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Abstract: In this paper, considering the simultaneous influence of multi-source disturbances, system
modeling uncertainties and input–output constraints, an adaptive robust attitude tracking control
scheme is proposed for near space vehicles (NSVs) which is expressed as a stochastic nonlinear
system. A multi-dimensional Taylor polynomial network (MTPN) is utilized to handle the system
uncertainties, and the nonlinear disturbance observer (NDO) based on MTPN is designed to estimate
the external disturbances. Furthermore, by constructing the auxiliary system to tackle the input
saturation and introducing the Tan-type barrier Lyapunov function (TBLF) to solve the output
constraint, the constrained control strategy can be obtained. Combining with backstepping control
(BC) technique and stochastic control method, an adaptive robust stochastic control scheme is
developed based on NDO, MTPN, and auxiliary system, and the closed-loop system stability in the
sense of probability is analyzed based on stochastic Lyapunov stability theory. Finally, numerical
simulations further demonstrate the feasibility of the proposed tracking control scheme.

Keywords: near space vehicles; attitude control; adaptive control; multi-source disturbances; input
and output constraints

1. Introduction

Near space generally refers to the airspace between 20 km and 100 km above the
surface. As a new space for military science and technology applications, near space has
very important application and development value and far-reaching strategic significance.
As the focus of international space technology, near space vehicle (NSV) is an aircraft
that can continuously work in near space to perform some predefined tasks. It has the
characteristics of strong survivability, strong mobility, reusability and wide coverage. The
research and development of NSV is not only the embodiment of national comprehensive
strength, but also the guarantee for the rational use of near space resources to ensure
national security [1]. In order to improve the flight performance and the ability to carry out
the given tasks, many advanced control theories and methods have been applied to the
design of flight control systems, and the satisfactory flight control performance has been
achieved, such as sliding mode control [2–4], H∞ control [5], robust adaptive control [6–10]
and so on.

In all the actual control systems, there exist various forms of disturbances, which will
not only affect the control performance of the system, but even cause the instability of
the whole control system. As such, the research on disturbance suppression in control
system design has always been particularly important [11]. In order to solve the distur-
bance suppression problem of the control system with unmeasurable disturbance, many
different types of disturbance observer (DO) with the help of the known information of
the control system were designed [12–16]. The output of DO is used to compensate for
the influence of disturbance on the control system, and the ideal control effect can be
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achieved. Therefore, the control method based on DO can be well applied to study the
anti-disturbance control of aircraft. In [12], a robust control scheme based on the nonlinear
DO and dynamic inverse method was proposed for the missile longitudinal control system.
In [13], the output feedback controller of hypersonic vehicle was designed by combining
the neural network and high gain DO. In [14], a robust flight control scheme based on
DO was proposed to realize the longitudinal dynamic control of hypersonic vehicle with
mismatched disturbance. A novel adaptive neural network control scheme based on the
sliding mode DO was proposed in [15]. In [16], the coupling effect caused by wind was
regarded as an unknown disturbance, and an adaptive neural control strategy based on
DO was designed. However, when the uncertain external disturbance exists in the control
input channel, the control method is relatively conservative, which can only attenuate the
disturbance and cannot effectively offset the influence of the external disturbance. In order
to better handle this problem, a hybrid H2/H∞ robust fuzzy controller based on distur-
bance observer was designed in [17], and combined with disturbance observer technology
to realize longitudinal tracking control of hypersonic vehicle.

With the increasingly high requirements for the control system, it is necessary to take
into account some different types of external disturbances, such as the external environment
noise and the measurement noise of the system, external time-varying disturbance and
so on to improve the robustness of the NSV flight control system. In the field of flight
control, some stochastic control methods have also been studied [7,18–21]. For example, a
stochastic optimal sliding mode control scheme was proposed in [18], which can realize
active control of flexible aircraft. A robust stochastic control scheme based on state observer
was proposed in [19] and applied to the flight control system. In [20], a robust attitude
motion stabilization controller was designed by using a geometric stochastic feedback
control method for rigid body aircraft with random input torque. In [21], a fuzzy adaptive
robust stochastic control scheme was proposed for the multiple input multiple output
stochastic Poisson jump diffusion system with continuous and discontinuous random
fluctuations, and the control strategy was applied to the trajectory tracking control of four
rotor aircraft.

