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Abstract: Wind speed uncertainty and measurement noise affect the control effect in hydraulic wind
turbine systems. This paper proposes a model predictive control (MPC) method with a dynamic
Kalman filter (KF) based on a linear parameter-varying (LPV) model to address this problem. First of
all, the LPV model for a nonlinear system of a hydraulic wind turbine is established using function
substitution. Then, a LPV-based KF is introduced into the MPC to provide more precise estimated
results and improve the anti-interference ability of the system. According to the current condition of
the hydraulic wind turbine, the method updates the Kalman state estimator at each sampling instant
and computes the optimal control input by solving a quadratic programming (QP) optimization
problem. The performance and the efficiency of the proposed method is validated in simulation and
compared with other methods.

Keywords: hydraulic wind turbine; linear parameter-varying; model predictive control; dynamic
Kalman filter

1. Introduction

With the increasing tension caused by the global energy demand and the gradual
increase in environmental pollution, the development of renewable energy is particularly
important. Wind power, as a renewable and clean energy source, has received attention
from all over the world. Due to the harsh operating environment of wind turbines and the
disturbances caused by environmental factors that are difficult to control in wind power
systems, it is necessary to ensure the wind energy conversion efficiency and stable operation
of wind farms.

The wind turbine is a relatively complex type of equipment that converts wind energy
into electrical energy. According to different transmission systems, wind turbines are
divided into traditional gear transmission, gearless direct-drive transmission and hydraulic
transmission [1]. Wind speed uncertainty often leads to an increase in gearbox failure rate
and high maintenance costs for gear-driven wind turbines [2]. The direct-drive structure
of permanent magnet synchronous generators can replace gearboxes. However, rare-
earth permanent magnet materials cause the problem of high manufacturing costs of
permanent magnet synchronous generators [3]. In addition, a full-power rectifier inverter
is required, further increasing the investment cost [4]. In order to overcome the above
disadvantages, hydraulic transmission may be a feasible alternative. In the hydraulic wind
turbine, hydraulic transmission replaces the gearbox transmission of the traditional wind
turbine and transmits the mechanical energy captured by the wind turbine rotor to the
generator. In addition, hydraulic transmission can separate the speed of the wind turbine
rotor from that of the synchronous generator, and no additional frequency conversion
device is required [5,6].

The nonlinearity of hydraulic wind turbines, the uncertainty of the system parameters
and the constraints of the system variables are considered important challenges faced by
wind turbines in their modeling and control. According to the characteristics of each part of
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hydraulic wind turbines, the mathematical model of the corresponding part was established
to study the dynamic behavior of wind turbines [7,8]. The literature [9] established a
nonlinear state space model of a hydraulic wind turbine with two hydraulic pumps,
and used it to control the generator speed and track the maximum power point. This
literature did not linearize the hydraulic wind turbine model. The nonlinear problem of
hydraulic wind turbines was further treated by transforming it into an extended linear form,
which was used to design a gain-scheduled linear quadratic regulator (LQR) to achieve the
tracking of the desired trajectory [10]. The literature [11,12] used a small-signal linearization
method to linearize the hydraulic wind turbine model and analyzed the working area
of the power transmission system for the stable adjustment of the transmission power.
However, hydraulic wind turbines have nonlinearity and time-varying characteristics due
to their own system characteristics and external uncertainties, so the model parameters
needed to be adjusted accordingly. Therefore, the LPV was used to model the hydraulic
wind turbine. Rugh and Shamm [13] proposed the LPV theory, which introduced variable
parameters to establish a mathematical model of linear variable parameters for uncertain
parameter problems. The LPV model uses the structural form of a linear system to describe
the nonlinear and time-varying system [14]. Therefore, the current linear system-based
modeling and control approach could be easily extended to LPV systems. As a bridge
between nonlinear and linear systems, LPV systems provide a framework for dealing with
nonlinear problems [15]. Three approaches, including Jacobi linearization, state substitution
and function substitution, were presented for LPV modeling, and their advantages were
compared [16]. In this paper, the method of function substitution is chosen to establish the
LPV model of hydraulic wind turbines.

