1V1 − L(A + bI)−VT
1 CT

1 < 0, (25)

Ξ4 =

 I − (AL + C1V1) (b2 + d2)1/2L
−(AL + C1V1)

T

∗ −I

 < 0, (26)
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where

∆̂11 = Q̂ + T̂1 + T̂T
1 + Ŝ1 + ŜT

1 + lŶ11,

∆̂12 = [(A + aI)L + CV1]
T − Ŝ1 + Ŝ2 + T̂T

2 + lŶ12,

∆̂13 = T̂T
3 − T̂1 + lŶ13,

∆̂22 = −Ŝ2 − ŜT
2 + lŶ22,

∆̂23 = AdL + CdV2 − T̂2 + lŶ23,

∆̂33 = −(1− µ)Q̂− T̂3 − T̂T
3 + lŶ33.

Moreover, the stabilization controllers are

u1(t) = V1L−1x(t) + V2L−1x(t− τ(t)),

u2(t) = V3L−1x(t) + V4L−1x(t− τ(t)).

Proof. Substituting the controllers u1(t) and u2(t) into System (1), the closed-loop system
below can be obtained.

dx(t) = [(A + C1KA)x(t) + (Ad + C1KAd )x(t− ν(t))]dt

+ [(B + C2KB)x(t) + (Bd + C2KBd )x(t− ν(t))]dw(t),

x(0) = ρ(t), t ∈ [−l, 0]

(27)

According to Condition (20) and Lemma 3, it is straightforward to check that[
−εL2 LKT

Ad
CT

1 + LAT
d

∗ −I

]
≤ Ξ1 < 0, (28)

where L = P−1. Multiply both sides of Inequality (28) by
[

P 0
∗ I

]
to obtain

[
−εI KT

Ad
CT

1 P + AT
d P

∗ −I

]
< 0.

By the Schur complement theorem, we have

(Ad + C1KAd)
T(Ad + C1KAd) < εI, (29)

i.e., it satisfies Condition (9) in Definition 4. Repeating the same procedure as above,
Conditions (10) and (11) in Definition 4 can be derived by (21) and (22).

The system (27) is interval (−a,−b) stable if the below systems are stable.{
ẋ(t) = −(A + bI + C1KA)x(t),

x(0) = x0,
(30)

and 
dx(t) =[(A + C1KA + aI)x(t) + (Ad + C1KAd)

× x(t− ν(t))]dt + [(B + C2KB)x(t) + (Bd

+ C2KBd)x(t− ν(t))]dw(t),

x(0) = φ(t), t ∈ [−l, 0].

(31)

For the system (31), select the Lyapunov–Krasovskii functional:

V(t, x(t)) = xT(t)Px(t) +
∫ t

t−ν(t)
xT(v)Qx(v)dv

+
∫ 0

−l

∫ t

t+u
yT(v)Ry(v)dvdu, (32)
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where P, Q, R are symmetric positive definite matrices and dx(t) = y(t)dt.
For arbitrary matrices T1, T2, T3, S1, S2 with appropriate dimensions and semi-positive

matrix Y, the following equations hold:

(xT(t)S1 + yT(t)S2)[−y(t)dt + (A + aI + C1KA)x(t)dt

+(Ad + C1KAd)d(t− ν(t))) + ψ(t)dw] = 0, (33)

[xTT1 + y(t)T2 + xT(t− ν(t))T3][x(t)− x(t− ν(t))−
∫ t

t−ν(t)
y(s)ds] = 0, (34)

lΩT
1 (t)YΩ1(t)−

∫ t

t−ν(t)
ΩT

1 (t)YΩ1(t)ds ≥ 0, (35)

where Ω1(t) = [xT(t) yT(t) xT(t− ν(t))].
On the basis of the Itô formula and (34) and (35),

LV(t, x(t)) = −(1− ν̇(t))xT(t− ν(t))Qx(t− ν(t)) + 2xT(t)Py(t) + xT(t)Qx(t)