From another perspective, the practical engineering systems need to meet many con-
straint requirements, which also means that the constrained control problems have obtained
a lot of attention and research. In [22], the state constraints problem was studied, and
a finite-time adaptive fuzzy control scheme was developed for hypersonic vehicles. By
constructing an auxiliary system to tackle the input saturation, an adaptive fault-tolerant
control strategy based on the composite DO and neural networks was proposed in [23].
In [24], by introducing the smooth nonlinear function based on Sigmoid function to approx-
imate the input saturation function, a robust constrained control scheme based on fuzzy
logic systems and high-order DO was presented for a class of uncertain nonlinear systems.
In [25], based on DO and neural networks, an adaptive discrete-time fractional-order con-
troller was designed with prescribed performance for UAV with external disturbances and
input constraints. In [26], a robust adaptive boundary control based on neural network
was proposed for flexible manipulator with uncertainties and input saturation. In order to
handle the output constraint problem, on the basis of a barrier Lyapunov function, an adap-
tive neural network control scheme was proposed for the helicopter system with hysteresis
in [27]. However, considering the simultaneous influence of multi-source disturbances,
system modeling uncertainties and input–output constraints, the research on flight control
technology for NSV is relatively less developed. Therefore, the robust anti-disturbance
constrained flight control problem of NSV needs to be further studied.

Motivated by the above analysis, we consider the simultaneous influence of multi-
source disturbances, system modeling uncertainties and input–output constraints acting
on the NSV attitude control system in this paper. The attitude tracking control problem
is studied and an adaptive robust stochastic control scheme is proposed based on MTPN,
disturbance observer and auxiliary system. The main contributions of this manuscript are
as follows:
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(1) Considering the simultaneous influence of multi-source disturbances, system mod-
eling uncertainties and input–output constraints acting on the NSV attitude control
system, and according to stochastic theory, a novel attitude motion dynamic of the
NSVs is modeled as the MIMO stochastic nonlinear system.

(2) To improve the control time-effectiveness, MTPN is utilized to handle the system
uncertainties. The interactive design is realized by incorporating MTPN and DO, and
a nonlinear DO based on MTPN is designed to estimate the external time-varying
disturbances.

(3) By constructing the auxiliary system to tackle the input saturation and introducing
TBLF to solve the output constraint, the constrained control strategy can be obtained.
The adaptive robust stochastic control scheme is developed based on NDO, MTPN,
and auxiliary system, and the closed-loop system stability in the sense of probability
is analyzed based on stochastic Lyapunov stability theory.

The rest of this paper is organized according to the following framework. Sections 2 and 3
present the preliminaries and problem formulation, respectively. The robust constrained
controller design and stability analysis are given in Section 4. Section 5 provides the
simulation results. Finally, the conclusions are given in Section 6.

2. Preliminaries

Consider the following Itô type stochastic differential equation (SDE) [28]:

dx = f (x)dt + g(x)dw, x(0) = x0 ∈ Rn, (1)

where x ∈ Rn is the system state vector, and w denotes the appropriate dimensional standard
wiener process defined in complete probability space. The nonlinear functions f (x) : Rn → Rn

and g(x) : Rn → Rn×m are Borel measurable functions and satisfy the local Lipschitz
condition with respect to x.

Definition 1 ([28]). For any given twice continuously differentiable function V ∈ C2(Rn, R), the
infinite differential operator along with SDE (1) is defined as the following form:

LV =
∂V
∂x

f (x) +
1
2

tr{gT(x)
∂2V
∂x2 g(x)} (2)

where tr{·} denotes the trace of a matrix.

Lemma 1 ([7]). Consider the stochastic nonlinear system (1), if there exists a positive definite,
radially unbounded, twice continuously differentiable Lyapunov function V : Rn → R+ and
constants a0 > 0, b0 ≥ 0 such that

LV(x) ≤ −a0V(x) + b0 (3)

then (i) the system has a unique solution almost surely, and (ii) the system is bounded in probability.

Because of the strong approximation ability, neural networks are often used to deal
with system uncertainties, and many adaptive neural network control schemes were devel-
oped. Meanwhile, as a network structure, a multi-dimensional Taylor polynomial network
(MTPN) is composed with multivariable polynomials [29,30]. It has the characteristics
of simple structure, strong learning ability and adaptability, which is advantageous to
improve the control time-effectiveness. The typical expression is as follows:

f̂ (z) =WT Pm(z) (4)
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where z = [z1, . . . , zn̄]T ∈ Rn̄ is the network input of MTPN, andW = [w1, . . . , wl ]
T ∈ Rl

is the weight vector of the MTPN. Pm(z) denotes the basis vector function, and the element

of Pm(z) is expressed as
n̄
∏

i,j=1
zni

i z
nj
j , where ni ≥ 0, nj ≥ 0 satisfying 0 ≤ ni + nj ≤ m.

