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Abstract: A novel nonlinear dynamic modeling approach is proposed for the T-shaped beam struc-
tures widely used in the field of aerospace. All of the geometrical nonlinearities including the terms in
the deformation of the beams, the terms at the connections, and the free ends of beams are considered
in the dynamic modeling process. The global mode method is employed to determine the natural
frequencies and global mode shapes of the linearized system. The validity and accuracy of the
derived model are verified by comparing the natural frequencies obtained with those calculated
from FEM. Adopting the Galerkin truncation procedure, a set of reduced-order nonlinear ODEs
is obtained for the structure. A study on the variation of dynamic responses taking the different
numbers of global modes into account is performed to determine the number of modes taken in
nonlinear vibration analysis. A comparison between the responses of the system with linear or
nonlinear matching and boundary conditions is given to evaluate the importance of neglecting and
reserving the nonlinear terms in matching and boundary conditions. It is shown that ignoring the
nonlinear terms in both matching and boundary conditions may significantly alter the responses
while developing the discretized governing ODEs of the structure.

Keywords: T-shaped beam structure; nonlinear dynamic modeling; global modal method; nonlinear
dynamic behavior; nonlinear matching conditions

1. Introduction

A specific structure composed of multiple beams is usually used as a component in
large-scale space structures, especially in the design of flexible spacecraft [1–4]. With the
advancement of aerospace technology and the diversification of aerospace missions, the
use of flexibility and large-scale structures has gradually become an important trend in the
development of spacecraft, which leads to geometric nonlinearity as a factor that has to be
considered. Hence, establishing accurate nonlinear dynamic models of such systems is an
important basis for nonlinear dynamical analysis and active vibration control. This is of
important practical significance for predicting and understanding the dynamic behavior of
such flexible structures under the effect of applied loadings.

The nonlinear dynamic behavior of a single beam has been widely studied in the
literature [5–11]. Compared with a single beam, multi-beam structures have more complex
dynamic characteristics due to internal coupling and geometric and inertial nonlinearities.
Haddow et al. [12] established the equation of motion for the L-shaped beam structure with
only quadratic nonlinearities considering the influence of the axial movement of the beam
due to bending and obtained the approximate solutions of the obtained equation by using
the multiple scales method. Nayfeh et al. [13–17] conducted a comprehensive experimental
and theoretical study on the nonlinear motions of the L-shaped beam structure, and the
research showed that small excitation could produce chaotic motion under two-to-one
internal resonance. Additionally, the theoretically deduced periodic, quasi-periodic and
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chaotic responses are in good agreement with experimental results. Hamed Samandari
et al. [18] obtained the nonlinear differential equations of motion for the L-shaped beam
structure by using the Hamilton principle and Euler–Bernoulli beam theory, considering the
large deformation of the structure. The differential quadrature method (DQM) is used to
discretize the differential equations of motion in the space domain. The harmonic balance
method is used to further transform the differential equations of motions into nonlinear
algebraic equations for numerical solutions and numerical analysis of nonlinear responses.
What is more, Kumar et al. [19] conducted an investigation of nonlinear phenomena
of dynamic responses of N-link manipulators under 3:1 internal resonance considering
geometric nonlinearities.

Dynamic models of the multi-beam structures are continuous with infinite degrees of
freedom. To obtain a reduced-order dynamic model, the modal analysis method can be
used to discretize the continuous systems. Therefore, the accuracy of the calculation results
depends highly on the quality of the mode shapes used in the dynamic modeling. For a
multi-beam structure, due to the interaction between the components, the mode function
of each beam is different from that of a single beam. Consequently, the dynamical model
based on the global mode has the advantages of lower dimensions and high precision,
which provides convenience for dynamical analysis. The global mode method (GMM)
was proposed to establish the dynamic model of the micro-electric static comb [20] and
the composite flexible structure of a long-span cable-stayed bridge [21]. Then, the modal
conversion and nonlinear dynamic response analysis were conducted. Wei et al. applied
GMM to establish a spacecraft model with a deployable solar panel [22], a multi-beam
structure with nonlinear hinges [23], and a nonlinear motion model of the L-shaped beam
mass structure [24]. Based on these models, a series of inherent characteristic analysis
and dynamic response studies were respectively performed. Considering the out-of-plane
transverse deformation and torsional deformation of the beams, Cao et al. [25] established a
linear dynamic model of the T-shaped beams and studied the vibration suppression based
on piezoelectric plates.

For multi-beam structures connected by joints, there are many studies on the effect
of joints on the dynamic behavior of the system. Vakil et al. [26] studied the effect on
the inherent properties of the system due to changes in joint stiffness and determined the
upper limit of joint stiffness, which can distinguish whether the joint of the manipulator is
flexible or rigid. Meng et al. [27] investigated the effect of joint stiffness on the vibration
response of the system. The research indicated that appropriate joint stiffness can reduce
the overall vibration of the structure due to the coupling relationship between flexible rods
and flexible joints. Recently, Wei et al. [23,28–30] derived a reduced-order analytical model
for multi-beam structures connected with hinges associated with a nonlinear rotational
spring. Based on this model, they investigated the effect of the nonlinear stiffness and
damping of the joints on the attitude and position of a spacecraft during maneuvering.
Studies had shown that the nonlinear stiffness of the joint has a great influence on the
nonlinear response of the system.

Based on previous preliminary research [31], in this article, along with the idea of the
GMM, a novel nonlinear dynamic modeling approach is proposed for the T-shaped beam.
All of the geometrical nonlinearities including the terms in the deformation of the beams,
the stress compatibility condition at the connections of beams, and the terms at the free
ends are taken into account in the dynamic modeling process. The generalized Hamiltonian
principle is employed to establish the nonlinear partial differential equations of motion
for the T-shaped beam structure. Using the method proposed in [20–23], the natural
frequency of the system and the corresponding global mode functions are worked out.
Using the global mode functions and their orthogonality relations, an explicit set of reduced-
order nonlinear ordinary differential equations of motion is obtained. Combined with
specific examples, the precision and effectiveness of the model are verified by comparing
the natural frequency and the global mode shape of the system. Through the dynamic
equations given by the numerical examples, the dynamic responses of the system with
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different numbers of modes are studied. The importance of reserving or neglecting the
nonlinear terms in matching and boundary conditions when deriving the discrete control
equations is evaluated.