+[(B + C2KB)x(t) + (Bd + C2KBd)x(t− ν(t))]T P[(B + C2KB)x(t)

+(Bd + C2KBd)x(t− ν(t))] + lyT(t)Ry(t)−
∫ t

t−l
yT(v)Ry(v)dv

≤ −(1− τ̇(t))xT(t− τ(t))Qx(t− ν(t)) + 2xT(t)Py(t) + xT(t)Qx(t)

+[(B + C2KB)x(t) + (Bd + C2KBd)x(t− ν(t))]T P[(B + C2KB)x(t)

+(Bd + C2KBd)x(t− ν(t))]−
∫ t

t−l
yT(v)Ry(v)dv + lyT(t)Ry(t)

+(xT(t)S1 + yT(t)S2)[((A + C1KA + aI)x(t)− y(t) + (Ad + C1KAd + aI)(t− ν(t)))]

+[xTT1 + y(t)T2 + xT(t− ν(t))T3][x(t)− x(t− ν(t))−
∫ t

t−ν(t)
y(s)ds]

+lΩT
1 (t)YΩ1(t)−

∫ t

t−ν(t)
ΩT

1 (t)YΩ1(t)ds

= ΩT
1 (t)ΥΩ1(t)−

∫ t

t−τ(t)
ΩT

2 (t)ΛΩ2(t). (36)

where

Ω2(t) = [xT(t) yT(t) xT(t− τ(t)) yT(s)],

Υ =

 Υ11 Υ12 Υ13
∗ Υ22 Υ23
∗ ∗ Υ33

,

Υ11 = Q + BT PB + T1 + TT
1 + S1(A + C1KA + bI)

+(S1(A + C1KA) + bI)T + lY11,

Υ12 = P + (A + bI + C1KA)
TS2 + TT

2 − S1 + lY12,

Υ13 = TT
3 − T1 + S1(Ad + C1KAd)

+(B + C2KB)
T P(Bd + C2KBd) + lY13,

Υ22 = lR− S2 − ST
2 + lY22,

Υ23 = −TT
2 + S2 Ad + lY23,

Υ33 = −(1− µ)Q− T3 − TT
3 + (Bd + C2KBd)

T P

×(Bd + C2KBd) + lY33.
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If Υ > 0 and Ψ ≥ 0, (36) can be deduced as follows:

LV(t, x(t)) < 0.

According to Lemma 2, the inequality Υ < 0 is equivalent to

∆ =


∆11 ∆12 ∆13 −(B + C2KB)

T P
∗ ∆22 ∆23 0
∗ ∗ ∆33 (Bd + C2KBd)

T P
∗ ∗ ∗ −P

 < 0, (37)

where

∆11 = Q + T1 + TT
1 + S1(A + C1K + bI)

+(S1(A + C1K + bI))T + lY11,

∆12 = P + (A + C1K + bI)TST
2 + TT

2 − S1 + lY12,

∆13 = TT
3 − T1 + S1(Ad + C1Kd) + lY13,

∆22 = LR− S2 − ST
2 + lY22,

∆23 = −TT
2 + S2(Ad + C1Kd) + lY23,

∆33 = −(1− µ)Q− T3 − TT
3 + lY33.

The term ∆22 has to be negative, so S2 + ST
2 < 0, i.e., S2 is not singular. Let

H =

[
P 0
−ST

1 −ST
2

]
,

and change the variables as L = P−1, such that

H−1 =

[
L 0

ŜT
1 ŜT

2

]
.

Multiplying diag{H−T , L, L} and diag{H−1, L, L} on both sides of (37) and Λ and letting Ŝ1
Ŝ2
Ŝ3

 = diag{H−T , L, L} ·

 S1
S2
S3

 · L,

Q̂ = LQL, T̂i = LTiL, R̂ = R−1, Ŝi = LSiL, Ŷmn = LYmnL(m, n = 1, 2, 3.), we can obtain (23)
and (24). Similarly, (25) and (26) can be obtained.