There are also many studies on control strategies for hydraulic wind turbines. The
PID method was used to control hydraulic wind turbines without considering the effect
of wind speed fluctuations [17]. A fuzzy PID controller was proposed to regulate the
pump displacement and obtain the hydraulic pump torque for optimal power tracking [18].
However, this approach required the design of complex fuzzy rules. A Takagi–Sugeno (T–S)
control-oriented nominal model was proposed to achieve the fault-tolerant control of hy-
draulic wind turbines by means of a T–S sliding model observer [19]. However, the sliding
model control inevitably suffered from the chattering problem. MPC is capable of handling
objects with multiple variables, multiple constraints and complex control processes [20].
The MPC method updates the predictive model in each control horizon and uses the rolling
optimization to solve the optimal sequence in the finite horizon of the constrained system.
Considering the excellent prediction and optimization capabilities of MPC, it is adopted
in this paper to design a controller for hydraulic wind turbines. Model mismatch and
unmeasured disturbances in hydraulic wind turbines affect the performance of MPC, so
the disturbance observer is required to estimate the state and suppress disturbances. Dis-
turbance observers, such as the KF nonlinear disturbance observers [21], extended state
observers (ESOs) [22,23] and sliding-mode observers [24] have good performance in terms
of disturbance suppression. The KF is a filtering method with a simple structure and wide
application, which can effectively filter out noise interference and optimize the estimated
state parameters. Therefore, this paper proposes a method which integrates MPC with a
dynamic KF based on the LPV framework for hydraulic wind turbine control to reduce the
disturbance’s influence.

The main contribution of the paper consists of the LPV model and MPC method
with the KF for the control of hydraulic wind turbines. In view of the nonlinearity and
time-varying characteristics of hydraulic wind turbines, this paper uses state variables as
scheduling parameters to establish the LPV model for hydraulic wind turbines. The LPV
model uses function substitution to transform the nonlinear dynamics of hydraulic wind
turbines into linear combinations of functions with scheduling parameters. The scheduling
parameters are measured with sensors at each sampling instant, so the LPV model can be
considered as a linear form, which further simplifies the design of subsequent controllers.
Based on the time-varying characteristics of the scheduling parameters in the LPV model,
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a dynamic KF is designed for MPC to keep the controller suitably working in case of
unexpected wind speed disturbances and measurement noise. The method performance
is elaborated with a simulation at different wind speed with turbulence intensities and
measurement of noise.

The rest of this paper is organized as follows: Section 2 introduces the mathematical
model of hydraulic wind turbines and establishes the LPV hydraulic wind turbine model
based on the function substitution method. Section 3 designs a combined KF and MPC
controller based on the LPV model. Section 4 validates the proposed method with a
simulation and analyzes the results. Section 5 concludes the paper.

2. Mathematical Modeling
2.1. The Nonlinear Model of the Hydraulic Wind Turbine

The hydraulic wind power system is mainly composed of a wind turbine rotor, variable
displacement pump, hydraulic transmission circuit and variable displacement motor. A
schematic diagram of the hydraulic wind turbine is shown in Figure 1. The mathematical
model for each part was established according to its mechanism.
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Figure 1. A schematic diagram of the hydraulic wind turbine. 
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Figure 1. A schematic diagram of the hydraulic wind turbine.

2.1.1. Wind Turbine Rotor

The wind turbine rotor is the power source of the entire hydraulic wind power system.
It absorbs wind energy and converts it into mechanical energy. The power of the wind
turbine rotor to capture wind energy can be expressed as [25]:

Pr =
1
2

ρπR2v3Cp(λ, β) (1)

where ρ, R, v and Cp(λ, β) are the air density, the blade radius, the wind speed and the
power coefficient, respectively. As a nonlinear function of the blade pitch angle β and the
tip speed ratio λ, the power coefficient Cp(λ, β) is given by [25]:

Cp(λ, β) = 0.5176(
116
λi
− 0.4β− 5)e−

21
λi + 0.0068λ (2)

with
1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(3)

The tip speed ratio is defined as the ratio between the wind speed v and the angular
velocity of the blade tip ωr:

λ =
ωrR

v
(4)
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2.1.2. Variable Displacement Pump

The flow equation for a variable displacement pump is determined by [26]:

Qp = Dpαpωp − Cvp p (5)

where Qp is the pump flow delivery, Dp is the pump displacement, αp is a displacement
coefficient of the pump, Cvp is the pump leakage coefficient, p is the differential pressure
across the pump and ωp is the pump angular velocity. The wind turbine rotor is coaxially
connected with the pump, so it was assumed that they had the same angular velocity,
which is ωp = ωr.

