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Abstract: In order to adapt to complex and changeable mechanical conditions and make the de-
formable mechanisms perform well statically and dynamically, variable stiffness joints have been
studied extensively. The variable stiffness actuator is the key driving component to adjust stiffness
of the joint. By inserting flexible elements between the driving and driven ends of rigid motion,
the variable stiffness actuator makes the joint move precisely and allows humans to interact with
machines safely. At present, many kinds of variable stiffness actuators have been applied, among
which the way of changing the length of the force arm of leaf springs has obvious advantages. How-
ever, overall configuration design, accurate stiffness model, mechanical characteristics and safety
analysis have not been studied in depth. This paper investigates a variable stiffness actuator based
on leaf spring by design, model and mechanical analysis. The composition and configuration of the
actuator is analyzed and optimized. Using the deflection theory of the beam, a new rotational stiffness
model of the actuator is established, and a safe position criterion is set up upon the deformation
constraint conditions. The variation law of stiffness and the influence of parameters on mechanical
characteristics are studied. The finite element analysis method verified the rotational stiffness model,
and static test proved that the actuator could effectively work in the joint.

Keywords: leaf spring; variable stiffness actuator; roller; stiffness model

1. Introduction

In recent years, the demands for smart manufacturing and improved quality of life
have gradually increased. Therefore, researchers have devoted themselves to studying
deformable mechanisms that can adapt to complex mechanical environments. These
mechanisms include multi-joint robots, large-scale foldable mechanisms, and morphing
drafts, among others. A joint is the structural foundation of deformable mechanisms,
and its stiffness is an important factor affecting the static and dynamic characteristics of
mechanisms [1–3]. Traditional rigid joints can bear a high load, respond quickly and locate
accurately, but usually produce violent impacts instantly, which is unsafe for the system [4].
In comparison, low stiffness can reduce the reaction moment and mitigate impact. However,
it is easy to produce a steady-state oscillation [5]. To make the mechanisms adapt to a
changeable environment, research on variable stiffness joints is increasing. A variable
stiffness actuator is an important component to adjust the stiffness of a joint. Its function
is to transfer flexible motion by adding elements with adjustable flexibility at the driving
shaft and the driven shaft of the joint. Therefore, variable stiffness actuators that meet these
requirements require that variable stiffness joints improve bearing capacity, increase the
variation range of stiffness and become smaller. In addition, they also provide important
technical support for the development of deformable mechanisms that are lightweight,
intelligent and have secure human-computer interactions.

According to the transmission principle, the actuating mechanism of a variable stiffness
actuator includes a variable elastic force, an adjustable non-contact force, the interface force
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of the material, and intelligent materials. Variable stiffness actuators have been widely used
in compliant robots, bionic soft grippers, and intelligent space mechanisms. For example:
(1) With respect to magnetic force, if the distance between the two magnets or the current
inside an exciting coil is adjusted, the magnetic force changes so that the ability to transmit
torque can be adjusted and the stiffness changes [6,7]. (2) With respect to pneumatic
force, a sealed cavity with the desired shape is manufactured using rubber material, and
stiffness is varied by changing the air pressure inside [8–11]. (3) For interfacial force [12],
the force of interlocking bristles [13] and particle friction [14,15] can directly affect the
transmission property and the force between the interfaces, thus changing the transmission
stiffness. (4) With respect to smart materials, under the action of external excitation such
as electricity, magnetism and heat, some special materials change phases or macroscopic
structures. Based on this mechanism, smart materials, such as shape memory alloys [16],
liquid metals [17], dielectric high-elasticity polymers [18], electrorheological fluids [19–22]
and magnetorheological fluids [23], have been applied to variable stiffness joints in recent
years. (5) With respect to electrohydrodynamics (EHD) an EHD pump [24,25] can easily
and quickly control the flow direction of a dielectric liquid by changing the voltage, and
then drive a soft structure to change stiffness to perform bending, twisting and stretching
movements. (6) With respect to variable elastic force, elastic elements such as torsion
springs [26–28] and linear springs [29] can be installed between the input and output of
a rigid transmission path, and the transmission stiffness varied by changing the length
of the force arm [30] or the preload force [31]. Among elastic elements used in variable
stiffness actuators, a leaf spring is a special element. To some extent, the leaf spring not
only has certain flexible characteristics but also has a simple structure, high load carrying
capacity, flexible design and small size. As a result, it has been applied in variable stiffness
systems [32–35]. Tao [36] et al. and Wang [37] et al. developed a variable stiffness joint
based on leaf springs and listed the stiffness equations at small deflection. Fang [38] et al.
studied the performances of a variable stiffness joint based on leaf springs and analyzed
the influence of the end exertion force and geometric nonlinearity of leaf springs on
stiffness characteristics. However, up to now, there has been little research on configuration
design and stiffness modelling that comprehensively considers leaf springs, rollers and
the rotation center, as well as the relationship among them. In addition, the discussion of
flexible deformation ranges with respect to safety is deficient.