According to Definition 4 and the proof of Theorem 1, if (20)–(22) and

0 < (A + C1KA)(A + C1KA)
T < (b2 + d2)I (38)

hold, then Im[σ(A + C1KA)] ∈ (−d, d). Based on Lemma 3, it can be proven that Inequality
(38) holds if (26) is true.

Remark 6. The basic idea of Theorem 3 is to minimize the influence of the time-delay term and
stochastic term by adding a suitable controller. Meanwhile, the eigenvalue distribution of the state
matrix is controlled to adjust the dynamic performance of the LSTDSs.

Remark 7. At present, most stochastic system stabilization methods can only ensure the conver-
gence of LSTDSs, but cannot adjust the convergence speed of LSTDSs and some other dynamic
performance. Theorem 3 can dominate the convergence rate of the closed-loop system by setting
appropriate constants a and b and control the damping of the system by adjusting constant d.
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Therefore, region stabilization can regulate the dynamic performance of the closed-loop system more
precisely, rather than just guaranteeing the stability.

If only precise control over the convergence rate of the closed-loop system is performed,
the following simple corollary of Theorem 3 can achieve this.

Corollary 2. For given invariants µ, ε > 0, and l > 0, LSTDS (1) has region (−b,−a)× (−d, d)
stabilization; if (2) holds, there are symmetric matrices R̂ > 0, Q̂ > 0, L > 0, Y ≥ 0, and any
matrices with appropriate dimensions T̂j, Ŝj, N̂j, M̂j(j = 1, 2, 3), then

Ξk < 0(k = 1, 2, 3), ∆̂ < 0, Λ̂ ≥ 0, Θ < 0,

where Ξk(k = 1, 2, 3), ∆̂, Λ̂, and Θ are consistent with Theorem 3. Moreover, the stabilization
controllers are designed as

u1(t) = V1L−1x(t) + V2L−1x(t− ν(t)),

u2(t) = V3L−1x(t) + V4L−1x(t− ν(t)).

As a = 0, b = d = ∞, Theorem 3 is further transformed into an ordinary stochastic
system stabilization criterion, which can be addressed as follows.

Corollary 3. For given invariants µ, ε > 0, and l > 0, LSTDS (1) has asymptotic region
(−b,−a)× (−d, d) stabilization; if (2) holds, there are symmetric matrices R̂ > 0, Q̂ > 0, L > 0,
Y ≥ 0, and any matrices with appropriate dimensions T̂j, Ŝj, N̂j, M̂j(j = 1, 2, 3), then

¯̂∆ =


¯̂∆11

¯̂∆12
¯̂∆13 LBT + VT

3 CT
2 lT̂T

1
∗ ¯̂∆22

¯̂∆23 0 lT̂T
2

∗ ∗ ¯̂∆33 LBT
d + VT

4 CT
2 0

∗ ∗ ∗ −L 0
∗ ∗ ∗ ∗ −hR̂

 < 0,

Λ̂ =


Ŷ11 Ŷ12 Ŷ13 Ŝ1
∗ Ŷ22 Ŷ23 Ŝ2
∗ ∗ Ŷ33 Ŝ3
∗ ∗ ∗ 2L− R

 ≥ 0,

where

¯̂∆11 = Q̂ + T̂1 + T̂T
1 + Ŝ1 + ŜT

1 + lŶ11,
¯̂∆12 = [AL + CV1]

T − Ŝ1 + Ŝ2 + T̂T
2 + lŶ12,

¯̂∆13 = T̂T
3 − T̂1 + lŶ13,

¯̂∆22 = −Ŝ2 − ŜT
2 + lŶ22,

¯̂∆23 = AdL + CdV2 − T̂2 + lŶ23,
¯̂∆33 = −(1− µ)Q̂− T̂3 − T̂T

3 + lŶ33.

Moreover, the stabilization controllers are designed as

u1(t) = V1L−1x(t) + V2L−1x(t− ν(t)),

u2(t) = V3L−1x(t) + V4L−1x(t− ν(t)).