Lemma 2 ([29]). Suppose that f (z) is a continuous function defined in the compact set Θ ∈ Rn.
For any given positive constant ε̄ > 0, there exists an MTPNWT Pm(z) such that

f (z) =WT Pm(z) + ε(z), |ε(z)| ≤ ε̄ (5)

where ε(z) is the approximation error vector.

Lemma 3 ([31]). (Young Inequality) For any x̄, ȳ ∈ R and positive constant [ > 0, there exist
constants ` > 1 and ℘ > 1 with (`− 1)(℘− 1) = 1, such that the following inequality holds:

x̄ȳ ≤ ℘`

`
|x̄|` + 1

[℘[℘
|ȳ|℘ (6)

3. Problem Formulation

In [7], considering the stochastic noise disturbances acting on the control input channel,
and the attitude model of the NSV system is described in the following form:

dΩ = (F1(Ω) + G1(Ω)ω + ∆F1)dt

dω = (F2(Ω, ω) + G2(Ω, ω)sat(u) + ∆F2)dt + G2(Ω, ω)GδΣdw

y = Ω

(7)

where Ω = [α, β, µ]T and ω = [p, q, r]T are the attitude angle and angular rate, respectively.
F1 and F2 are known nonlinear system functions. G1 and G2 are known control gain
matrices. ∆F1 = [∆ f11, ∆ f12, ∆ f13]

T and ∆F2 = [∆ f21, ∆ f22, ∆ f23]
T denote the unknown

nonlinear smoothly functions which are system uncertainties caused by the modeling error;
sat(u) = [sat(u1), sat(u2), sat(u3)]

T is the saturation control input with sat(·) being defined
as follows:

sat(ui) =

{
ūiMsign(ui), |ui| ≥ ūiM

ui, |ui| < ūiM
(8)

where ūiM is the known bound of the saturation control input. In view of the limited
space, the detailed definitions of variables, aerodynamic parameters and relevant system
functions can be found in [7,32].

In this paper, further consider the influence of multi-source disturbances and input–
output constraints acting on the NSV attitude control system in the actual flight process,
and denoting x1 = Ω, x2 = ω, x̄2 = [ΩT , ωT ]T , H = G2Gδ. The NSV attitude dynamics
model can be further rewritten under the formula:

dx1 = (F1(x1) + G1(x1)x2 + ∆F1(x1) + d1(t))dt

dx2 = (F2(x̄2) + G2(x̄2)sat(u) + ∆F2(x̄2) + d2(t))dt + HΣdw

y = x1

(9)

where d1(t) denotes the external time-varying disturbance, and d2(t) denotes the external
disturbance with partial known information.

To facilitate the attitude tracking controller design of the system (9), the following
assumptions need to be given:

Assumption 1. The external time-varying disturbance d1 is piecewise smooth and bounded; that
is, there exist positive constants ď1 > 0 and d̄1 > 0, such that ‖d1‖ ≤ ď1 and ‖ḋ1‖ ≤ d̄1.
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Assumption 2. Considering that the partial information of the external disturbance d2 = [d21, d22, d23]
T

is known, it always is assumed that the external disturbance d2i (i = 1, 2, 3) is generated by the
following exosystem: {

v̇i =Mivi +Ni ξ̄i,

d2i = Livi
(10)

where the intermediate variable vi is the system vector of the exosystem, ξ̄i denotes a Gaussian
white noise vector,Mi,Ni and Li are known constant matrices.

Remark 1. In practical engineering systems, a large number of external disturbances have inherent
characteristics such as harmonic and unknown constant load, and can be regarded as being generated
by a neutral and stable external interference model (10). According to the different cases of the
system state matrices, different types of external disturbances can be obtained and listed as follows.

(1) WhenMi = 0,Li = 1,Ni = 0 , d2i is an unknown constant disturbance.

(2) WhenMi =

[
0 2.5
−2.5 0

]
, Ni =

[
0 0
0 0

]
, Li = [0, 3] , d2i is an harmonic disturbance

with known frequencies as shown in Figure 1a.

(3) WhenMi =

[
0 2.5
−2.5 0

]
, Ni =

[
2 0
0 2

]
, Li = [2, 0] , d2i is a external disturbance

with random excitation term as shown in Figure 1b.

0 2 4 6 8 10

-6

-4

-2

0

2

4

6

times (s)

(a)

0 2 4 6 8 10

-6

-4

-2

0

2

4

6

(b)

Figure 1. The external disturbances generated by an exosystem: (a) harmonic disturbance with
known frequencies; (b) external disturbance with random excitation.