In this paper, we take a variable stiffness actuator based on leaf springs as the studied
object. In terms of analytical calculation, simulation and experiments, a method of overall
configuration design is put forward, a rotational stiffness model is established, and stiffness-
adjusting characteristics are analyzed. The structure of the paper is as follows. Section 2
introduces the composition and configuration design scheme of the actuator. In Section 3, a
mechanical model of the actuator is presented, and the main constraints in the working
process are derived. Section 4 provides analysis of characteristics when adjusting the
stiffness of the actuator. Section 5 details simulation and experimental result that verify
the stiffness model and its functions. Section presents the conclusion and discussion.
This paper provides the overall configuration design idea, mechanical model foundation
and safety criteria for stiffness control of congener variable stiffness actuators at a wide
deformation scale in the future. The results can be applied to flexible joints of manipulators,
intelligent hinges of deployment mechanisms and other devices.

2. Composition and Configuration Design

The variable stiffness actuator is mainly composed of leaf springs, rollers and a rotating
center. The leaf springs are placed on the base in a cantilever, and the rollers rotate around
the rotating center. When the rollers are subjected to the moment around the rotating
center, they squeeze the leaf springs and transmit the moment to the leaf springs, and
then to the base. If the distance between the rollers and the rotating center changes, the
length of the effective moment arm between the rollers’ pressing force and the fixed end
of the leaf springs changes accordingly. Then, the deflection at the place where the leaf
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springs are stressed also changes, which results in change of transmission stiffness. In this
way, a rigid motion is transformed from the driving end of the joint where the rollers are
located, to a flexible motion through the variable stiffness actuator, and is transmitted to the
driven end of the joint where the leaf springs are located. The performance of the variable
stiffness actuator is related to its structural configuration, which is depends on the number,
arrangement and relative positions of the components. However, existing research [39,40]
mostly considers a single configuration (two rollers clamping a leaf spring), but the layout
has not been analyzed in detail. Therefore, this section presents a configuration design
method for the actuator, and considers the advantages and disadvantages, holistically, of
several design issues, including the relative position of leaf spring and roller, the position
of rotating center and the spatial arrangement of actuator.

2.1. Arrangement of Leaf Springs and Rollers

According to the number and contact of leaf springs and rollers, their positions can be
designed as single leaf spring and double rollers and double leaf springs and single roller,
as shown in Figure 1. In this paper, the initial state of the actuator is defined as the state in
which the leaf springs and the rollers do not interact with each other, and the transmission
state is defined as the state where they squeeze each other. With single leaf spring and
double rollers, the rollers always exert a pressing force on the leaf spring except in the
initial state, so that only one leaf spring always stressed and likely to creep. However, in the
double leaf springs and single roller mode, the leaf springs deform alternately in the process
of reciprocating force on the actuator, thus prolonging the service life of components.
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Figure 1. Two arrangements of leaf springs and rollers. (a) Single leaf spring and double rollers 

arrangement (initial state). (b) Single leaf spring and double rollers arrangement (transmission 

state). (c) Double leaf springs and single roller arrangement (initial state). (d) Double leaf springs 

and single roller arrangement (transmission state). 

2.2. Position of the Rotating Center 

Figure 1. Two arrangements of leaf springs and rollers. (a) Single leaf spring and double rollers
arrangement (initial state). (b) Single leaf spring and double rollers arrangement (transmission state).
(c) Double leaf springs and single roller arrangement (initial state). (d) Double leaf springs and single
roller arrangement (transmission state).

2.2. Position of the Rotating Center

Considering the relative position between the rotating center and the leaf springs. The
rotating center can be placed at the free end or the fixed end of the leaf springs, as shown
in Figure 2. L0 is the initial length of the leaf spring, l is the distance between the roller and
the rotating center, L is the distance between the rotating center and the fixed end, w is
the deflection of the free end, and θ is the flexible rotating angle at which the roller rotates
around the rotating center. The variable stiffness actuator is at the initial state when θ = 0.
In Figure 2, 0 ≤ l ≤ L0 and 0 ≤ L ≤L0.
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Figure 2. Two arrangements of the rotating center. (a) The rotating center is at the free end of the leaf
springs (initial state). (b) The rotating center is at the free end of the leaf springs (transmission state).
(c) The rotating center is at the fixed end of the leaf springs (initial state). (d) The rotating center is at
the fixed end of the leaf springs (transmission state).

If the radius of the roller is very small, when the rotating center is located at the free
end and the fixed end of the leaf spring, the deflections at the free end are, respectively,

w1 = (L0 − L) sin θ (1)

w2 = L sin θ (2)

and when the leaf spring is subjected to a force in the vertical direction at the free end, the
approximate deflection is

w =
FyL3

3EI
(3)

where Fy is the extrusion force of the leaf spring, and L equals the length of the effective
arm of Fy. In Figure 2, the extrusion force between the leaf spring and the roller in these
two cases are

Fy1 =
3EI(L0−L) sin θ

L3 (4)

Fy2 =
3EI sin θ

L2 (5)

when θ 6= 0{
0 ≤ Fy1 < ∞, Fy1 = ∞ if L = 0, Fy1 = 0 if L = L0
Fy2min ≤ Fy2 < ∞, Fy2 = ∞ if L = 0, Fy2 = Fy2min = 3EI sin θ

L0
2 if L = L0

(6)

Therefore, when the rotating center is located at the free end of the leaf spring, the
range of extrusion force between the leaf spring and the roller is larger, and is the range of
transmitted torque.