2. Nonlinear Dynamic Model in the Continuous Form

Consider the in-plane motion of a T-shaped beam structure that is fixed on a horizontal
moving base, as shown in Figure 1. The T-shaped beam is composed of three lightweight
inextensible beams, namely a horizontal beam and two vertical beams. For the sake of
description, the horizontal beam is called Beam-1, the lower vertical beam is Beam-2, and
the upper vertical beam is Beam-3. Coordinate frame o1x1y1 is a fixed inertial frame with
the origin at the left end of the horizontal beam, and coordinate frames o2x2y2 and o3x3y3
are satellite inertial frames with the origins both at (l1, v1(l1, t)). li, ρi, Ei, Ii, Ai,ui(xi, t)
and vi(xi, t) denote the length, the density, Young’s modulus, the inertia moment, the
cross-sectional area, and the axial and lateral displacements of the i-th beam, respectively.
Moreover, it is assumed that the shear deformation and warpage of all beams can be
ignored and the beams are inextensible [32,33].
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Figure 1. Schematic of T-shaped beam structure.

The generalized Hamilton’s principle is expressed as∫ t2

t1

(δT − δV + δW)dt = 0, (1)

where T, V and W represent the kinetic energy, potential energy and work done by the
non-conservative force of the system, respectively.

Take a micro-element on the beam, as shown in Figure 2, where the dashed and solid
lines indicate the positions of the micro-element before and after deformation, respectively.
The symbol θ (x, t) in Figure 2 represents the angular displacement of the micro element.
The in-extensibility condition can be depicted by the schematic pp1 = pp′1.
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The relations between these displacements are determined by the geometry. We
write [34]

θi(xi, t) = arcsin
[
v′i(xi, t)

]
, (2)

cos[θi(xi, t)] =
dxi + dui(xi, t)

dxi
= 1 + u′i(xi, t), (3)

where the superposed dot represents the partial derivative with respect to time, and (‘)
represents the partial derivative with respect to displacement, i = 1, 2, 3. This notation is
followed quite extensively from here on. Expanding Equations (2) and (3) yields

θi(xi, t) = v′i(xi, t) +
1
6

v′i
3(xi, t) + · · · , (4)

u′i(xi, t) = −1
2

θ2
i (xi, t) +

1
24

θ4
i (xi, t) + · · · . (5)

Substituting Equation (4) into Equation (5) yields

u′i(xi, t) = −1
2

v′i
2(xi, t) + O

(
v′i

4(xi, t)
)

, (6)

where O
(
v′i

4(xi, t)
)

is neglected in the subsequent analysis. The axial displacement of any
point on the beams can be obtained by integrating Equation (6) from the origin to this point
on the beams,

ui(xi, t) = −1
2

∫ xi

0
v′i

2(y, t)dy. (7)

In this way, u1(l1, t) represents the axial displacement of the right end of the horizontal
beam.

The curvature is expressed as

κi =
∂

∂xi
θi(xi, t) = v′′i (xi, t) +

1
2

v′i
2(xi, t)v′′i (xi, t) + · · · . (8)

The potential energy of the T-shaped beam structure is given by

V =
1
2

∫ l1

0

∫
A1

E1z2
1κ2

1dA1dx1 +
1
2

∫ l2

0

∫
A2

E2z2
2κ2

2dA2dx2 +
1
2

∫ l3

0

∫
A3

E3z2
3κ2

3dA3dx3. (9)

Substitute Equation (8) into Equation (9) to obtain

V = 1
2

∫ l1
0 E1 I1v′′1

2(x1, t)dx1 +
1
2

∫ l1
0 E1 I1

[
v′1(x1, t)v′′1 (x1, t)

]2dx1

+ 1
2

∫ l2
0 E2 I2v′′2

2(x2, t)dx2 +
1
2

∫ l2
0 E2 I2

[
v′2(x2, t)v′′2 (x2, t)

]2dx2

+ 1
2

∫ l3
0 E3 I3v′′3

2(x3, t)dx3 +
1
2

∫ l3
0 E3 I3

[
v′3(x3, t)v′′3 (x3, t)

]2dx3.

(10)
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The kinetic energy of the T-shaped beam structure is given by

T = 1
2

∫ l1
0 ρ1

{[ .
ws(t) +

.
u1(x1, t)

]2
+

.
v1

2(x1, t)
}

dx1

+ 1
2

∫ l2
0 ρ2

{[ .
v1(l1, t)− .

u2(x2, t)
]2

+
[ .
ws(t) +

.
v2(x2, t)

]2}dx2

+ 1
2

∫ l3
0 ρ3

{[ .
v1(l1, t) +

.
u3(x3, t)

]2
+
[ .
ws(t)−

.
v3(x3, t)

]2}dx3.

(11)

Substituting Equation (7) into Equation (11) yields

T = 1
2

∫ l1
0 ρ1

{[
.

ws(t)−
∫ x1

0
1
2

∂
∂t

(
∂v1(y,t)

∂y

)2
dy
]2

+
(

∂v1(x1,t)
∂t

)2
}

dx1

+ 1
2

∫ l2
0 ρ2

{[
∂v1(l1,t)

∂t +
∫ x2

0
1
2

∂
∂t

(
∂v2(y,t)

∂y

)2
dy
]2

+
[ .
ws(t) +

∂v2(x2,t)
∂t

]2
}

dx2

+ 1
2

∫ l3
0 ρ3

{[
∂v1(l1,t)

∂t −
∫ x3

0
1
2

∂
∂t

(
∂v3(y,t)

∂y

)2
dy
]2

+
[ .
ws(t)− ∂v3(x3,t)

∂t

]2
}

dx3.