Assumption 3. According to controllability and safety of the actual flight, the intensity of white
noises σi, i = 1, 2, 3 are considered to be finite. Furthermore, the matrix Σ is norm bounded, and
there exists a positive constant σ̄ > 0 such that ‖Σ‖2 ≤ σ̄.

Assumption 4. For the NSV attitude nonlinear system (9) with multiple disturbances, G1 and G2 are
invertible and norm bounded, i.e., ‖Gj‖ ≤ g∗j , j = 1, 2, where g∗j > 0 are unknown positive constants.

Assumption 5. The output constraint signal kd(t) and the expected reference signal yr are second-
order derivable, and their respective derivatives are bounded.
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According to Assumption 2, and combining with stochastic system theory by taking
dw̄i
dt instead of ξ̄i, where w̄i denotes a standard wiener process. Therefore, the NSV attitude

nonlinear system (9) can be rewritten to the following MIMO stochastic nonlinear system:
dx1 = (F1 + G1x2 + ∆F1 + d1)dt

dx2 = (F2 + G2sat(u) + ∆F2 + d2)dt + HΣdw

y = x1

(11)

{
dv =Mvdt +N dw̄,

d2 = Lv
(12)

where v = [vT
1 , vT

2 , vT
3 ]

T is the state vector of the exosystem; w̄ = [w̄T
1 , w̄T

2 , w̄T
3 ]

T ,
M = diag{M1,M2,M3}, N = diag{N1,N2,N3}, L = diag{L1,L2,L3}.

In this paper, our main goal is to design an adaptive robust constrained tracking control
strategy for the NSV system models (11) and (12) based on NDO, auxiliary system and
TBLF. The proposed scheme can guarantee that the system output y can track the desired
reference signal yr, and meets the constraint requirements of tracking error. Moreover, all
the signals of the closed-loop system are semi-globally uniform and ultimately bounded in
the probability sense. The adaptive robust control structural diagram is shown in Figure 2.

Figure 2. Robust adaptive control structure diagram.

4. Adaptive Robust Stochastic Controller Design Based on NDO and TBLF
4.1. Adaptive Constrained Controller Design

In this section, an adaptive robust stochastic control scheme based on NDO, MTPN
and auxiliary system is proposed for the NSV attitude control system (11) and (12).

Due to the input saturation nonlinearity in the control system, there is a gap between
the system actual control input of the NSV and the saturation control input sat(u), ∆(u) =
[∆1(u1), ∆2(u2), ∆3(u3)]

T , and sat(u) = u − ∆(u). To handle the input saturation and
compensate for the saturation phenomenon, the following auxiliary system is constructed.{

ζ̇1 = −C1ζ1 + G1ζ2

ζ̇2 = −C2ζ2 + G2∆(u)
(13)

where ζ1 and ζ2 denote the system states. C1 > 0 and C2 > 0 are positive definite matrices.
In order to adopt the BC method, the new error variables are defined as follows:

e1 = x1 − yr − ζ1, e2 = x2 − h̄− ζ2 (14)

where h̄ = [h̄1, h̄2, h̄3]
T , h̄j (j = 1, 2, 3) are the output of the first-order filter to be designed.
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Step 1: According to the NSV attitude nonlinear system (11) and the transformed
error variables (14), the error dynamic can be expressed in the following form:

de1 = (F1 + G1x2 + ∆F1 + d1 − ẏr − ζ̇1)dt (15)

Based on Lemma 2, by using MTPN to approximate the unknown nonlinear functions
(1/ι1j)∆ f1j, (j = 1, 2, 3) with ι1j > 0. Thus, one has

∆F1 = A1 + ε1 (16)

where A1 = [ι11W∗T11 P11, ι12W∗T12 P12, ι13W∗T13 P13]
T , ε1 = [ι11ε11, ι12ε12, ι13ε13]

T , W∗1i is the
optimal weight vector of the MTPN, P1i is the basis function vector of the MTPN, and
ε1i denotes the minimum approximation error.

Substituting (16) into (15), we have

de1 = (F1 + G1x2 +A1 + D1 − ẏr − ζ̇1)dt (17)

where D1 = ε1 + d1 is the compound disturbance.