5. Unconnected Stabilization Algorithm

Although Theorem 3 can control some dynamic properties of closed-loop systems,
such as the convergence rate, there are still some dynamic properties that cannot be fully
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controlled. On the basis of Theorem 3, this section presents an algorithm to achieve more
dynamic performance control.

Remark 8. Based on Theorem 3 and the above algorithm, a fairly accurate system pole configuration
can be achieved, which can dominate the dynamic performance of the closed-loop system. Theorem 3
reduces the influence of time-delay terms and stochastic terms on the system and realizes the control
of part of the dynamic performance. Algorithm 1 can further adjust the pole distribution region to
achieve precise control of the dynamic performance of the system.

Algorithm 1 Regional pole assignment algorithm for unconnected regions.
Step 1. Set the parameters a, b, c, and d. According to Theorem 3, the controllers can be
solved, and the eigenvalues are located in the connected region (−b,−a)× (−d, d). That is,
the eigenvalue real parts are between −b and −a, while the imaginary part lies between
−d and d. If the absolute value of the imaginary coefficient of the eigenvalue lies between c
and d, then the controllers are what are required and the algorithm ends.

Step 2. If the imaginary coefficient of the eigenvalue lies between −c and c, by the product
of the counter-diagonal elements of the system matrix, the values of the elements in the
upper right corner and the lower left corner of the system matrix are both increased
(decreased) by the same step size, respectively.

Step 3. Check whether the imaginary part of the eigenvalue meets the predetermined
condition. If not, repeat Step 2. If the predetermined condition has been reached, the
procedure ends.

As the most accurate control method in control theory, the pole assignment is extended
to the LSTDSs.

According to the consistent idea of this paper, the influence of the time-delay term and
random term on the system is minimized by the controller, and then, the pole assignment
of the state matrix is carried out. The following conclusions and Algorithm 2 are obtained.

Theorem 4. For any ε > 0, if LMIs (20)–(22) hold and (A, C) is completely controllable, then the
system (1) can arbitrarily assign all poles (eigenvalues) by state feedback.

Algorithm 2 Pole assignment algorithm of the linear stochastic time-varying delay system.
Step 1. By computing the inequalities (20)–(22), the controllers K2, K3, and K4 can be
obtained.

Step 2. The controllable matrix pair (A, C) is reduced to Lomborg’s controllable norm.

Step 3. The eigenvalues of the expected closed-loop system are grouped, and the
corresponding polynomials are calculated according to the number and dimension of the
diagonal blocks of the Lomborg controllability canonical form.

Step 4. Find the state feedback matrix K̄1 for the Lomborg standard type.

Step 5. Calculate the matrix S, which is the transformation matrix of the matrix pair (A, C),
into the Lomborg canonical form.

Step 6. Calculate the state feedback matrix K1 = K̄1S.

Step 7. Stop the calculation.
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6. Examples

Consider LSTDS (1) with the given scalars:

h = 0.5, µ = 0.5, ε = 10−3

and the following matrices:

A =

[
0.9 1
2 1.2

]
, Ad =

[
1 0.6

0.9 1.8

]
,

B =

[
0.3 0.5
0.3 0.2

]
, Bd =

[
0.6 0.2
0.5 0.09

]
,

C1 =

[
0.5 0.8
0.3 1

]
, C2 =

[
0.4 0.7
0 0.3

]
.

One can verify directly that the system (1) with the above matrices is not stable by
Corollary 1. The system state trajectories are shown in Figure 2.

0 1 2 3 4 5 6 7 8 9 10
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1

2

3

4

5

6

7

8
x 10

11

t

x(
t)

 

 
x

1
(t)

x
2
(t)

Figure 2. State trajectories of the open-loop system.

Using the common stabilization method, the system controllers are solved by Corol-
lary 3:

u1(t) = K11x(t) + K12x(t− ν(t)),

u2(t) = K13x(t) + K14x(t− ν(t)),

where
K11 =

[
−4.7996 5.8397
−0.5601 −4.8998

]
, K12 =

[
−1.0769 3.2308
−0.5769 −2.769

]
,

K13 =

[
1.0000 −0.0833
−1.000 −0.6676

]
, K14 =

[
1.4167 4.7500
−1.6667 −3.0000

]
.