The torque balance equation between the wind turbine rotor and the pump is expressed
as [26]:

Jp
.

ωp + Bpωp + DPαp p = Tr(ωp, v) (6)

where the term Jp
.

ωp is the pump inertial torque and Jp is the total inertia of the wind
turbine rotor and the pump, the term Bpωp is the friction torque and Bp is the damping
coefficient of the pump and the term DPαp p is the pump reaction torque.

2.1.3. Variable Hydraulic Motor

The hydraulic flow supplied to a variable hydraulic motor can be expressed as [26]:

Qm = Dmαmωm + Cvm p (7)

where Qm is the motor flow delivery, Dm is the motor displacement, αm is a displacement
coefficient of the motor, Cvm is the motor leakage coefficient, p is the differential pressure
across the motor and ωm is the motor angular velocity. The connection between the motor
and the generator is rigid without elastic deformations, so it was assumed that their angular
velocity was equal.

The balance equation between the driving torque and braking torque for the motor
shaft was obtained by [26]:

Jm
.

ωm + Bmωm + Tg = Dmαm p (8)

where the term Jm
.

ωm is the motor inertial torque and Jm is the total inertia of the rotor in
the variable motor and the generator, the term Bmωm is the motor friction torque and Bm is
the damping coefficient of the motor, the term Tg is the generator load torque and the term
Dmαm p is the motor torque.

The actuator dynamics of the electrohydraulic-controlled displacement units were
each considered with a first-order lag element [19]:

.
αp = − 1

τp
αp +

1
τp

up
.
αm = − 1

τm
αm + 1

τm
um

(9)

where τp and τm are the time constant of the pump and the motor, and up and um are the
control variables acting on the pump and the motor, respectively.

2.1.4. Hydraulic Transmission Circuit

The following assumptions were determined to establish the model of the hydraulic
transmission circuit [27]:

• The leakage coefficient, density and bulk modulus of the oil were constant, and did
not change with temperature or other factors;

• The charge pump, relief valve and hydraulic lines were not considered;
• The pressure loss was neglected in the hydraulic line.
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According to the continuity equation of fluid mechanics, the compression flow equa-
tion can be obtained as [27]:

Qp −Qm = CH
.
p (10)

where CH = V/βe, CH is the fluid capacitance of the hydraulic circuits, V is the total
compression volume from the hydraulic pump to the hydraulic motor and βe is the effective
bulk modulus of hydraulic oil.

Based on Equations (5), (7) and (10), the differential equation for the hydraulic circuits
was obtained [27]:

.
p =

1
CH

(DPαpωp − Dmαmωm − Cv p) (11)

where Cv = Cvp + Cvm.

2.1.5. Synchronous Generator

The synchronous generator model was expressed by the first-order differential
Equation [19]:

.
Tg = − 1

τg
Tg +

1
τg

Tgr (12)

where Tgr and τg are the reference torque and the time constant of the generator,
respectively.

The power generated by the generator was expressed as [28]:

Pg = ηgωmTg (13)

where ηg is the generator output efficiency.
Suppose the blade pitch angle β was fixed in this study. When the wind turbine was at

the optimum blade tip speed ratio λopt, the maximum power captured from the air was [7]:

Prmax =
1
2

ρπR2(
ωrR
λopt

)
3
Cpmax = Koptωr

3 = Troptωr (14)

where Kopt =
ρπR5Cpmax

2λopt
3 is a constant and Tropt = Koptωr

2 is an optimal torque. Cpmax is the

maximum power coefficient.
Based on Equations (6) and (8)–(14), the nonlinear model of hydraulic wind turbines

was obtained: 

.
ωp = 1

Jp

(
Koptωp

2 − Bpωp − DPαp p
)

.
ωm = 1

Jm
(Dmαm p− Bmωm − Tg)

.
p = 1

CH
(DPαpωp − Dmαmωm − Cv p)

.
Tg = − 1

τg
Tg +

1
τg

Tgr
.
αp = − 1

τp
αp +

1
τp

up
.
αm = − 1

τm
αm + 1

τm
um

(15)