Remark 2. Considering that ∆F1 is an unknown nonlinear smooth function, according to (16), it is
obvious that ε1 is also smooth. Furthermore, we assumed that there exist positive constants ε̄1 > 0
and ¯̄ε1 > 0 such that ‖ε1‖ ≤ ε̄1 and ‖ε̇1‖ ≤ ¯̄ε1. Additionally, on the basis of Assumption 1, the
compound distubance D1 and Ḋ1 are norm bounded, i.e., ‖D1‖ ≤ D1, ‖Ḋ1‖ ≤ D̄1, where D1 >
0 and D̄1 > 0 are unknown positive constants.

To design an NDO to estimate the compound disturbance D1, we define the following
auxiliary variable:

ϑ1 = D1 − S1x1 (18)

where S1 is the gain matrix of the NDO.
On the basis of (11), the auxiliary variable ϑ1 can be expressed as follows:

dϑ1 = dD1 − S1dx1

= dD1 − S1(F1 + G1x2 +A1 + ϑ1 + S1x1)dt (19)

Define D̂1 and ϑ̂1 to be the estimates of D1 and ϑ1, respectively. Based on (18), one has

D̂1 = ϑ̂1 + S1x1 (20)

Furthermore, the NDO is constructed in the following form:{
D̂1 = ϑ̂1 + S1x1

dϑ̂1 = −S1(ϑ̂1 + S1x1 + F1 + G1x2 + Â1)dt
(21)

where Â1 = [ι11ŴT
11P11, ι12ŴT

12P12, ι13ŴT
13P13]

T , and Ŵ1i is the estimate of W∗1i.
Denoting the estimation error ϑ̃1 = ϑ1 − ϑ̂1, we have

dϑ̃1 = dϑ1 − dϑ̂1

= dD1 − S1(F1 + G1x2 +A1)dt− S1(ϑ1 + S1x1)dt

+ S1(ϑ̂1 + S1x1 + F1 + G1x2 + Â1)dt

= −S1ϑ̃1dt + S1Ã1dt + Ḋ1dt (22)
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Consider the following TBLF:

V1 =
k4

b
2π

tan(E1) +
1
2

tr(W̃T
1 Γ−1

1 W̃1) +
1
2

ϑ̃T
1 ϑ̃1 +

1
2

ζT
1 ζ1 (23)

where kb is a preset time-varying function that depends on the limited system output.

E1 =
π(eT

1 e1)
2

2k4
b

, and W̃1 = Ŵ1 −W∗1 denotes the estimation error of the optimal weight.

Remark 3. According to the flight physical characteristics of the NSV , the tracking error vector
of attitude angle needs to meet certain constraint requirements, i.e., ‖e1(t)‖ < kb(t). In this
section, in order to research the attitude control problem under output constraints, a Tan-type Lya-

punov function
k4

b
2π

tan(E1) is introduced, which satisfies the condition ‖e1(0)‖ < kb(0). When
the output constraint requirements are not considered, kb → ∞. Furthermore, one has

lim
kb→∞

k4
b

2π
tan(E1) =

1
4
(eT

1 e1)
2, (24)

This shows that it is consistent with the analysis without output constraints.

Based on Definition 1, we have

LV1 =
1

cos2(E1)
[eT

1 e1eT
1 (F1 + G1x2 +A1 + D1 − ẏr − ζ̇1)−

k̇b
kb
(eT

1 e1)
2]

+
2k3

b k̇b

π
tan(E1) + tr(W̃T

1 Γ−1
1

˙̂W1) + ϑ̃T
1

˙̂ϑ1 + ζT
1 (−C1ζ1 + G1ζ2) (25)

Substituting (21) and (22) into (25), one has

LV1 = C1(F1 + G1x2 +A1 + D1 − ẏr − ζ̇1 −
k̇b
kb

e1) +
2k3

b k̇b

π
tan(E1)

+ tr(W̃T
1 Γ−1

1
˙̂W1)− ϑ̃T

1 S1ϑ̃1 + ϑ̃T
1 S1Ã1 + ϑ̃T

1 Ḋ1 − ζT
1 C1ζ1 + ζT

1 G1ζ2 (26)

where C1 = eT
1 e1eT

1 /cos2(E1).