The trajectories of the closed-loop system are shown in Figure 3. When t ≥ 2.8(s),
|xi(t)| < 5× 10−3(i = 1, 2).
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Figure 3. The state trajectories under controllers u1(t) and u2(t).

Remark 9. Using the usual system stabilization method, only one pair of controllers u1(t) and
u2(t) was designed, which can only play a calming role and can do nothing to adjust the dynamic
performance.

According to Theorem 3, we can control the convergence rate by setting different
intervals. For example, let (−b, −a) = (−6.5, −6) and d = 6; the following controller can
be obtained.

u3(t) = K21x(t) + K22x(t− ν(t)),

u4(t) = K23x(t) + K24x(t− ν(t)),

where
K21 =

[
−21.435 19.1480
4.4305 −13.217

]
, K22 =

[
−1.0769 3.2308
−0.5769 −2.769

]
,

K23 =

[
1.0000 −0.0833
−1.000 −0.6676

]
, K24 =

[
1.4167 4.7500
−1.6667 −3.0000

]
.

Under the controllers u3(t) and u4(t), the system state trajectories are shown in
Figure 4. The eigenvalues of the closed-loop system are −6.2819 and −6.2728. Accordingly,
the convergence speed of the system is significantly faster than that under the controllers
u1(t) and u2(t). When t > 0.85(s), |xi(t)| < 5× 10−3(i = 1, 2).

What is more, the convergence rate can be slowed down though setting the parameter
interval (−1, −0.5). By Theorem 3, the controllers are obtained.

u5(t) = K31x(t) + K32x(t− ν(t)),

u6(t) = K33x(t) + K34x(t− ν(t)),

where
K31 =

[
−0.2811 2.2249
−1.9157 −2.6406

]
, K32 =

[
−1.0769 3.2308
−0.5769 −2.769

]
,

K33 =

[
1.0000 −0.0833
−1.000 −0.6676

]
, K34 =

[
1.4167 4.7500
−1.6667 −3.0000

]
.
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Figure 4. The state trajectories under controllers u3(t) and u4(t).

The eigenvalues of the closed-loop system are −0.7731 and −0.7732. Under the
controllers u5(t) and u6(t), the system state trajectories are shown in Figure 5. As t > 7(s),
|xi(t)| < 5× 10−3(i = 1, 2).
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Figure 5. The state trajectories under controllers u5(t) and u6(t).

The method in this paper can not only accurately regulate the convergence speeds,
but also other control dynamic properties. For simplicity, we only adjusted the damping
performance of the system on the interval (−1, −0.5).

According to Remark 4, c = 0.5625 and d = 1.7250 when the convergence interval is
(−1, −0.5). According to Algorithm 1, we obtain the following controllers.

u7(t) = K41x(t) + K42x(t− ν(t)),

u8(t) = K43x(t) + K44x(t− ν(t)),

where
K41 =

[
−0.9314 3.3076
−4.0787 −0.9104

]
, K42 =

[
−1.0769 3.2308
−0.5769 −2.7692

]
,

K43 =

[
1.0000 −0.0833
−1.000 −0.6676

]
, K44 =

[
1.4167 4.7500
−1.6667 −3.0000

]
.
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They ensure that the eigenvalues are at the minimum edge of the region. This group
of controllers transforms the original over-damped system into an under-damped system,
which is shown in Figure 6. The eigenvalues of the closed-loop system are−0.7734+ 0.5625i
and −0.7734− 0.5625i.
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Figure 6. The state trajectories under controllers u7(t) and u8(t).