2.3. Spatial Arrangement of the Actuator

In order to improve the ability to transmit torque in a narrow space, two groups of
double leaf springs and single roller modules are centrally symmetrically arranged on both
sides of the rotating center. Both two rollers are made semi-cylindrical, between which the
distance can be adjusted, and they can rotate around the rotating center together. According
to this scheme, the working process of the variable stiffness actuator is shown in Figure 3.
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Figure 3. The overall configuration of the variable stiffness actuator. (a) The rollers are located at the
rotating center (initial state). (b) The rollers are located at the rotating center (transmission state);
(c) The distance from the roller to the center of rotation is l (initial state). (d) The distance from the
roller to the center of rotation is l (transmission state).

3. Mechanical Modeling and Analysis

In the existing research of variable stiffness actuators based on leaf springs, the defor-
mation process of leaf springs is generally artificially brought to a small deflection, and an
equation for small deflection of beams is used to construct the rotational stiffness model.
However, such a model has shortcomings. (1) When the rotation angle is large within the
large-scale deformation of the leaf spring, the small deflection equation is not applicable.
(2) In existing stiffness models, the influence of parameters such as roller radius and me-
chanical clearance are not considered. (3) The deformation constraints are not discussed,
and safety management is lacking. In this section, a general rotational stiffness model
suitable for a wide deformation scale is established, and the safety criterion of flexible
deformation is given, which will be the basis for stiffness control in the future.

3.1. Rotational Stiffness Model

Since the variable stiffness actuator is centrosymmetric, we only analyze one symmet-
rical element. The mutual extrusion of leaf springs and rollers is abstracted as the problem
of bending deformation of a cantilever beam under oblique load [41–43]. On a bending
cantilever beam, a plane Cartesian coordinate system is established as shown in Figure 4,
where point A is the fixed end of the leaf spring, point B is the stress point where the roller
contact with the leaf spring, α is the angle between the tangent of the leaf spring at any

point P on the arc
_

AB and the x-axis, αB is the angle between the tangent of the leaf spring

and the x-axis at point B, MP is the bending moment at any point P on the arc
_

AB, FN is the
support force of the leaf spring at point B by the roller, and Ff is the friction force of the leaf
spring at point B.
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In order to ensure repetition accuracy and smooth movement, the wear between the
roller and the leaf spring should be reduced. Therefore, the contact surface between the
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roller and the leaf spring is extremely smooth and fully coated with lubricant. Therefore, Ff
is negligible. The bending moment at point P is

MP = FN [cos αB(xB − x) + sin αB(yB − y)] (7)

The exact differential equation of the deflection curve of the beam is solved as shown
in Appendix A Appendix A.1 with a detailed solution process. As a result, the coordinates
at point B are

xB = 1√
2FN
EI

∫ αB
0

cos αdα√
sin(αB−α)

yB = 1√
2FN
EI

∫ αB
0

sin αdα√
sin(αB−α)

(8)

where E is the elastic modulus of the leaf spring, and I is the cross-sectional moment of
inertia. Taking one roller and the leaf spring in contact with it as a loading analysis unit,
the loading state is shown in Figure 5. According to the geometric relationship in Figure 5,
the coordinates of point B are

xB = L0 −OD cos θ − BD cos(β + θ) = L0 − l cos θ − R cos(β + θ)

yB = OD sin θ + BD sin(β + θ)− R = l sin θ + R sin(β + θ)− R
(9)

where R is the radius of the roller. In ∆COD,

αB + θ + β =
π

2
(10)

Therefore, the coordinates of point B are

xB = L0 − l cos θ − R sin αB

yB = l sin θ + R cos αB − R
(11)

Combining Equations (8) and (11) and cancelling out xB and yB, the resulting equation
is converted to

L0 − l cos θ − R sin αB = 1√
2FN
EI

∫ αB
0

cos αdα√
sin(αB−α)

l sin θ + R cos αB − R = 1√
2FN
EI

∫ αB
0

sin αdα√
sin(αB−α)

(12)

In addition to structural parameters, there are three unknown variables including FN,
θ, and αB in two equations of Formula (12). This can be transformed into the mapping
relationship of θ concerning FN and αB. We set

F1(αB) =
∫ αB

0
cos αdα√
sin(αB−α)

F2(αB) =
∫ αB

0
sin αdα√
sin(αB−α)

(13)

F1(αB) and F2(αB) can be solved by numerical integration as in Appendix A Appendix
A.2. The ratio of two equations of Formula (12) is

L0 − l cos θ − R sin αB
l sin θ + R cos αB − R

=
F1(αB)

F2(αB)
(14)

According to Formulas (12) and (13), the normal force can be expressed as

FN =
EI
2

(
F1(αB)