2.2. LPV Model of the Hydraulic Wind Turbine

An LPV system is a linear system in which some parameters vary with the external
parameters. An nth order LPV system is defined as:{ .

x = A(θ)x + B(θ)u
y = C(θ)x + D(θ)u

(16)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, y ∈ Rq is the measured
output and θ is the scheduling parameters whose variations are in the compact set P . If the
scheduling parameters θ are state variables, the system is called the quasi-linear parameter-
varying (qLPV) system. Suppose the state vector x of a qLPV system was composed of
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scheduling state z ∈ Rnz and nonscheduling state w ∈ Rnw , which is x =
[
z w

]T. Without
a loss of generality, it was assumed that there were no exogenous scheduling variables,
thus, θ = z. Therefore, the qLPV model of the nonlinear system was described as [16]:[ .

z
.

w

]
= A(z)

[
z
w

]
+ B(z)u + F(z) (17)

Several methods (e.g., Jacobian linearization, state transformation and function sub-
stitution) can be used to obtain a LPV or qLPV model. This paper adopted a function
substitution method to establish a qLPV model for the hydraulic wind turbine.

The function substitution method selected the equilibrium point as (z∗, w∗, u∗) and
transformed the state variables into the following form [16]:

δz = z− z∗, δw = w−w∗, δu = u− u∗ (18)

With Equation (17), the nonlinear system of Equation (16) could be rewritten as:[
δ

.
z +

.
z∗

δ
.

w +
.

w∗
]
= A(z)

[
δz
δw

]
+ B(z)δu + A(z)

[
z∗

w∗

]
+ B(z)u∗ + F(z) (19)

The equilibrium point (z∗, w∗, u∗) satisfied the following equation:[
0
0

]
= A(z∗)

[
z∗

w∗

]
+ B(z∗)u∗ + F(z∗) (20)

We subtracted Equation (20) from Equation (19) to obtain the following equation:[
δ

.
z

δ
.

w

]
= A(z)

[
δz
δw

]
+ B(z)δu + f1(δz, z∗, w∗) + f2(δz, z∗, u∗) + f3(δz, z∗) (21)

where

f1(δz, z∗, w∗) = A(z)
[

z∗

w∗

]
−A(z∗)

[
z∗

w∗

]
f2(δz, z∗, u∗) = B(z)u∗ − B(z∗)u∗

f3(δz, z∗) = F(z)− F(z∗)

(22)

The objective was to decompose f1(δz, z∗, w∗), f2(δz, z∗, u∗) and f3(δz, z∗) into linear
functions about δz. The decomposition result was:

f1(δz, z∗, w∗) = F1(z)δz
f2(δz, z∗, u∗) = F2(z)δz
f3(δz, z∗) = F3(z)δz

(23)

Assume that A(z) = [Az(z) Aw(z)], where Az(z) ∈ Rn×nz , Aw(z) ∈ Rn×nw . Then,
we would substitute the decomposition result back into Equation (21) to obtain the final
qLPV model of the nonlinear system:[

δ
.
z

δ
.

w

]
= Af(z)

[
δz
δw

]
+ B(z)δu (24)

where Af(z) = [Az(z) + F1(z) + F2(z) + F3(z) Aw(z)].
For the nonlinear model of the hydraulic wind turbine in Equation (15), we selected the

state vector x = [αp αm ωp ωm p Tg]
T, input vector u = [up um Tgr]

T , schedul-

ing state z = [αp αm ωp]
T and nonscheduling state w = [ωm p Tg]

T; Equation (15)
could be rewritten as follows:
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

.
αp.
αm.
ωp.
ωm.
p
.
Tg


=



− 1
τp

0 0 0 0 0

0 − 1
τm

0 0 0 0

0 0 −Bp+Koptωp
Jp

0 A35 0

0 0 0 − Bm
Jm

A45 − 1
Jm

0 0 A53 A54 − Cv
CH

0
0 0 0 0 0 − 1

τg





αp
αm
ωp
ωm
p

Tg

+



1
τp

0 0

0 1
τm

0
0 0 0
0 0 0
0 0 0
0 0 1

τg


up

um
Tgr

 (25)

where A35 = −Dpαp
Jp

, A45 = Dm
Jm

αm, A53 =
Dp
CH

αp, A54 = −Dm
CH

αm.
According to Equation (23), the decomposition results of f1(δz, z∗, w∗), f2(δz, z∗, u∗)

and f3(δz, z∗) were obtained:

f1(δz, z∗, w∗) =



0 0 0
0 0 0

−Dp p∗

Jp
0 Koptωp

∗

Jp

0 Dm
Jm

p∗ 0
Dp
CH

ω∗p −Dm
CH

ω∗m 0
0 0 0


 δαp

δαm
δωp



f2(δz, z∗, u∗) = 0
f3(δz, z∗) = 0

(26)

Therefore, the final qLPV model of the hydraulic wind turbine was obtained:

δ
.
αp

δ
.
αm

δ
.