(12)

Considering the viscous damping in the structure, the virtual work done by the
non-conservative forces is given by

δW = −
∫ l1

0 c
.
v1(x1, t)δv1(x1, t)dx1 −

∫ l2
0 c

.
v2(x2, t)δv2(x2, t)dx2

−
∫ l3

0 c
.
v3(x3, t)δv3(x3, t)dx3.

(13)

Substituting Equations (10), (12), and (13) into Equation (1) and simplifying, we obtain
the nonlinear vibration equations of the structure as

ρ1
..
v1(x1, t)+c

.
v1(x1, t) + E1 I1

{
v′′′1
′
(x1, t) +

[
v′1(x1, t)

[
v′1(x1, t)v′′1 (x1, t)

]′]′}
+ 1

2 ρ1

[
v′1
∫ x1

l1

∫ θ
0

∂2

∂t2

[
v′1

2(y, t)
]
dydθ

]′
− ρ1v′1(x1, t)

..
ws(t) +

[
ρ1

..
ws(t)(l1 − x1)

+E2 I2v′′′2 (0, t)− E3 I3v′′′3 (0, t)− (ρ2l2 + ρ3l3)v′2(0, t)
..
v1(l1, t)

]
v′′1 (x1, t) = 0,

(14)

ρ2
..
v2(x2, t)+c

.
v2(x2, t) + E2 I2

{
v′′′2
′
(x2, t) +

[
v′2(x2, t)

[
v′2(x2, t)v′′2 (x2, t)

]′]′}
+ 1

2 ρ2

[
v′2(x2, t)

∫ x2
l2

∫ θ
0

∂2

∂t2

[
v′2

2(x2, t)
]
dydθ

]′
+ ρ2v′2(x2, t)

..
v1(l1, t)

−ρ2(l2 − x2)v
′′
2 (x2, t)

..
v1(l1, t) + ρ2

..
ws(t) = 0,

(15)

ρ3
..
v3(x3, t)+c

.
v3(x3, t) + E3 I3

{
v′′′3
′
(x3, t) +

[
v′3(x3, t)

[
v′3(x3, t)v′′3 (x3, t)

]′]′}
+ 1

2 ρ3

[
v′3(x3, t)

∫ x3
l3

∫ θ
0

∂2

∂t2

[
v′3

2(x3, t)
]
dydθ

]′
− ρ3v′3(x3, t)

..
v1(l1, t)

+ρ3(l3 − x3)v
′′
3 (x3, t)

..
v1(l1, t)− ρ3

..
ws(t) = 0.

(16)

The boundary conditions of the T-shaped beam structure are expressed as
at x1 = 0

v1(0, t) = 0, v′1(0, t) = 0, (17)

at x2 = l2
E2 I2v′′2 (l2, t) + E2 I2v′2

2(l2, t)v′′2 (l2, t) = 0, (18)

E2 I2

[
v′′′2 (l2, t) + v′2(l2, t)v′′2

2(l2, t) + v′2
2(l2, t)v′′′2 (l2, t)

]
= 0, (19)

at x3 = l3
E3 I3v′′3 (l3, t) + E3 I3v′3

2(l3, t)v′′3 (l3, t) = 0, (20)

E3 I3

[
v′′′3 (l3, t) + v′3(l3, t)v′′3

2(l3, t) + v′3
2(l3, t)v′′′3 (l3, t)

]
= 0, (21)
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where Equations (18)–(21) have not been simplified in order to preserve the completeness
of the nonlinearity of the boundary conditions.

At the connection interfaces of the beams, the displacement and rotation angle of the
horizontal beam and the vertical beams must match, and the bending moments and forces
must be balanced. The matching conditions at the junction are expressed as

v2(0, t)= −v3(0, t) = u1(l1, t), (22)

v′1(l1, t) +
1
6

v′1
3(l1, t) = v′2(0, t) +

1
6

v′2
3(0, t) = v′3(0, t) +

1
6

v′3
3(0, t), (23)

E1 I1
[
v′′1 (l1, t) + v′1

2(l1, t)v′′1 (l1, t)
]
− 2+v′1

2(l1,t)
2+v′2

2(0,t) · E2 I2
[
v′′2 (0, t) + v′2

2(0, t)v′′2 (0, t)
]

− 2+v′1
2(l1,t)

2+v′3
2(0,t) · E3 I3

[
v′′3 (0, t) + v′3

2(0, t)v′′3 (0, t)
]
= 0,

(24)

E1 I1
[
v′′′1 (l1, t) + v′1(l1, t)v′′1

2(l1, t) + v′1
2(l1, t)v′′′1 (l1, t)

]
−ρ2l2

..
v1(l1, t)− ρ2

∫ l2
0

∫ x2
0

1
2

∂2

∂t2

(
v′2

2(y, t)
)
dydx2

−ρ3l3
..
v1(l1, t) + ρ3

∫ l3
0

∫ x3
0

1
2

∂2

∂t2

(
v′3

2(y, t)
)
dydx3

+E2 I2v′1(l1, t)v′′′2 (0, t)− ρ2l2v′1(l1, t)v′2(0, t)
..
v1(l1, t)

−E3 I3v′1(l1, t)v′′′3 (0, t)− ρ3l3v′1(l1, t)v′3(0, t)
..
v1(l1, t) = 0,

(25)

−E2 I2
[
v′′′2 (0, t) + v′2(0, t)v′′2

2(0, t) + v′2
2(0, t)v′′′2 (0, t)

]
+ρ2v′2(0, t) ·

∫ l2
0

∫ x2
0

1
2

∂2

∂t2

(
∂v2(y,t)

∂y

)2
dydx2 + ρ2l2v′2(0, t) ∂2v1(l1,t)

∂t2

+E3 I3
[
v′′′3 (0, t) + v′3(0, t)v′′3

2(0, t) + v′3
2(0, t)v′′′3 (0, t)

]
+ρ3l3v′3(0, t) · ∂2v1(l1,t)

∂t2 − ρ3v′3(0, t) ·
∫ l3

0

∫ x3
0

1
2

∂2

∂t2

(
∂v3(y,t)

∂y

)2
dydx3

+E1 I1v′1(l1, t)v′′′1 (l1, t) = 0.