L0 − l cos θ − R sin αB

)2
(15)



Actuators 2022, 11, 282 7 of 23

The torque transmitted by variable stiffness actuator is

T = 2FN ·OC = 2FN · l cos(αB + θ) (16)

In this paper, rotational stiffness is defined as the slope of the torque T transmitted by
the variable stiffness actuator changing with the generated flexible rotating angle θ, which
can be expressed as

K =
∂T
∂θ

(17)

Formulas (14) to (17) are included in the rotational stiffness model. When the structural
dimensions are determined, the values of L0 and R are both fixed. Therefore, αB, FN, T and
K depend on θ and l.
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3.2. Safe Position Space

Safe position space of the actuator refers to the maximum value range of the relative
rotating angle when all the components in the actuator are in a safe state or position. If
the external disturbance causes θ to exceed this range, the controllable factors, such as the
position of the roller, must be adjusted appropriately.

3.2.1. Ultimate Position of the Roller under Geometric Constraints

θ and αB are limited by the length of the leaf spring and the position of the fixed end.
The following are two extreme cases.

1.
√

L02 + R2 − R ≤ l ≤ L0

When the edge of the roller just touches the fixed point A, the roller has a certain limit
position, as shown in Figure 6.
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In this case, the semicircular profile of the roller is far from the fixed point A, as 
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moment arm of FN relative to O becomes 0, and the torque T = 0. Before and after point B, 
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ous. The position of the roller in this state is called the dangerous position. 
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Figure 6. Ultimate position of the roller.

Where H is a point on AG. In ∆AHO′, O’H⊥AH, AO’ = R, O’H = R − lsinθ, and
AH = L0 − lcosθ. According to the Pythagorean theorem

R2 = (R− l sin θ)2 + (L0 − l cos θ)2 (18)
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The ultimate value of the rotating angle θ is

θmaxI = arcsin
L0

2 + L2

2l
√

R2 + L02
− arcsin

L0√
R2 + L02

(19)

In this case, if the farthest point on the cylindrical surface of the roller from the rotating
center is in contact with the fixed point, AO′ and OO′ are collinear. In4AOD,

L0
2 + R2 = (R + l)2 (20)

The ultimate value of the distance between the rollers is

l1 =
√

L02 + R2 − R (21)

Since the angle of the fixed end of the cantilever beam equals 0, θ will never reach
θmaxI. Thus, the limit range of θ is

0 ≤ θ < arcsin
L0

2 + L2

2l
√

R2 + L02
− arcsin

L0√
R2 + L02

(22)

2. 0 ≤ l <
√

L02 + R2 − R

In this case, the semicircular profile of the roller is far from the fixed point A, as shown
in Figure 7. If the action line of FN passes through the rotating center O, the effective
moment arm of FN relative to O becomes 0, and the torque T = 0. Before and after point B,
the torque is reversed, and the effect of flexible torque on the rotational motion of the joint
changes from obstruction to driving, which is difficult to control and extremely dangerous.
The position of the roller in this state is called the dangerous position.
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Figure 7. The dangerous position of the roller.

In this state, αB + θ = π
2 . When it is substituted into Equation (14),

L0 − (l + R) cos θ

(l + R) sin θ − R
=

F1
(

π
2 − θ

)
F2
(

π
2 − θ

) (23)

Therefore, the dangerous value of the rotating angle θ can be expressed as

θmaxI I = θmaxI I(l) (24)

The value range of θ is 0 ≤ θ < θmaxI I , 0 ≤ l <
√

L02 + R2 − R
0 ≤ θ < arcsin L0

2+L2

2l
√

R2+L0
2
− arcsin L0√

R2+L0
2

,
√

L02 + R2 − R ≤ l ≤ L0
(25)
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3.2.2. Ultimate Position of the Roller Not separated from the Leaf Spring

The length of the leaf spring before and after deformation is assumed to be constant.
In order to ensure that the roller is not separated from the leaf spring, that is, its cylindrical
surface is always tangent to the leaf spring, so

_
AB ≤ L0 (26)

and the arc length
_

AB can be expressed as

_
AB =

∫ _
AB

0
ds =

∫ αB

0

dα√
2

EI FN sin(αB − α)
=

√
EI

2FN

∫ αB

0

dα√
sin(αB − α)

(27)

which can be solved by the numerical method as in Appendix A Appendix A.3 for the
solution process.

3.2.3. Ultimate Deformation of the Leaf Spring under the Constraint of Strength

The maximum normal stress in the cross-section of the leaf spring is

σmax =
MPmax

WZ
(28)

According to Formula (7), the bending moment at the fixed point A is the greatest,
which can be expressed as

MPmax = MA = FN [xB cos αB + yB sin αB] (29)

For a rectangle cantilever beam,

WZ =
bh2

6
(30)

According to the intensity condition for bending normal stress, the deformation limit
of the leaf spring is

σmax =
6FN

bh2 [xB cos αB + yB sin αB] ≤ [σ]l (31)

The allowable stress of the leaf spring is

[σ]l =
σs

nl
(32)

where nl is the safety factor of the material of the leaf spring, which can be taken as nl = 1.2.
The value range of the flexible angle θ that meets all the above three requirements is

the safe position space of the actuator.