Certainly, the eigenvalues could be adjusted to the maximum edge of the region. By
Algorithm 1, the controllers are obtained as below.

u9(t) = K51x(t) + K52x(t− ν(t)),

u10(t) = K53x(t) + K54x(t− ν(t)),

where
K51 =

[
−2.2728 5.5432
−8.5499 2.6665

]
, K52 =

[
−1.0769 3.2308
−0.5769 −2.7692

]
,

K53 =

[
1.0000 −0.0833
−1.000 −0.6676

]
, K54 =

[
1.4167 4.7500
−1.6667 −3.0000

]
.

The eigenvalues of the closed-loop system are−0.7734+ 1.7250i and−0.7734− 1.7250i.
Under the controllers u9(t) and u10(t), the system state trajectories are shown in Figure 7.
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Figure 7. The state trajectories under controllers u9(t) and u10(t).

Remark 10. From Figure 4 to Figure 7, it can be seen that, with the adjustment of the closed-loop
system eigenvalue, the dynamic performance of the system also changes accordingly. Therefore, it is
very effective to control the performance of the system by adjusting the distributed eigenvalues.
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Remark 11. To highlight the waveform changes corresponding to the system state, the system
eigenvalues are configured at the edges of two unconnected areas. In general, system eigenvalues are
configured only within two unconnected areas.

7. Conclusions

In order to realize accurate control of the LSTDSs, this paper started by controlling
the distribution area of the eigenvalues of the state matrix and reducing the influence of
the time-delay terms and stochastic terms. Region stability was defined to describe the
corresponding dynamic performance of the system. Region stability criteria and region
stabilization conditions were given separately to judge the detailed stability characteristics
and implement controller design. An algorithm was given to make up for the insufficiency
of stabilization control. Finally, an instance was addressed to illustrate the accurate control
of the new stabilization approach for the performance indicators of the LSTDSs.

Author Contributions: Methodology, H.Z.; formal analysis, H.Z., C.S., H.G., and T.Z.;
writing—original draft, H.Z.; writing—review and editing, H.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This paper was supported by Discipline with Strong Characteristics of Liaocheng
University—Intelligent Science and Technology under Grant 319462208.

Data Availability Statement: The readers can access the data reported in this paper from the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mao, X. Stochastic Differential Equations and Applications, 2nd ed.; Horwood: Cambridge, UK, 2007.
2. Wang, H.; Han, J.; Zhang, H. Lateral Stability Analysis of 4WID Electric Vehicle Based on Sliding Mode Control and Optimal

Distribution Torque Strategy. Actuators 2022, 11, 244. [CrossRef]
3. Zhang, H.; Xia, J.; Zhang. W.; Zhang, B.; Shen, H. Pth moment asymptotic stability/stabilization and pth moment observability

of linear stochastic systems: Generalized H-representation method. IEEE Trans. Syst. Man, Cybern. Syst. 2022, 52, 1078–1086.
[CrossRef]

4. Xu, S.; Lam, J.; Zou, Y. New results on delay-dependent robust H∞ control for systems with time-varying delays. Automatica 2006,
42, 343–348. [CrossRef]

5. Zhang, H.; Xia, J.; Zhuang, G.; Shen, H. Robust interval stability/stabilization and H∞ feedback control for uncertain stochastic
Markovian jump systems based on the linear operator. Sci. China Inf. Sci. 2022, 65, 142202. [CrossRef]

6. Necoara, I.; Ionescu, T. C. H2 model reduction of linear network systems by moment matching and optimization. IEEE Trans.
Automat. Contr. 2020, 65, 5328–5335. [CrossRef]

7. Wu, M.; He, Y.; She, J.; Liu, G. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 2004, 40,
1435–1439. [CrossRef]

8. Shi, S.; Sun, Y.; Hu, Y.; Yu, X. Robust fixed-time output-feedback control for linear systems without chattering: An exact
uncertainty compensation method. Sci. China Inf. Sci. 2022, 65, 179201. [CrossRef]

9. Emre, S.; Roberto, O.; Kouhei, O. Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview.
IEEE Trans. Automat. Contr. 2019, 67, 2042–2053.