Define k̄1 = sup
√
( k̇b

kb
)2 + υ, where υ > 0 is a sufficiently small constant, and thus the

following inequalities hold:

2k3
b k̇b

π
tan(E1) ≤ 4k̄1

k4
b

2π
tan(E1) (27)

− k̇b
kb

(eT
1 e1)

2

cos2(E1)
≤ k̄1C1e1 (28)

Combining with (27) and (28), we have

LV1 ≤ C1(F1 + G1x2 +A1 + D1 − ẏr − ζ̇1) + k̄1C1e1 + 4k̄1
k4

b
2π

tan(E1)

+ tr(W̃T
1 Γ−1

1
˙̂W1)− ϑ̃T

1 S1ϑ̃1 + ϑ̃T
1 S1Ã1 + ϑ̃T

1 Ḋ1 − ζT
1 C1ζ1 + ζT

1 G1ζ2

≤ −K1
k4

b
2π

tan(E1) + C1(F1 + G1x2 +A1 + D1 − ẏr − ζ̇1)

+ C1Λ1 + tr(W̃T
1 Γ−1

1
˙̂W1)− ϑ̃T

1 S1ϑ̃1 + ϑ̃T
1 S1Ã1 + ϑ̃T

1 Ḋ1 − ζT
1 C1ζ1 + ζT

1 G1ζ2 (29)

where Λ1 = (4k̄1 +K1)
k4

b
2π

e1
‖e1‖4 sin(E1) cos(E1) + k̄1e1.
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Remark 4. In light of the basic limit theory, lim
x→0

sin x
x

= 1. Obviously, we have lim
e1→0

sin(E1)

‖e1‖4

= π
2k4

b
, and

lim
e1j→0

e1j

‖e1‖4 sin(E1) cos(E1) = 0, j = 1, 2, 3, (30)

This means that the singularity problem will not occur in the small neighborhood of e1j = 0.

Next, the virtual control law α1 and adaptive updating law ˙̂W1 are designed as follows:

α1 = −G−1
1 (Λ1 + (

η11

2
+

η12

2
‖G1‖2)CT

1 + F1 + Â1 − ẏr + C1ζ1 + D̂1) (31)

˙̂W1 = Γ1(P1C1I1 − λ1Ŵ1), (32)

where I1 = diag{ι11, ι12, ι13}, η11 > 0, η12 > 0 and λ1 are the design positive constants.
In order to avoid the influence of repeated derivation for the virtual control law α1,

by introducing dynamic surface control technique, α1 passes through the first-order filter,
which is designed as follows:

F ˙̄h + h̄ = α1, h̄(0) = α1(0), (33)

where F = diag{ς1, ς2, ς3} > 0 with ς1, ς2 and ς3 being the design positive parameters.
Defining χ = h̄− α1, one has ˙̄h = −F−1χ. Based on (33), we have

χ̇ = −F−1χ + B(e1, yr, ẏr, ÿr, Ŵ1, D̂1, kb) (34)

where B(e1, yr, ẏr, ÿr, Ŵ1, D̂1, kb) = − ∂α1
∂e1

ė1− ∂α1
∂yr

ẏr− ∂α1
∂Ŵ1

˙̂W1− ∂α1
∂ẏr

ÿr− ∂α1
∂D̂1

˙̂D1− ∂α1
∂kb

k̇b, and

B(·) are continuous function vectors satisfying ‖B(·)‖ ≤ B̄.
Furthermore, substituting (31) and (32) into (29), one has

LV1 ≤ −K1
k4

b
2π

tan(E1)− ϑ̃T
1 S1ϑ̃1 −

η11‖C1‖2

2
− η12

2
‖G1‖2‖C1‖2 + C1G1χ

+ C1G1e2 + C1D̃1 − λ1tr(W̃T
1 Ŵ1) + ϑ̃T

1 S1Ã1 + ϑ̃T
1 Ḋ1 − ζT

1 C1ζ1 + ζT
1 G1ζ2 (35)

According to Lemma 3, it is easy to know that the following inequalities hold:

C1D̃1 = C1ϑ̃1 ≤
η11

2
‖C1‖2 +

1
2η11
‖ϑ̃1‖2 (36)

C1G1χ ≤ η12

2
‖G1‖2‖C1‖2 +

1
2η12
‖χ‖2 (37)

C1G1e2 ≤
3η

3
4
13

4
+

1
4η4

13
‖G1‖4‖C1‖4‖e2‖4 (38)

tr(W̃T
1 Ŵ1) =

‖W̃1‖2

2
+
‖Ŵ1‖2

2
−
‖W∗1 ‖2

2
≥ ‖W̃1‖2

2
−
‖W∗1 ‖2

2
(39)

ϑ̃T
1 S1Ã1 = ϑ̃T

1 S1I1W̃T
1 P1 ≤

η14

2
‖ϑ̃1‖2 +

‖S1‖2‖P1‖2‖I1‖2

2η14
‖W̃1‖2 (40)

ϑ̃T
1 Ḋ1 ≤

η15

2
‖ϑ̃1‖2 +

1
2η15

d̄2
1 (41)