4. Stiffness-Adjusting Characteristics
4.1. Changing Laws of Stiffness

Considering the limitation of space and design experience, it is assumed that the length
of the cantilever leaf spring L0 = 20 mm, the thickness h = 1 mm and the width b = 8 mm
and the radius of the roller R = 3.5 mm. The material of the leaf spring is 60Si2CrVA,
whose modulus E = 200 GPa and yield limit σs = 1666 MPa. According to Equation (32),
the allowable stress [σ]l = 1388 MPa. In this paper, the ultimate deformation of the leaf
spring under the constraint of strength is taken as the primary condition. According to the
safe position space, θmax and corresponding αBmax are obtained by a numerical method,
as shown in Table 1. It is verified that the values in the table are also within the scope of
the ultimate position of the roller under geometric constraints and the ultimate position of
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the roller is not out of the leaf spring. According to Formulas (14) to (17), the relationship
curves of T and K with respect to θ under different values of l are shown in Figure 8.

Table 1. Values of l and corresponding θmax and αBmax.

l (mm) 0 0~1 ~3 ~5 ~7 ~9 ~11 ~13 ~15 ~17 ~19

θmax (◦) 30 30 24 10 5 3 1.7 0.85 0.35 0.1 0.01
αBmax (◦) 0 2.25 6.11 4.98 4.05 3.70 3.13 2.38 1.58 0.85 0.31
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Figure 8. T and K change with θ and l. (a) The relationship curves of T with respect to θ under
different values of l. (b) The relationship curves of K with respect to θ under different values of l.

According to Figure 8b, in the safe position space, K increases with l but does not
change obviously with θ. In a certain range, K initially increases and then decreases, mainly
caused by the decreasing length of the effective arm of FN. Therefore, the relationship
between the stiffness K0 in the initial state of the actuator and l can approximately reflect
the relationship between K and l. For convenient analysis, we take a small change of the
angle ∆θ = 0.0001 which produces a torque ∆T. The stiffness K0 near the initial state of the
actuator can be expressed as

K0 =
∆T
∆θ

(33)

After numerical calculation, the relationship between K0 and l is shown in Figure 9.
Near the initial state, when l = 0, K0 = 0. When l increases, K increases too, and the closer l
is to L0, the faster K increases. In theory, when l = L0, K0 = ∞.
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4.2. Influence of Structural Parameters on the Characteristics of Adjusting Stiffness

There are many parameters and variables in the rotational stiffness model, including
L0, θ, l, R, αB, E and I. In Formulas (14) to (17), l is a controllable variable in the working
process of the actuator, θ is a passive variable, L0 and R are structural design parameters,
and αB is an intermediate variable. When L0 and R are determined, αB depends on θ and
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L. E is a material characteristic parameter, and I is a structural design parameter. In this
paper, the tendency of the stiffness K with the main variables θ and l are observed when
the structural design parameters L0, R, I and the material parameter E are changed. So that
the stiffness adjustment characteristics of the actuator are analyzed, which provides an
important reference for the subsequent structural design and product serialization.

4.2.1. The Thickness h and Width b of the Cantilever Leaf Spring

The leaf spring is a cuboid structure, whose width is b and thickness is h. The moment
of inertia is given by

I =
bh3

12
(34)

Therefore, the thickness h and width b of the cantilever leaf spring define the cross-
sectional moment of inertia I, thus affecting the characteristics of adjusting stiffness. Ac-
cording to Formulas (34) and (15)

FN ∝ bh3 (35)

T ∝ FN , K ∝ T (36)

Therefore K ∝ bh3, namely the thickness h and width b of cantilever leaf spring, only
affect the value of stiffness, but not the changing trend. The larger h and b, the greater
the stiffness K under the corresponding θ and l. Compared with b, h has a more obvious
influence on the changing trend of stiffness.

4.2.2. The Modulus E of the Cantilever Leaf Spring

E affects the stiffness adjustment characteristics by changing the material stiffness EI
of the leaf spring. According to Formula (15),

FN ∝ E (37)

Therefore K ∝ E according to Formula (36).

4.2.3. The Length of the Cantilever Leaf Spring L0

Because changing θ has little influence on K within the safe position space, we only
studied the influence of L0 on K0. If h = 1 mm, b = 8 mm and R = 3.5 mm, the stiffness curves
near the initial state when L0 = 15, 20, 25 and 30 mm are shown in Figure 10. When l is
much smaller than L0, K is kept at a low value. When l is equivalent to L0, K0 increases with
l and the speed increases. Therefore, a smaller L0 is beneficial to ensure the compactness
of the structure, while increasing L0 is beneficial for widening the low stiffness area, thus
improving the accuracy of the adjusting stiffness in this area.
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4.2.4. Roller Radius R