ωp
δ

.
ωm
δ

.
p

δ
.
Tg


= A f (z)



δαp
δαm
δωp
δωm
δp
δTg

+ B

 δup
δum
δTgr

 (27)

where A f (z) =



− 1
τp

0 0 0 0 0

0 − 1
τm

0 0 0 0

− Dp p∗

Jp
0

−Bp+Kopt(ωp+ωp∗)
Jp

0 A35 0

0 Dm
Jm

p∗ 0 − Bm
Jm

A45 − 1
Jm

Dp
CH

ω∗p − Dm
CH

ω∗m A53 A54 − Cv
CH

0
0 0 0 0 0 − 1

τg

, B =


1

τp
0 0

0 1
τm

0
0 0 0
0 0 0
0 0 0
0 0 1

τg

.

3. Model Predictive Control Based on LPV

Considering the measurement noise and wind speed uncertainty, the KF was embed-
ded in MPC based on the LPV model. The structure of the LPV-MPC with the KF method
for the hydraulic wind turbine is shown in Figure 2. The state variables were estimated
with a dynamic KF based on the LPV model to obtain the estimated value x̂(k). MPC
calculated the optimal control input by solving the optimal problem according to the state
estimate x̂(k) and the reference speed.

Equation (27) was discretized using the forward Euler method with a sampling time
of Ts as follows: {

x(k + 1) = Ad(z(k))x(k) + Bdu(k)
y(k) = Cd(z(k))x(k)

(28)

where k is the sampling instant, Ad(z(k)) = I + A f (z(k))Ts, Bd = BTs,

Cd =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
.
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T

T T 1

ˆ ˆ( 1) ( ( 1)) ( 1 1) ( 1)
( 1) ( ( 1)) ( 1 1) ( ( 1))
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Considering the noise produced in the hydraulic wind turbine system, the state space
equation could be rewritten as:{

x(k + 1) = Ad(z(k))x(k) + Bdu(k) + d(k)
y(k) = Cdx(k) + h(k)

(29)

where d(k) is the system noise and h(k) is the measurement noise.
In order to provide more accurate state information to MPC and improve the con-

trol accuracy of the controller, the KF was designed to reduce the influence of external
disturbances on the system. The KF was based on the LPV model as follows [29]:

x̂e(k|k− 1) = Ad(z(k− 1))x̂(k− 1|k− 1) + Bdu(k− 1)
Pe(k

∣∣k− 1) = Ad(z(k− 1))P(k− 1
∣∣k− 1)Ad

T(z(k− 1)) + QKF

KKF(k) = Pe(k
∣∣∣∣k− 1)CT

d (CdPe(k
∣∣∣k− 1)Cd

T + RKF)
−1

e(k) = y(k)− (Cdx̂e(k|k− 1))
x̂(k|k) = x̂e(k|k− 1) + KKF(k)e(k)
P(k|k) = (I−KKF(k)Cd)P(k|k− 1)

(30)

in which the subscript “e” indicates the a priori estimate obtained before the measurement
was updated. QKF is the system noise covariance matrix and RKF is the measurement noise
covariance matrix in the MPC state estimator.

In practical applications, the control inputs often adopt the incremental form:

∆u(k) = u(k)− u(k− 1) (31)

Therefore, Equations (27) and (30) were combined to construct the new state space
expressions [30]: {

ξ(k + 1) = Ãd(z(k))ξ(k) + B̃d∆u(k)
η(k) = C̃dξ(k)

(32)

where ξ(k) =
[

x̂(k)
u(k− 1)

]
, Ãd(z(k)) =

[
Ad(z(k)) Bd

0m×n Im

]
, B̃d =

[
Bd
Im

]
, C̃d =

[
Cd 0

]
, n is the

dimension of the state vector and m is the dimension of the control vector.
Suppose the control horizon was NC, the prediction horizon was NP and NC ≤ NP.