ζT
1 G1ζ2 ≤

η16g∗1
2

ζT
1 ζ1 +

g∗1
2η16

ζT
2 ζ2 (42)

where η13 > 0, η14 > 0, η15 > 0 and η16 > 0 are the design positive constants.
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So substituting (36)–(42) into (35), we have

LV1 ≤ −K1
k4

b
2π

tan(E1)− (λmin(S1)−
1

2η11
− η14

2
− η15

2
)ϑ̃T

1 ϑ̃1

− (
λ1

2
− ‖S1‖2‖P1‖2‖I1‖2

2η14
)‖w̃‖2 − ζT

1 C1ζ1 +
1

4η4
13
‖G‖4

1‖C1‖4‖e2‖4

+
1

2η12
‖χ‖2 +

λ1‖W∗1 ‖2

2
+

3η
3
4
13

4
+

1
2η15

d̄2
1 +

η16g∗1
2

ζT
1 ζ1 +

g∗1
2η16

ζT
2 ζ2 (43)

Step 2: According to (14) and Itô formula, the dynamic of error variable e2 can be
expressed as:

de2 = (F2 + G2u + ∆F2 + d2 − ˙̄h + C2ζ2)dt + HΣdw (44)

Based on Lemma 2, by utilizing MTPN to approximate the unknown nonlinear func-
tions (1/ι2j)∆ f2j, (j = 1, 2, 3), ι2j > 0, we have

∆F2 = A2 + ε2 (45)

where A2 = [ι21W∗T21 P21, ι22W∗T22 P22, ι23W∗T23 P23]
T , ε2 = [ι21ε21, ι22ε22, ι23ε23]

T , andW∗2i are
the optimal weight vectors. P2i are the basis functions of the MTPN; ε2i are the minimum
approximation errors, and ‖ε2‖ ≤ ε̄2 with ε̄2 being positive constant.

Substituting (45) into (44), one has

de2 = (F2 + G2u +A2 + ε2 + d2 − ˙̄h + C2ζ2)dt + HΣdw (46)

To design an NDO to estimate the external disturbance d2, define the following
auxiliary variable:

ϑ2 = v− S2e2 (47)

where S2 is the design gain matrix of the NDO.
Based on (12) and (46), the dynamic of ϑ2 can be expressed as:

dϑ2 = dv− S2de2

= (Mvdt +N dw̄)− S2[(F2 + G2u +A2 + ε2 − ˙̄h

+ C2ζ2]dt− S2HΣdw− S2L(ϑ2 + S2e2)dt

=Mvdt− S2(F2 + G2u +A2 + ε2 − ˙̄h + C2ζ2)dt

− S2L(ϑ2 + S2e2)dt +N dw̄− S2HΣdw (48)

Define d̂2 and ϑ̂2 to be the estimates of d2 and ϑ2, respectively. According to (47), we
have

d̂2 = L(ϑ̂2 + S2e2) (49)

Next, the NDO is designed in the following form:
d̂2 = Lv̂

v̂ = ϑ̂2 + S2e2

dϑ̂2 = (M− S2L)(ϑ̂2 + S2e2)dt− S2(F2 + G2u− ˙̄h + C2ζ2 + Â2)dt

(50)
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Denoting the estimation error ϑ̃2 = ϑ2 − ϑ̂2, one has

dϑ̃2 = dϑ2 − dϑ̂2

=Mvdt− S2(F2 + G2u +A2 + ε2 − ˙̄h + C2ζ2)dt− (M− S2L)(ϑ̂2 + S2e2)dt

+ S2(F2 + G2u + C2ζ2 − ˙̄h + Â2)dt− S2L(ϑ2 + S2e2)dt +N dw̄− S2HΣdw

= −(S2L−M)ϑ̃2dt + S2(Ã2 − ε2)dt +Hdw̌ (51)

whereH = diag{N ,−S2HΣ}, w̌ = [w̄T , wT ]T .
To carry out the stability analysis of the closed-loop system, the following TBLF

is selected:

V = V1 + V2 + V3 (52)

where

V2 = VT + VD +
1
2

tr(W̃T
2 Γ−1

2 W̃2) +
1

2ι2
˜̄ε2
2 +

1
2τ̄

˜̄σ2 +
1
2

φ2

VT =
k4

b
2π

tan(E2), E2 =
π(eT

2 e2)
2

2k4
b

, VD =
1
2

ϑ̃T
2 ϑ̃2

V3 =
1
2

χTχ +
1
2

ζT
2 ζ2

where W̃1 = Ŵ1 − W∗1 denotes the estimation error of the optimal weight matrix;
˜̄ε2 = ε̄2 − ˆ̄ε2 and ˜̄σ = σ̄ − ˆ̄σ are the adaptive estimation errors; τ̄ > 0 is the design
constant parameter.