Similar to the length of the cantilever leaf spring, we only studied the influence of
roller radius R on K0. In this section, h = 1 mm, b = 8 mm and L0 = 20 mm. It can be seen
from Figure 11 that curves of changing K0 coincide with each other under different values
of R. Thus, the value of R has no effect on K0. Therefore, the value of R mainly affects the
safe position space of the variable stiffness actuator but has little effect on the whole process
of adjusting stiffness.
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4.3. Influence of Clearance on the Characteristics of Adjusting the Stiffness

In the installation process, there may be a clearance between the roller and the leaf
springs. The widths of two installation clearance areas on both sides of the roller are
expressed as δ1 and δ2, as shown in Figure 12. For the convenience of analysis, we take
clearance δ1 as an example. When the roller is in the position shown in Figure 12b, the
roller is just in contact with the leaf spring. In this case,

β1 + θ1 =
π

2
(38)

δ1 = l sin θ1 (39)

and the critical angle is

θ1 = arcsin
δ1

l
(40)
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Figure 12. Schematic diagram of installation clearances of the variable stiffness actuator. (a) The
initial state. (b) The critical position of the roller contacting with the leaf spring on one side.

The working state of the actuator is analyzed in the following two situations.

1. 0 ≤ θ < θ1;

In this case, if the roller is not in contact with the leaf spring, FN = 0, T = 0 and K = 0.
Therefore, the clearance leads to a zero-stiffness region. If the zero-stiffness region is small,
it acts as a buffer and a safety feature when the actuator is subjected to an instantaneous
impact load. However, if the zero-stiffness region is too large, it will have a great adverse
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impact on the system. Thus, the machining accuracy should be improved as much as
possible to reduce the zero-stiffness region.

2. θ ≥ θ1;

As shown in Figure 13, the roller crosses the critical position and squeezes the can-
tilever leaf spring to deform. Then, Formula (11) is converted to

xB = L0 − l cos θ − R sin αB
yB = l sin θ + R cos αB − (R + δ1)

(41)

Formula (14) is converted into

L0 − l cos θ − R sin αB
l sin θ + R cos αB − (R + δ1)

=
F1(αB)

F2(αB)
(42)

According to the actually measured curve of stiffness, the value of the critical rotation
angle θ1 can be obtained, and then the value of δ1 can be calculated by Formula (39). By
substituting δ1 into Equation (42), the stiffness model can be revised.
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Figure 13. Force diagram of the variable stiffness actuator with clearance (transmission state).

5. Static Simulation and Test
5.1. Finite Element Simulation

To verify the rotational stiffness model, static analysis was carried out using the finite
element analysis method. Finite element analysis can monitor the deformation, stress, force
and moment in the process of loading, some of which are intermediate variables of the
rotational stiffness model and difficult to measure directly by experiments. The simulation
settings are shown in Figure 14. Fixed support is applied at one end of the leaf spring, and
a remote rotating angle relative to point O is applied on the roller. The deformation and
stress of the leaf spring are simulated when θ reaches the ultimate value under different
values of l, in which l and θ are taken according to Table 1.
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Figure 14. Finite element constraint and load. (a) Fixed support. (b) Remote rotating angle.

When the rotating angle reaches the maximum value, the maximum normal stress
and the maximum displacement in the y direction of the leaf spring are obtained, as shown
in Table 2. The deformation and stress state of the leaf spring are shown in Figure 15. In
the process of deformation, the maximum stress of the leaf spring is at a fixed point and
never exceeds [σ]l. The maximum stress σmax, the reaction force FN of the contact point,
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the moment MPmax (MA) of the fixed end and the moment T of the rotating center directly
obtained by simulation are compared with data calculated by the model, as shown in
Figure 16. Results show the rotational stiffness model is highly accurate.

Table 2. Maximum stress σmax and deformation dymax of the leaf spring.

l (mm) 1 3 5 7 9 11 13 15 17 19

σmax (Mpa) 421 1310 1263 1106 1190 1206 1142 1106 971 345
dymax (mm) 0.537 1.547 1.311 1.113 1.057 0.916 0.787 0.496 0.255 0.028
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Figure 15. Stress (MPa) and deformation (mm) of leaf spring under different values of l.
(a,c,e,g,i,k,m,o,q), and (s) are the stress results when l = 1, 3, 5, 7, 9, 11, 13 15, 17, 19 mm respectively.
(b,d,f,h,j,l,n,p,r), and (t) are the deformation results when l = 1, 3, 5, 7, 9, 11, 13 15, 17, 19 mm
respectively.
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Figure 16. Calculation results according to the model and simulation. (a) σmax − θ; (b) FN − θ;
(c) MPmax − θ; (d) T − θ. (#) represents calculation results according to the model, while (*) represents
simulation results.
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5.2. Identification Test of Static Stiffness

In order to verify that the variable stiffness actuator can effectively adjust stiffness in
the joint, a prototype of the variable stiffness joint and a test platform was developed. The
prototype of the joint is shown in Figure 17. The variable stiffness actuator is installed inside
the joint. Two leaf springs are symmetrically installed at the driven end of the joint, and two
rollers are located at the driving end of the joint which can slide in the slot. The driving end
of the joint transmits the force and motion to the driven end through the variable stiffness
actuator. The test platform is shown in Figure 18. In the test platform, one end of the joint
is connected with a position motor and a reducer so that a dynamic test can be carried
out. The other end of the joint is connected with a connecting rod and a counterweight
representing the load of the joint. An angular displacement sensor is installed between
the joint and the connecting rod and is used to measure the flexible rotating angle θ. In
addition, a torque sensor is installed between the joint and the displacement sensor to
measure the torque T.
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Figure 18. Test platform. 1—motor encoder, 2—position motor, 3—reducer, 4—coupling I, 5—variable
stiffness joint, 6—coupling II, 7—torque sensor, 8—angular displacement sensor, 9—counterweight,
10—connecting rod, 11—coupling III.