(26)

where the Equations (24)–(26) are the matching equations of the bending moment, the
vertical force and the horizontal force at the junction, respectively.

3. Natural Characteristics of the System

The natural frequencies and global mode functions of the system can be obtained by
linearizing the nonlinear partial differential equations of motion for the structure. Ignoring
the nonlinear terms and the damping terms in Equations (14)–(16) yields the linear partial
differential equations of the transverse motion of the i-th beam

Ei Iiv
′′′
i
′
(xi, t) + ρi

..
vi(xi, t) = 0, (27)

Similarly, ignoring the nonlinear terms in the boundary and matching conditions
(17)–(26), we have

v1(0, t) = 0, v′1(0, t) = 0,
E2 I2v′′2 (l2, t) = 0, E2 I2v′′′2 (l2, t) = 0,
E3 I3v′′3 (l3, t) = 0, E3 I3v′′′3 (l3, t) = 0,
v2(0, t) = 0, v3(0, t) = 0,
v′1(l1, t) = v′2(0, t) = v′3(0, t),
E1 I1v′′′1 (l1, t) = (ρ2l2 + ρ3l3)

..
v1(l1, t),

E1 I1v′′1 (l1, t)− E3 I3v′′3 (0, t) = E2 I2v′′2 (0, t).

(28)

Assume that the displacements vi(xi, t) are separable in space and time,

vi(xi, t) = ϕi(xi)ejωt, (29)

where ω is the natural frequency of the system.
Substituting Equation (29) into the linear vibration Equation (27) of the beam yields

Ei Ii ϕ
′′′
i
′
(xi)−ω2ρi ϕi(xi) = 0. (30)
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The general solution of Equation (30) can be written as

ϕi(xi) = Bicos(βixi) + Cisin(βixi) + Dicosh(βixi) + Gisinh(βixi), xi ∈ [0, li], (31)

where βi =
(
ρiω

2/Ei Ii
)1/4.

The constants Bi, Ci, Di, Gi, (i =1 ∼ 4) should be determined using the boundary and
matching conditions given in Equation (28). Substituting expression (31) into Equation (28),
the eigenvalue equation for the linearized system of the T-shaped beam is obtained, and its
matrix form is expressed as follows

H(ω)Ψ = 0, (32)

where Ψ =
[
B1 C1 D1 G1 B2 C2 D2 G2 B3 C3 D3 G3

]T , and entries of
matrix H(ω) ∈ R12×12 are given in Appendix A.

The positive roots of the frequency equation |H(ω)| = 0, denoted in ascending
order by ω1, ω2, ω3, · · · , are the natural frequencies of the T-shaped beam structure. The
eigenvector Ψ(r), where r = 1, 2, 3, · · · , corresponding to the natural frequency ωr, can be
obtained from Equation (32). Further, the r-th mode shapes for the T-shaped structure can
be determined from Equation (31).

Referring to the derivation process in Reference [21], the orthogonality conditions of
the global mode Φ(x) =

[
ϕ1(x) ϕ2(x) ϕ3(x)

]T with respect to mass and stiffness can
be obtained, which are respectively expressed as∫ l1

0 ρ1 ϕ1r(x)ϕ1s(x)dx+
∫ l2

0 ρ2 ϕ2r(x)ϕ2s(x)dx+
∫ l3

0 ρ3 ϕ3r(x)ϕ3s(x)dx
+(ρ2l2 + ρ3l3)ϕ1r(l1)ϕ1s(l1) = Msδrs,

(33)

And ∫ l1
0 E1 I1 ϕ

′′
1r(x)ϕ

′′
1s(x)dx+

∫ l2
0 E2 I2 ϕ

′′
2r(x)ϕ

′′
2s(x)dx

+
∫ l3

0 E3 I3 ϕ
′′
3r(x)ϕ

′′
3s(x)dx =Ksδrs,

(34)

where Ms and Ks are positive constants and δrs is the Kronecker delta.

4. Nonlinear Dynamic Model in the Discrete Form

The nonlinear dynamic model in the continuous form described by Equations (14)–(16)
combined with the nonlinear boundary conditions (17)–(21) and the nonlinear matching
conditions (22)–(26) can be simplified to a nonlinear dynamic model in the discrete form by
using the global mode functions and their orthogonality relations presented in Section 3.
The transverse displacements vi can be expressed in the following form

v1 =
n

∑
j=1

ϕ1j(x1)qj(t), v2 =
n

∑
j=1

ϕ2j(x2)qj(t), v3 =
n

∑
j=1

ϕ3j(x3)qj(t), (35)

where ϕ1j(x1), ϕ2j(x2) and ϕ3j(x3) are the global mode functions for the T-shaped beam
structure obtained from Equation (31), respectively, and qj(t) is the generalized coordinate
for the whole system.