The system output expression in the prediction horizon would be as follows:

Y(k) = Ψξ(k) + Θ∆U(k) (33)

where
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Y(k) =



η(k + 1)
...

η(k + NC)
...

η(k + NP)

, ∆U(k) =


∆u(k)

∆u(k + 1)
...

∆u(k + NC − 1)
∆u(k + NC)

, Ψ =


C̃dÃd(z(k))

C̃dÃd(z(k + 1))Ãd(z(k))
...

C̃d

Np−1

∏
i=0

Ãd(z(k + i))

 (34)

Θ =


C̃dB̃d 0 0 · · · 0

C̃dÃd(z(k))B̃d C̃dB̃d 0 · · · 0
...

...
...

. . . 0

C̃d

Np−1

∏
i=1

Ãd(z(k + i))B̃d C̃d

Np−1

∏
i=2

Ãd(z(k + i))B̃d · · · · · · C̃d

Np−1

∏
i=NC

Ãd(z(k + i))B̃d

 (35)

The control objective function of MPC was as follows:

J(k) =
NP

∑
i=1
‖∆η(k + i)‖2

Q +
NC−1

∑
i=1
‖∆u(k + i)‖2

R + γε2 (36)

where Q and R are positive definite weighting matrices, ∆η(k + i) = η(k + i)− ηr(k + i),
ηr(k+ i) is the target output sequence, γ is the weighting factor and ε is the relaxation factor.
The last term was to ensure that the solver had a feasible solution for each control cycle.

The output deviation in the prediction horizon was:

E(k) =Y(k)− Yr (37)

where Yr =
[
ηr(k + 1) ηr(k + 2) · · · ηr(k + NP)

]T.
In solving the quadratic programming optimization problem, the objective function

needed to be transformed into the standard quadratic form and simplified as:

J(k) =
1
2
[
∆UT ε

]TH
[
∆UT ε

]
+ G(k + 1|k)

[
∆UT ε

]
(38)

where H =

[
2ΘTQΘ + 2R 0

0 2γ

]
, G(k + 1|k) =

[
2ETQΘ 0

]
.

The variable pump and variable motor speed was controlled within a reasonable range;
thus, the normal operation of the hydraulic wind turbine could be guaranteed. Therefore,
it was necessary to restrict control inputs in the following constraint form:

∆Umin ≤ ∆U(k) ≤ ∆Umax
Umin ≤ U(k) + AI∆U(k) ≤ Umax

(39)

where U(k) = 1NC ⊗ u(k− 1) and ⊗ is the Kronecker product.
After solving the quadratic programming in each calculation step, the sequence of

incremental control inputs in the prediction horizon was obtained as:

∆U(k) = [∆u∗(k) ∆u∗(k + 1) · · · ∆u∗(k + NC − 1)]T (40)

Then, the control inputs were updated in the process of rolling optimization as follows:

u(k) = u(k− 1) + ∆u∗(k) (41)
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To prove the system stability at the equilibrium point, the Lyapunov function V∗(k),
which corresponds to the optimal solution ∆u∗(k), was defined as [31]:

V∗(k) = min
∆u

NP

∑
i=1
‖∆η(k + i)‖2

Q +
NC−1

∑
i=1
‖∆u(k + i)‖2

R (42)

To facilitate analysis, it was assumed that NC = NP = N. Therefore, Equation (42)
was simplified as follows:

V∗(k) = min
∆u

N
∑

i=1

[
‖∆η(k + i)‖2

Q + ‖∆u(k + i− 1)‖2
R

]
s.t. ∆η(k + i) ∈ E

∆u(k + i) ∈ ∆U
∆η(k + N) = 0

(43)

where ∆U and E are nonempty sets. The function V∗(k) was positive-definite.
With the above assumption, we had:

∆V∗(k) = V∗(k + 1)−V∗(k)
= min

∆u

{
−‖∆η(k + 1)‖2

Q − ‖∆u(k)‖2
R + ‖∆η(k + 1 + N)‖2

Q + ‖∆u(k + N)‖2
R

}
≤ −‖∆η(k + 1)‖2

Q − ‖∆u∗(k)‖2
R + min

∆u

{
‖∆η(k + 1 + N)‖2

Q + ‖∆u(k + N)‖2
R

} (44)

According to the terminal constraint ∆η(k + N) = 0, the following equation was
concluded:

min
∆u
‖∆η(k + 1 + N)‖2

Q + ‖∆u(k + N)‖2
R = 0 (45)

Since ‖∆η(k + 1)‖2
Q + ‖∆u∗(k)‖2

R ≥ 0, we could conclude that ∆V∗(k) ≤ 0. According
to Lyapunov’s stability theorem, the equilibrium point was stable.