A static stiffness identification test was conducted to observe the stiffness adjustment
function of the actuator by observing the change of the relative rotating angle between the
driving and driven ends under the static torque. First, the position motor was enabled for
braking, and the rollers in the actuator reached different predetermined positions. Then,
the connecting rod was loaded at different positions by different masses of counterweights.
Finally, we measured the data and calculated the actual value of stiffness using Formula
(33). Inside the joint, the position of the roller is controlled by the rope pulling mechanism
driven by a stiffness-adjusting motor. There is a unique mapping relationship between the
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displacement x of the pulling rope and the distance between the rollers and the rotating
center l, which is

x = x(l) (43)

For convenience, x was used instead of l in the test. When measuring x, the size and
position of the counterweight were adjusted at the same time. Then the value of torque
measured by the torque sensor and the rotating angle measured by the angular sensor
were recorded. The joint was loaded both in forward and reverse, and the angle was
strictly limited according to the safe position space of the actuator, preventing the structural
members such as the leaf springs and the rollers from being damaged. The relationship
between the loading torque, the mass of the counterweight and the length of the force arm
is shown in Table 3.

Table 3. The value of torque loading by counterweight (N·m).

Mass of the Counterweight (kg)

Length of Force Arm (mm)
50 100 150

0.1 0.08 0.15 0.23
0.2 0.15 0.29 0.44
0.3 0.24 0.45 0.68
0.5 0.37 0.74 1.13
1.0 0.75 1.48 2.23
2.0 1.52 2.96 4.46
3.0 2.32 4.54 6.76

During the test, it was necessary to avoid the influence of clearance between the leaf
springs and the rollers and in the couplings. Therefore, we adjusted the connecting rod to
the horizontal state for preloading to eliminate the clearance and recorded the torque T0 at
this time. Then, we reset the angular encoder and installed the counterweight. If the torque
sensor is T, the actual loading torque is

∆T = T − T0 (44)

The test platform before and after static loading is shown in Figure 19a,b. The yellow
line and the red line are the symmetry lines of the connecting rod before and after loading,
∆θ is the angle between them, and O is the rotating center. When the joint was subjected to
a torque of 10 N·m, the variable stiffness actuator was still not damaged. The tested curve
of ∆T−∆θ is shown in Figure 20. It can be seen that the relationship curve between ∆T and
∆θ is approximately a straight line, that is, the stiffness value was basically constant during
the process of small deformation. The curve becomes bent at some positions, caused by
insufficient measurement accuracy of the angular encoder and the instability of the pulse
collector near the zero position.
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According to Formula (33), the curve of K0−x was drawn and smoothed and is
compared with the theoretical curve shown in Figure 21. It can be seen that the stiffness
increases with x, and the increasing speed becomes faster and faster, which is consistent
with the theoretical results. The maximum stiffness exceeds 1000 Nm/rad. In the range of
a small driving displacement when x = 0~5 mm, the stiffness is in good agreement with the
theoretical value. When x increases, the difference between the result of stiffness adjustment
and the theoretical value becomes larger. The main reasons for this phenomenon are:

(1) The long transmission path of the test bed leads to greater flexibility of the system,
which makes the measured value of stiffness smaller than the actual value.

(2) The resolution of the encoder is not enough to identify the minimal angular displace-
ment, so that the encoder cannot truly reflect the angular deformation when the
stiffness is high.

Therefore, in the working process, it is necessary to reduce the mechanical clearance as
much as possible, increase the rigidity of the transmission shaft, and adopt higher-precision
sensors to adjust the stiffness with high-precision.
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6. Conclusions

In this research, a variable stiffness actuator based on a leaf spring was investigated
by designing, modelling, simulation and experiments. The research reveals the following.
(1) With our overall configuration design method, a configuration of double leaf springs
and single roller with a symmetrical arrangement and rotating center at the free end of leaf
springs has the advantages of large bearing capacity, safety and reliability. (2) A rotational
stiffness model with universality and high-accuracy was constructed, which is suitable
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when the actuator deforms within the safe position space. To allow the actuator to operate
safely, the leaf springs should always block the movement of the rollers so that the rollers
do not come out from the free end of the leaf springs, and the leaf springs avoid plastic
deformation. (3) Stiffness increases with the distance between the rollers and the rotating
center, and the growth rate accelerates. The thickness, width and modulus of the springs
affect the magnitude of stiffness. The radius of the rollers affects the safe position space.
The installation clearance leads to a zero-stiffness area, and a small clearance is beneficial
to alleviate the impact. (4) The rotational stiffness model was verified by a finite element
method. Static tests show that the actuator can effectively adjust the stiffness of the joint,
and the range of stiffness was 0~1000Nm/rad. In the low stiffness region, the actual
stiffness had a high coincidence with the theoretical value. If the processing and assembly
of parts are improved and high-precision sensors are used, the stiffness could be controlled
more accurately.
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Appendix A. Detailed Solution of Mechanical Modelling

This appendix explains the derivation process of some formulas in mechanical mod-
elling and the solution method of formulas with integral in detail.