Substituting Equation (35) into Equations (14)–(16) yields
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n
∑

j=1
ρ1 ϕ1j(x1)

..
qj +

n
∑

j=1
cϕ1j(x1)

.
qj +

n
∑

j=1
E1 I1 ϕ

′′′
1j
′
(x1)qj

+
n
∑

i,j,k=1

1
2 ρ1

(
ϕ′1i(x1)qi

∫ x1
l1

∫ θ
0 ϕ′1j(y)ϕ′1k(y)

d2

dt2

(
qjqk

)
dydθ

)′
+

n
∑

i,j,k=1
E1 I1

(
ϕ′1i(x1)

[
ϕ′1j(x1)ϕ

′′
1k(x1)

]′)′
qiqjqk

−
n
∑

i=1
ρ1

..
ws(t)qi

[
ϕ′1i(x1) + (x1 − l1)ϕ

′′
1i(x1)

]
+

n
∑

i,j=1
ϕ
′′
1i(x1)qi

[
+E2 I2 ϕ

′′′
2j (0)qj − E3 I3 ϕ

′′′
3j (0)qj

]
+

n
∑

i,j,k=1

[(
−ρ3l3 ϕ′3j(0)− ρ2l2 ϕ′2j(0)

)
ϕ1k(l1)qj

..
qk

]
qi ϕ

′′
1i(x1) = 0,

(36)

n
∑

j=1
ρ2 ϕ2j(x2)

..
qj +

n
∑

j=1
cϕ2j(x2)

.
qj +

n
∑

j=1
E2 I2 ϕ

′′′
2j
′
(x2)qj

+
n
∑

i,j,k=1
E2 I2

(
ϕ′2i(x2)

[
ϕ′2j(x2)ϕ

′′
2k(x2)

]′)′
qiqjqk + ρ2

..
ws(t)

+
n
∑

i,j,k=1

1
2 ρ2

(
ϕ′2i(x2)qi

∫ x2
l2

∫ θ
0 ϕ′2j(y)ϕ′2k(y)

d2

dt2

(
qjqk

)
dydθ

)′
+

n
∑

i,j=1
ρ2 ϕ1i(l1)

..
qiqj

[
ϕ′2j(x2) + (x2 − l2)ϕ

′′
2j(x2)

]
= 0,

(37)

n
∑

j=1
ρ3 ϕ3j(x3)

..
qj +

n
∑

j=1
cϕ3j(x3)

.
qj +

n
∑

j=1
E3 I3 ϕ

′′′
3j
′
(x3)qj(t)

+
n
∑

i,j,k=1
E3 I3

(
ϕ′3i(x3)

[
ϕ′3j(x3)ϕ

′′
3k(x3)

]′)′
qiqjqk − ρ3

..
ws(t)

+
n
∑

i,j,k=1

1
2 ρ3

(
ϕ′3i(x3)qi

∫ x3
l3

∫ θ
0 ϕ′3j(y)ϕ′3k(y)

d2

dt2

(
qjqk

)
dydθ

)′
−

n
∑

i,j=1
ρ3 ϕ1i(l1)

..
qiqj

[
ϕ′3j(x3) + (x3 − l3)ϕ

′′
3j(x3)

]
= 0.

(38)

Multiply both sides of Equations (36)–(38) by ϕ1s(x1), ϕ2s(x2) and ϕ3s(x3), respec-
tively, integrating them along the respective beam lengths. Then, the ordinary differential
equations of motion for the T-shaped beam structure can be obtained by adding all result-
ing equations and simplifying by using matching and boundary conditions (17)–(26) and
orthogonality relations (33), (34), namely,

Ms
..
qs + Ksqs +

n
∑

j=1
µ

j
s

.
qj +

n
∑

j=1
aj

s
..
ws(t)qj +

n
∑

j,k=1
bjk

s qj
..
qk +

n
∑

j,k=1
cjk

s qjqk

+
n
∑

j,k=1
djk

s
.
qj

.
qk +

n
∑

j,k,r=1
ejkr

s qjqkqr +
n
∑

j,k,r=1
hjkr

s
.
qj

.
qkqr +

n
∑

j,k,r=1
pjkr

s qjqk
..
qr

= −
∫ l2

0 ρ2
..
ws(t)ϕ2s(x2)dx2 +

∫ l3
0 ρ3

..
ws(t)ϕ3s(x3)dx3, s =1, 2, · · · , n.

(39)

where µ
j
s are constants that can be determined by the global mode functions and damping

coefficient, and aj
s, bjk

s , cjk
s , djk

s , ejk
s , hjkr

s , pjkr
s given in Appendix B are constants that can be

determined by the global mode functions. It is worth noting that the underlined terms in
the expressions of those constants are from the non-linear terms in matching and boundary
conditions. Therefore, the ordinary differential equations of motion under linear matching
and boundary conditions, which are called the “incomplete nonlinear dynamic model
(INDM)” hereafter, can be obtained by ignoring the underlined terms. Consequently, the
ordinary differential Equation (39) with all of the geometrical and inertial nonlinear terms
is called the “complete nonlinear dynamic model (CNDM)”.
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5. Model Validation for the Linearized System

In this section, a comparison of the natural frequencies and the global mode functions
obtained theoretically with the results from commercial software ANSYS is performed by
using a typical example to validate the approach proposed in this paper.

Now, a simple example of the T-shaped beam structure is provided. Assume that the
material for all beams is steel with density ρ = 7850 kg/m3, Young’s modulus E = 200 GPa,
damping ratio c = 0.02, and Poisson’s ratio υ = 0.31. The cross sections of all beams
are b = 0.012 m, h = 0.002 m. The lengths of the beams are l1 = 0.3 m, l2 = 0.3 m,
l3 = 0.2 m, respectively.

Use the approach proposed to obtain the natural characteristics of the T-shaped beam
structure, including natural frequencies and global mode shapes. Table 1 shows the natural
frequencies of the T-shaped beam structure, taking the finite element results from ANSYS
as a reference. The maximum relative error between the natural frequencies obtained by
the current method and those from FEM is 0.1192%. The results show that the approach
proposed in this paper is effective and the frequency obtained has higher accuracy because
there is no approximation and neglection in the mathematical derivation of this method.
Define the relative error as

Re(i) =

∣∣∣∣∣ωGMM,i −ωFEM,i

ωFEM,i

∣∣∣∣∣× 100%. (i =1, 2, · · · , 8), (40)

where ωGMM,i and ωFEM,i are the natural frequencies calculated by the global modal
method and FEM, respectively.