4. Simulation Study and Results

In order to evaluate the performance of the proposed LPV model and controller,
the system was simulated utilizing MATLAB/Simulink version R2018b software with
an ode45 solver and quadratic program (QP) solver. The ode45 solver performed the
integral solution of the differential equation and the QP solver was used to solve the MPC
optimization problem.

The main parameters of the hydraulic wind turbine in the simulation are shown in
Table 1. The parameters of the synchronous generator are listed in Table 2.

Table 1. Main parameters of the hydraulic wind turbine.

Symbol Parameter Value Unit

R Rotor radius 4 m
ρ Air density 1.225 kg/m3

Jp The total inertia of the rotor in the wind turbine and pump 8 kg·m2

Bp Damping coefficient of the pump 0.02 N·m/(rad·s−1)
DP Pump displacement 300 ml
Dm Motor displacement 35 ml
Bm Damping coefficient of the motor 0.009 N·m/(rad·s−1)
Jm The total inertia of the rotor in the variable motor and generator 0.1278 kg·m2

βe The effective bulk modulus of hydraulic oil 1.43 × 103 MPa
Cv Total system leakage coefficient 8 × 10−12 m3/(s·Pa)
V The total compression volume 0.05 m3

τg The time constant of the generator 0.02 s
τp The time constant of the pump 0.1 s
τm The time constant of the motor 0.1 s
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Table 2. Synchronous generator parameters.

Parameter Value Unit

Stator resistance 0.645 Ω
Inductance 3.371 mH
Pole pairs 2 -

Synchronous speed 1500 r/min
Rated line voltage 380 V

Rated power 10 kW
ηg 95% -

To detect the anti-interference ability of the whole control system when the wind speed
changed, the simulations were conducted for 50 s in three simulation scenarios that covered
different wind speeds and turbulence intensities.

Scenario 1: Mean wind speed of 8.3 m/s with an approximately 7.2% turbulence
intensity.

Scenario 2: Mean wind speed of 10 m/s (rated speed wind) with an approximately 5%
turbulence intensity.

Scenario 3: Mean wind speed of 10 m/s (rated speed wind) with an approximately
10% turbulence intensity.

The turbulent wind speed curve with mean values 8.3 m/s and 10 m/s is shown in
Figure 3. In addition, Gaussian white noise was introduced as the measurement noise in
the simulation process.
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To examine the control performance of the LPV-MPC with the KF method, it was
compared with the PID and the LPV-MPC without the KF method. The sampling time was
set as Ts = 0.01 s for both the LPV-MPC without the KF and the LPV-MPC with the KF in the
following simulations. The controller parameters were NP = 6, NC = 3 and Cpmax = 0.478.
The simulation results, including the power coefficients and the variable motor speed in
each scenario, are shown in Figures 4–6.
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Figure 4. Comparison of power coefficients and variable motor speeds under different control
methods in scenario 1: (a) power coefficient; (b) absolute error of power coefficient; (c) variable motor
speeds; (d) absolute error of variable motor speeds.

As shown in Figures 4–6, compared with the PID and LPV-MPC without the KF
method, the power coefficient was more stable around its maximum value under the
LPV-MPC with the KF method. The variable motor speed was better maintained at the
reference values when using the proposed method, whereas the motor speed fluctuated
significantly when using the PID and LPV-MPC without the KF method in all scenarios.
The results of Figures 5 and 6 indicate that the absolute error of the variable motor speed
under three control methods became larger with the increase in the turbulence intensity
at the same wind speed. However, the LPV-MPC with the KF method could still keep the
speed deviation within 1 r/min in scenario three, whereas the maximum speed deviation
was approximately 4 r/min and 5.5 r/min, respectively, under the LPV-MPC without the
KF method and PID method.