Appendix A.1: Coordinates of point B(xB, yB)

In this part, several mature solving methods for differential equations are applied,
which mainly refer to reference [41–43]. Equation (7) is differentiated twice and is de-
rived into

d2α

ds2 =
−FN cos(αB − α)

EI
(A1)

which is a second-order differential equation with reducible order. Equation (A1) is inte-
grated with two ends and can be rewritten as

∫ d2α

ds2 dα =
∫ −FN cos(αB − α)

EI
dα (A2)

At point B, the boundary conditions are

α|(x, y) = αB
dα
ds |(x, y) = T

EI |(x, y) = 0
(A3)

which are substituted into the differential Equation (A1), then

1
2

(
dα

ds

)2
=

FN sin(αB − α)

EI
(A4)
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Thereby, a first order differential equation is derived, which is expressed as

dα

ds
=

√
2FN sin(αB − α)

EI
=

√
2FN
EI

√
sin(αB − α) (A5)

Then
dx = cos αds = cos αdα√

2FN
EI

√
sin(αB−α)

dy = sin αds = sin αdα√
2FN
EI

√
sin(αB−α)

(A6)

By integrating Equation (A6), the coordinates of P are expressed as

x =
∫

cos αds = 1√
2FN
EI

∫ cos αdα√
sin(αB−α)

y =
∫

sin αds = 1√
2FN
EI

∫ sin αdα√
sin(αB−α)

(A7)

Hence the coordinates of point B are obtained, as shown in Formula (8).

Appendix A.2: F1(αB) and F2(αB)

Formula (13) can be rewritten as

F1(αB) =
∫ αB

0
cos(αB−α)dα√

sin α

F2(αB) =
∫ αB

0
sin(αB−α)dα√

sin α

(A8)

If we set x =
√

sin α, the Formula (A8) can be changed into

F1(αB) = 2 cos αB
√

sin αB + 2 sin αB
∫ √sin αB

0 f (x)dx

F2(αB) = 2 sin αB
√

sin αB − 2 cos αB
∫ √sin αB

0 f (x)dx
(A9)

where f (x) = x2
√

1−x4 . In the integral part
∫ √sin αB

0 f (x)dx of F1(αB) and F2(αB), since
the original function of f (x) is not a basic elementary function, Formula (A9) cannot be
calculated analytically. A numerical solution method was adopted to explicate Formula

(A9). First, the compound trapezoidal formula is used to approximate
∫ √sin αB

0 f (x)dx. The
compound trapezoidal formula is given by

∫ b

a
f (x)dx ≈ b− a

2n

[
f (a) + f (b) + 2

n−1

∑
i=1

f (xi)

]
(A10)

where xi = a+ id, d = (b− a)/n, a = 0, b =
√

sin αB. This, the integral part is rewritten as

∫ √sin αB

0
f (x)dx ≈

√
sin αB
2n

[
tan αB + 2

n−1

∑
i=1

i2 sin αB√
n4 − i4 sin2 αB

]
(A11)

F1(αB) and F2(αB) can be derived into

F1(αB) = 2 cos αB
√

sin αB + 2 sin αB

√
sin αB
2n

[
tan αB + 2

n−1
∑

i=1

i2 sin αB√
n4−i4 sin2 αB

]
F2(αB) = 2 sin αB

√
sin αB − 2 cos αB

√
sin αB
2n

[
tan αB + 2

n−1
∑

i=1

i2 sin αB√
n4−i4 sin2 αB

] (A12)
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Appendix A.3: Length of
_

AB
Through variable substitution, Formula (27) can be rewritten as

_
AB =

√
EI

2FN

∫ √sin αB

0

2x√
1− x4

dx (A13)

If we define g(x) = x√
1−x4 ,

∫ √sin αB
0 g(x)dx can be expressed approximately using the

compound trapezoidal Formula (A10). When a = 0, b =
√

sin αB,

∫ √sin αB

0
g(x)dx ≈

√
sin αB
2n

[√
sin αB

cos αB
+ 2

n−1

∑
i=1

in
√

sin αB√
n4 − i4 sin2 αB

]
(A14)

Therefore,

_
AB ≈

√
EI

2FN

√
sin αB
2n

[√
sin αB

cos αB
+ 2

n−1

∑
i=1

in
√

sin αB√
n4 − i4 sin2 αB

]
≤ L0 (A15)
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