10. Gao, H.; Lam, J.; Wang, C. Robust energy-to-peak filter design for stochastic time-delay systems. Syst. Control Lett. 2006, 55,
101–111. [CrossRef]

11. Su, X.; Shi, P.; Wu, L.; Nguang, S. Induced L2 filtering of fuzzy stochastic systems with time-varying delays. IEEE Trans. Cybern.
2012, 43, 1251–1264.

12. Gan, D.; Xie, S.; Liu, Z. Stability of the distributed Kalman filter using general random coefficients. Sci. China Inf. Sci. 2021, 64,
172204. [CrossRef]

13. Chilali, M.; Gahinet, P.; Apkarian, P. Robust pole placement in LMI regions. IEEE Trans. Automat. Contr. 1999, 44, 2257–2269.
[CrossRef]

14. Zhang, W.; Xie, L. Interval stability and stabilization of linear stochastic systems. IEEE Trans. Automat. Contr. 2009, 54, 810–815.
[CrossRef]

15. Zhang, H., Xia,J.,Park, J.H.; Shen, H.; Chen, J. L1 − L∞ filter design with adjustable convergence rate for linear stochastic systems.
IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 6630–6638. [CrossRef]

16. Zhang, H.; Xia, J.; Park, J.H.; Sun, W.; Zhuang, G. Interval stability and interval stabilization of linear stochastic systems with
time-varying delay. Int. J. Rob. Nonlin. 2021, 31, 2334–2347. [CrossRef]

http://doi.org/10.3390/act11090244
http://dx.doi.org/10.1109/TSMC.2020.3011217
http://dx.doi.org/10.1016/j.automatica.2005.09.013
http://dx.doi.org/10.1007/s11432-020-3087-1
http://dx.doi.org/10.1109/TAC.2020.2972227
http://dx.doi.org/10.1016/j.automatica.2004.03.004
http://dx.doi.org/10.1007/s11432-020-3086-5
http://dx.doi.org/10.1016/j.sysconle.2005.05.005
http://dx.doi.org/10.1007/s11432-020-2962-9
http://dx.doi.org/10.1109/9.811208
http://dx.doi.org/10.1109/TAC.2008.2009613
http://dx.doi.org/10.1109/TSMC.2022.3149514
http://dx.doi.org/10.1002/rnc.5408


Actuators 2022, 11, 325 17 of 17

17. Wang, X.; Zhang, H.; Xia, J.; Sun, W.; Zhuang, G. Interval stability/stabilization of impulsive positive systems. Sci. China Inf. Sci.
2022, accepted. [CrossRef]

18. Zhang, H.; Xia, J.; Shen, H.; Zhang, B.; Wang, Z. Pth moment regional stability/stabilization and generalized pole assignment of
linear stochastic systems: Based on the generalized H-representation method. Int. J. Rob. Nonlin. 2020, 30, 3234–3249. [CrossRef]

19. Zhang, H.; Xia, J.; Zhang, Y.; Shen, H.; Wang, Z. pth moment D-stability/stabilization of linear discrete-time stochastic systems.
Sci. China Inf. Sci. 2022, 65, 139202. [CrossRef]

20. Zhang, H.; Deng, Y.; Xia, J.; Park, J.H.; Shen, H.; Chen, J. Accurate stabilization for linear stochastic systems based on region pole
assignment and its applications. Syst. Control Lett. 2022, 165, 105263. [CrossRef]

21. Franklin, G.F.; Powell, J.D.; Emami-Naeini, A.; Powell, J.D. Feedback Control of Dynamic Systems; Prentice Hall: Hoboken, NJ,
USA, 2005.

http://dx.doi.org/10.1007/s11432-021-3426-1
http://dx.doi.org/10.1002/rnc.4946
http://dx.doi.org/10.1007/s11432-019-2843-9
http://dx.doi.org/10.1016/j.sysconle.2022.105263

	Introduction
	Preliminaries
	Region Stability
	Region Stabilization
	Unconnected Stabilization Algorithm
	Examples
	Conclusions
	References