Table 1. First 8 order frequency of T-shaped beam structure (rad/s).

Frequency Order Natural Frequency
(GMM)

Natural Frequency
(FEM) Re (%)

1 32.03 32.03 0.0000
2 94.20 94.20 0.0000
3 199.45 199.45 0.0000
4 579.64 579.46 0.0325
5 737.52 737.27 0.0341
6 1363.76 1362.89 0.0645
7 1846.45 1844.25 0.1192
8 2015.75 2014.12 0.0811

Figure 3 shows the first 8 modes obtained here and those from FEM, where the
mode pictures obtained by FEM are drawn in the ORIGIN software using the data of
ANSYS software. It can be seen that the calculation results of the two methods are in good
agreement. The reduced-order nonlinear differential equations of motion of the T-shaped
beam structure obtained by using the global modes are accurate.
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6. Nonlinear Dynamical Responses and Discussions

The T-shaped beam structure is assumed to be fixed on a horizontal moving base, as
shown in Figure 1. The displacement of the moving support is assumed as

ws(t) = w0cos(Ωt), (41)

where w0 is a constant and denotes the amplitude of the displacement, and Ω is the
frequency of the moving base in rad/s.

In order to determine the number of modes that should be taken in vibration analysis,
the dynamical responses of the linear dynamic model (without all of the nonlinear terms),
the INDM, and the CNDM with n modes under the sweeping frequency are given in
Figures 4 and 5a,b, respectively, where the excitation amplitude w0 = 0.0008 m, and the
amplitudes of the responses are taken from the transverse displacements of the free end
of Beam 2. It can be seen from Figure 4 that in the linear dynamic model, the resonance
peaks of the system with the first n modes (n = 1, 2, · · · , 6) all appear at 32.03 rad/s; that is
approximately equal to the first natural frequency, which illustrates that low-order frequen-
cies play a leading role in vibration. There is a sudden increase in response amplitude of the
T-shaped beam when the number of modes increases from 3 to 4; this may be because the
coupling effect between the 4th mode and the first 3 modes is strong. Moreover, whether
the system is a linear dynamic model, INDM or CNDM, the variation trend of the response
value of the system with the first n modes is consistent.

It can be observed from Figures 4 and 5 that 4 or more than 4 modes should be
truncated to guarantee the solution accuracy of the system in the primary resonance region.
This implies that the first 4 modes should be taken for simulation in the calculations of the
nonlinear vibration responses.

The steady-state response time histories of Beam-2 end point under the excitation
amplitude w0 = 0.01 m and frequency Ω = 32.34 rad/s are calculated using the proposed
method and the FEM, respectively, as shown in Figure 6. The maximum relative error
between the displacement amplitudes from the proposed and finite element methods,
defined by

(
u− uFEM)/uFEM, is 9.01%. Similarly, the maximum relative error between

the velocity amplitudes from the proposed and finite element methods is 9.43%. It shows
that the numerical results obtained by our method are matched very well with those from
ANSYS software, which further confirms the effectiveness of the proposed method.
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(b) velocity.

The force response curves of the INDM with the first n modes for the excitation
frequency Ω = 32.15 rad/s are shown in Figure 7a, and those of the CNDM with the first
n modes for the excitation frequency Ω = 32.66 rad/s are shown in Figure 7b. The same
jumping phenomenon can be seen in the figure, and as the excitation amplitude increases,
the difference in the dynamic response of both systems with the first n modes becomes
larger and larger. When the vibration amplitude of the system is relatively large, more
modes need to be adopted to meet the accuracy requirements. All of these clearly show
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that the influence of higher-order modes on the system dynamic response is closely related
to the excitation amplitude of the system.
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Figure 7. Amplitude response curves of the INDM (a) and the CNDM (b) with the first n modes.

The influences of excitation amplitudes on the responses of the nonlinear system for
the INDM and the CNDM are shown in Figure 8a,b respectively. The curves show that the
responses are positively correlated with the excitation amplitude in both systems. It can
also be seen that there is a jump phenomenon in the nonlinear response. The greater the
excitation, the more obvious the jump, and the higher the corresponding jump frequency.
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Figure 8. Frequency responses of the INDM (a) and the CNDM (b) with different excitation amplitudes.

To evaluate the importance of reserving and ignoring nonlinear matching and boundary
conditions when deriving discrete nonlinear governing equations, the dynamic responses
of the nonlinear systems INDM and CNDM at the excitation amplitude w0 = 0.0008 m,
w0 = 0.0006 m, w0 = 0.0004 m and w0 = 0.0002 m are shown in Figure 9a–d, respectively.
The curves show that there is a jumping phenomenon in both systems. As the excitation
amplitude increases, the response gap between the two systems gradually increases, the
jumping frequency of the system CNDM is much higher, and the hysteresis zone is wider
in comparison with that of the system INDM. Therefore, when developing the discretized
governing equations of temporal modes under a certain degree of excitation amplitude,
we should not only consider the nonlinear terms in the vibration differential equations of
beams but also the nonlinear terms in the matching and boundary conditions. Ignoring
the nonlinear terms in the matching and boundary conditions may lead to relatively large
errors in the dynamic responses of the system.
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(a) w0 = 0.0008 m; (b) w0 = 0.0006 m; (c) w0 = 0.0004 m; (d) w0 = 0.0002 m.