In order to explore the effect of the motor speed fluctuation on generator power, the
generator power in all scenarios under the three control methods is shown in Figure 7.
Figure 7 indicates that the variable motor speed and generator power had the similar
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fluctuation trend. The more stable the motor speed, the more stable the generator power.
Through a comparison, it was found that the LPV-MPC with the KF method was better at
keeping the generator power stable and ensuring the power quality more effectively.
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In order to compare the performance of the methods of tracking the reference value in
the case of the measurement noise and wind interference, the root mean square error (RMSE)
was used to evaluate system control performance. The RMSE of the power coefficient,
variable motor speed and generator power was defined as:

RMSECp =

√
1
n

n

∑
k=1

(
Cp(k)− Cpmax

)2 (46)

RMSEωm =

√
1
n

n

∑
k=1

(ωm(k)−ωm∗)
2 (47)

RMSEPg =

√
1
n

n

∑
k=1

(
Pg(k)− Pg

∗)2 (48)

where Cp(k), ωm(k) and Pg(k) are the sampling values of the power coefficient, variable
motor speed and generator power at the sample instant k, respectively. Cpmax is the maximal
value of the power coefficient and ωm

∗ and Pg
∗ are the reference values of variable motor
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speed and generator power at the sampling instant k, respectively. Table 3 summarizes
the RMSE of the power coefficient, variable motor speed and generator power at different
wind speeds with turbulence intensities.
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Table 3. RMSE at different wind speeds with turbulence intensities.

Scenario Wind
Speed

Turbulence
Intensity RMSE PID LPV-MPC LPV-MPC

with KF

1 8.3 m/s 7.2%

RMSECp 0.0133 0.0115 0.0086

RMSEωm 1.5556 0.9694 0.2653

RMSEPg 0.0107 0.0069 0.0017

2 10 m/s 5%

RMSECp 0.0078 0.0067 0.0049

RMSEωm 1.2253 0.6867 0.0558

RMSEPg 0.0106 0.0045 0.0005

3 10 m/s 10%

RMSECp 0.0119 0.0076 0.0061

RMSEωm 1.6785 1.0188 0.3042

RMSEPg 0.0112 0.0066 0.0021
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Table 3 shows that the different turbulence intensity of the same wind speed had
effects on the RMSE of the power coefficient, variable motor speed and generator power.
The increase in the turbulence intensity of the same wind speed led to the increase in the
power coefficient, variable motor speed and generator power fluctuation. Compared with
the other two control methods, the hydraulic wind turbine system using the proposed
method was more stable under turbulent wind. Take scenario three as an example: the
LPV-MPC with the KF method decreased the RMSE of the power coefficient by 48.74% and
19.74%, the RMSE of the variable motor speed by 81.88% and 70.14%, and the RMSE of
the generator power by 81.25% and 68.18%, respectively, in comparison with the PID and
LPV-MPC without the KF methods. The simulation results indicated that the LPV-MPC
with the KF had the best anti-interference performance among the three control methods.

5. Conclusions

In this paper, a LPV-MPC with the KF method was presented to establish a model
and control for the hydraulic wind turbine. Firstly, the nonlinear model of the hydraulic
wind turbine was transformed into the LPV model using function substitution. Secondly,
a dynamic KF was designed to estimate the state variables and minimize model process
mismatches based on the LPV model. Finally, the LPV model-based MPC with the KF was
designed to control the variable pump speed and variable motor speed. The proposed
method was compared with the PID and LPV-MPC without the KF method via a simulation
under different wind speed disturbances and measurement noise conditions. The simula-
tion results showed that both the LPV-MPC with the KF and the LPV-MPC without the KF
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methods outperformed the PID method under different wind speed disturbances. This in-
dicated that the MPC method had the capability to react in advance and choose the optimal
control input. The LPV-MPC with the KF used the Kalman filter to suppress measurement
noise and wind disturbance, so that it obtained better anti-interference performance relative
to the LPV-MPC without the KF method.

This paper studied the control of hydraulic wind turbines under fixed pitch angle
conditions. Future research should focus on the combination of the proposed method in
this paper and pitch control. Another future direction can be to study the fault-tolerant
control method for hydraulic wind turbines based on the LPV in addressing the problem of
sensor malfunctions.
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