Figures 10–12 respectively show the steady-state responses of a system containing
second-order and third-order nonlinear terms, second-order nonlinear terms only, and
third-order nonlinear terms only, when the excitation frequency is near the first-order
natural frequency, where the response is the transverse vibration of the free end of Beam 2,
including time history of steady state, phase portrait, Poincare map, and spectrum response.
The Poincare map is a point composed of integer multiples of the excitation period in all
three pictures, which means that the vibration of the T-shaped beam structure reaches a
periodic stable state. In the spectrogram (d) of both Figures 10 and 11, peaks appear at zero,
one, two, and three times the fundamental frequency. In the spectrogram (d) of Figure 12,
peaks only appear at one and three times the fundamental frequency. It can be inferred that
the peaks at three times the fundamental frequency are caused by the second and third
nonlinear terms, while the peaks at zero and two times the fundamental frequency are
mainly caused by the second-order nonlinear terms in the system.
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Ω = 32.34 rad/s: (a) Time history of steady state. (b) Phase portrait. (c) Poincare map.
(d) Spectrum response.
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7. Conclusions

A novel nonlinear dynamic modeling approach has been presented for the T-shaped
beam, in which all of the geometrical nonlinearities including the terms in the deformation
of the beams, in the stress compatibility condition at the connections of beams, and the
terms at the free ends are taken into account in the dynamic modeling process. The
nonlinear ordinary differential equations of motion describing the dynamic behaviors of
the T-shaped beam structure have been established, and a series of dynamic response
analyses have been performed. Considering the geometric nonlinearity of the beam, and
assuming that the beam is not extensible, the partial differential equations of motion of
the T-shaped beam structure are obtained by using the generalized Hamiltonian principle,
along with their nonlinear matching and boundary conditions. The global mode method
was employed to obtain the natural frequency of the system and the corresponding global
mode functions. The validity of the dynamic model obtained was verified by comparing
the natural frequencies obtained by the proposed approach with the calculation results of
FEM. The Galerkin truncation procedure was employed to obtain the nonlinear ordinary
differential equations of motion with a lower degree of freedom. To study the effect of the
nonlinear terms in the boundary and matching conditions on the dynamical responses,
the numerical solutions for the CNDM and the INDM were obtained, respectively, and
a comparison of the results was given. Conclusions drawn from the dynamic modeling
procedure and discussions on the nonlinear vibration responses are as follows:

1. The dynamical responses are dominated by the low-order modes of the system. The
numerical example shows that the first 4 modes should be taken for simulation in the
calculations of the nonlinear vibration responses. In order to improve the calculation
efficiency, fewer modes should be selected for calculation. Moreover, the responses of
the nonlinear dynamic systems have a strong dependence on the excitation amplitude.

2. Ignoring the nonlinear terms in the matching and boundary conditions may reduce
the accuracy of the system. In CNDM, nonlinearity is continuous along the structure;
owing to the nonlinear terms of the vibration equations, boundary and matching
conditions are all reserved. Contrarily, there are breakpoints of nonlinearity at the
junction and boundaries in INDM, where the nonlinear terms of the boundary and
matching conditions are neglected, which may lead to unacceptable errors of the
dynamic responses. Therefore, when studying the nonlinear dynamic response of a
multi-beam structure, the nonlinear terms in the boundary and matching conditions
should be reserved and are indeed worthy of our attention.
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Entries of the matrix H(ω) in Equation (32) are
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H11 = H13 = H22 = H24 = 1,

H12 = H14 = H15 = H16 = H17 = H18 = H19 = H110 = H111 = H112 = 0,

H21 = H23 = H25 = H26 = H27 = H28 = H29 = H210 = H211 = H212 = 0,

H31 = H32 = H33 = H34 = H39 = H310 = H311 = H312 = 0,

H35 = −cos(β2l2), H36 = −sin(β2l2), H37 = cosh(β2l2), H38 = sinh(β2l2),

H41 = H42 = H43 = H44 = H49 = H410 = H411 = H412 = 0,

H45 = sin(β2l2), H46 = −cos(β2l2), H47 = sinh(β2l2), H48 = cosh(β2l2),

H51 = H52 = H53 = H54 = H55 = H56 = H57 = H58 = 0,

H59 = −cos(β3l3), H510 = −sin(β3l3), H511 = cosh(β3l3), H512 = sinh(β3l3),

H61 = H62 = H63 = H64 = H65 = H66 = H67 = H68 = 0,

H69 = sin(β3l3), H610 = −cos(β3l3), H611 = sinh(β3l3), H612 = cosh(β3l3),

H71 = H72 = H73 = H74 = H76 = H78 = H79 = H710 = H711 = H712 = 0,

H75 = H77 = H89 = H811 = H96 = H98 = 1,

H81 = H82 = H83 = H84 = H85 = H86 = H87 = H88 = H810 = H812 = 0,

H91 = H92 = H93 = H94 = H95 = H97 = H99 = H911 = 0,

H910 = H912 = H106 = H108 = −1,

H101 = −sin(β1l1), H102 = cos(β1l1), H103 = sinh(β1l1), H104 = cosh(β1l1),

H105 = H107 = H109 = H1010 = H1011 = H1012 = 0,

H1101 = sin(β1l1) + β1(l2 + l3)cos(β1l1), H1102 = −cos(β1l1) + β1(l2 + l3)sin(β1l1),

H1103 = sinh(β1l1) + β1(l2 + l3)cosh(β1l1), H1104 = cosh(β1l1) + β1(l2 + l3)sinh(β1l1),

H1105 = H1106 = H1107 = H1108 = H1109 = H1110 = H1111 = H1112 = 0,

H1201 = −cos(β1l1), H1202 = −sin(β1l1), H1203 = cosh(β1l1), H1204 = sinh(β1l1),

H1205 = H1209 = 1, H1206 = H1208 = H1210 = H1212 = 0, H1207 = H1211 = −1.

(A1)

Appendix B

The constants in Equation (39) are

µ
j
s = c

3
∑

i=1

∫ li
0 ϕij(xi)ϕis(xi)dxi;

aj
s = −ρ1

∫ l1
0 ϕ1s(x1)

[
ϕ′1j(x1) + (x1 − l1)ϕ

′′
1j(x1)

]
dx1;

bjk
s = ρ2 ϕ1k(l1)

∫ l2
0 ϕ2s(x2)

[
ϕ′2j(x2) + (x2 − l2)ϕ

′′
2j(x2)

]
dx2+ρ2 ϕ1s(l1)

∫ l2
0

∫ x2
0 ϕ′2k(y)ϕ′2j(y)dydx2

−ρ3 ϕ1k(l1)
∫ l3

0 ϕ3s(x3)
[

ϕ′3j(x3) + (x3 − l3)ϕ
′′
3j(x3)

]
dx3−ρ3 ϕ1s(l1)

∫ l3
0

∫ x3
0 ϕ′3k(y)ϕ′3j(y)dydx3

+ 1
2

∫ l1
0 ϕ′1s

2(x1)dx1 × ϕ1k(l1)
[
ρ2l2 ϕ′2j(0) + ρ3l3 ϕ′3j(0)

]
;

cjk
s =

[
E2 I2 ϕ

′′′
2j(0) + E3 I3 ϕ

′′′
3j(0)

]∫ l1
0 ϕ1s(x1)ϕ

′′
1k(x1)dx1−ϕ1s(l1)ϕ′1k(l1)

[
E2 I2 ϕ

′′′
2j(0)− E3 I3 ϕ

′′′
3j(0)

]
− 1

2

∫ l1
0 ϕ′1s

2(x1)dx1 × E1 I1 ϕ′1j(l1)ϕ
′′′
1k(l1);

djk
s = ρ2 ϕ1s(l1)

∫ l2
0

∫ x2
0 ϕ′2k(y)ϕ′2j(y)dydx2 − ρ3 ϕ1s(l1)

∫ l3
0

∫ x3
0 ϕ′3k(y)ϕ′3j(y)dydx3;

(A2)
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ejkr
s =

3
∑

i=1
Ei Ii
∫ li

0 ϕis(xi)

(
ϕ′ir(xi)

[
ϕ′ij(xi)ϕ

′′
ik(xi)

]′)′
dxi

+
[

E1 I1 ϕ′1r(l1)ϕ′1j(l1)ϕ
′′
1k(l1)− E2 I2 ϕ′2r(0)ϕ′2j(0)ϕ

′′
2k(0)− E3 I3 ϕ′3r(0)ϕ′3j(0)ϕ

′′
3k(0)

]
ϕ′1s(l1)

−E1 I1 ϕ1s(l1)
[

ϕ′1r(l1)ϕ
′′
1j(l1)ϕ

′′
1k(l1) + ϕ′1r(l1)ϕ′1j(l1)ϕ

′′′
1k(l1)

]
+E2 I2 ϕ′2s(l2)ϕ′2j(l2)ϕ′2k(l2)ϕ

′′
2r(l2) + E3 I3 ϕ′3s(l3)ϕ′3j(l3)ϕ′3k(l3)ϕ

′′
3r(l3)

−E2 I2 ϕ2s(l2)
[

ϕ′2r(l2)ϕ
′′
2j(l2)ϕ

′′
2k(l2) + ϕ′2r(l2)ϕ′2j(l2)ϕ

′′′
2k(l2)

]
−E3 I3 ϕ3s(l3)

[
ϕ′3r(l3)ϕ

′′
3j(l3)ϕ

′′
3k(l3) + ϕ′3r(l3)ϕ′3j(l3)ϕ

′′′
3k(l3)

]
− 1

2

∫ l1
0 ϕ′1s

2(x1)dx1 × E2 I2

[
ϕ′2j(0)ϕ

′′
2k(0)ϕ

′′
2r(0) + ϕ′2j(0)ϕ′2k(0)ϕ

′′′
2r(0)

]
+ 1

2

∫ l1
0 ϕ′1s

2(x1)dx1 × E3 I3

[
ϕ′3j(0)ϕ

′′
3k(0)ϕ

′′
3r(0) + ϕ′3j(0)ϕ′3k(0)ϕ

′′′
3r(0)

]
;

hjkr
s =

3
∑

i=1
ρi
∫ li

0 ϕis(xi)
(

ϕ′ir(xi)
∫ xi

li

∫ θ
0 ϕ′ij(y)ϕ′ik(y)dydθ

)′
dxi

− 1
2

∫ l1
0 ϕ′1s

2(x1)dx1 ×
[
−ρ2 ϕ′2r(0)

∫ l2
0

∫ x2
0 ϕ′2j(x2)ϕ′2k(x2)dydx2 + ρ3 ϕ′3r(0)

∫ l3
0

∫ x3
0 ϕ′3j(x3)ϕ′3k(x3)dydx3

]
;

pjkr
s =

(
−ρ3l3 ϕ′3j(0)− ρ2l2 ϕ′2j(0)

)
ϕ1r(l1)

∫ l1
0 ϕ1s(x1)ϕ

′′
1k(x1)dx1 +

3
∑

i=1
ρi
∫ li

0 ϕis(xi)
(

ϕ′ik(xi)
∫ xi

li

∫ θ
0 ϕ′ir(y)ϕ′ij(y)dydθ

)′
dxi

+ϕ1s(l1)ϕ1r(l1)ϕ′1j(l1)
[
ρ2l2 ϕ′2k(0) + ρ3l3 ϕ′3k(0)

]
+ 1

2

∫ l1
0 ϕ′1s

2(x1)dx1 × ρ2 ϕ′2j(0)
∫ l2

0

∫ x2
0 ϕ′2k(x2)ϕ′2r(x2)dydx2

− 1
2

∫ l1
0 ϕ′1s

2(x1)dx1 × ρ3 ϕ′3j(0)
∫ l3

0

∫ x3
0 ϕ′3k(x3)ϕ′3r(x3)dydx3.

(A3)
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