On the basis of Definition 1, we have

LV = LV1 + C2(F2 + G2u +A2 + ε2 + d2 − ˙̄h + C2ζ2 −
k̇b
kb

e2) +
2k3

b k̇b

π
tan(E2)

+
1
2

tr{ΣHTΥHΣ}+ ϑ̃T
2 [−(S2L−M)ϑ̃2 + S2Ã2 − S2ε2] +

1
2

tr{HTH}

+ tr{W̃T
2 Γ−1

2
˙̂W2} −

1
ι2

˜̄ε2
˙̄̂ε2 −

1
τ̄

˜̄σ ˙̄̂σ + φφ̇ + χT(−F−1χ + B(·))

− ζT
2 C2ζ2 + ζT

2 G2∆(u) (53)

where C2 = eT
2 e2eT

2 /cos2(E2), Υ = 8π2

k8
b

sin(E2)
cos3(E2)

(eT
2 e2)

2e2eT
2 + 1

cos2(E2)
(2e2eT

2 + eT
2 e2 I).

Similar to (27) and (28), it is easy to obtain the following inequalities:

2k3
b k̇b

π
tan(E2) ≤ 4k̄1

k4
b

2π
tan(E2) (54)

− k̇b
kb
C2e2 ≤ k̄1C2e2 (55)

In the light of the definition of the Frobenius norm and norm compatibility, and
combining with Lemma 3, one has

ϑ̃T
2 S2Ã2 ≤

η21ϑ̃T
2 ϑ̃2

2
+
‖S2‖2‖Ã2‖2

2η21
(56)

ϑ̃T
2 S2ε2 ≤

η21ϑ̃T
2 ϑ̃2

2
+
‖S2‖2‖ε2‖2

2η21
(57)
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tr{ΣGT
δ GT

2 ΥHΣ} ≤ ‖HΣ‖2‖Υ‖
≤ ‖H‖2‖Ῡ‖‖e2‖2σ̄

≤ ‖H‖2‖Ῡ‖σ̄ς +
‖H‖2‖Ῡ‖‖e2‖4σ̄√
‖e2‖4 + ς2

≤ ‖H‖4‖Ῡ‖2ς2

2
+

σ̄2

2
+

‖H‖2‖Ῡ‖‖e2‖4σ̄

cos2(E2)
√
‖e2‖4 + ς2

(58)

tr{HTH} ≤ 2‖N‖2 + 2‖S2G2Gδ‖2σ̄

≤ 2‖N‖2 + η22‖S2G2Gδ‖4 +
σ̄2

η22
(59)

χT B(·) ≤ η23

2
‖χ‖2 +

B̄2

2η23
(60)

ζT
2 G2∆(u) ≤ η24g∗2

2
ζT

2 ζ2 +
g∗2 ∆̄2

2η24
(61)

where Ῡ =
8π2

k8
b

sin(E2)

cos3(E2)
(eT

2 e2)e2eT
2 +

3
cos2(E2)

I, η21 > 0, η22 > 0, η23 > 0, η24 > 0 and

ς > 0 are the design constant parameters. ∆̄ > 0 denotes the bound of ∆(u).
To facilitate the subsequent controller design, define

Ψ =
‖H‖4‖Ῡ‖2ς2

2
+ 2‖N‖2 + η22‖S2G2Gδ‖4 (62)

Substituting (54)–(61) into (53), one has

LV ≤ LV1 −K2
k4

b
2π

tan(E2)−
1

4η4
13
‖G1‖4‖C1‖4‖e2‖4 − ‖C2‖2‖L‖2

2
− C2e2

2 cos2(E2)

+ C2(F2 + G2u +A2 + ε2 + d2 − ˙̄h + C2ζ2) + C2Λ2 − ϑ̃T
2 (S2L−M)ϑ̃2 + Ψ

+
‖H‖2‖Ῡ‖‖e2‖4σ̄

cos2(E2)
√
‖e2‖4 + ς2

+ η21ϑ̃T
2 ϑ̃2 +

‖S2‖2‖Ã2‖2

2η21
+
‖S2‖2‖ε2‖2

2η21

+
σ̄2

2
+

σ̄2

η22
+ tr{W̃T

2 Γ−1
2

˙̂W2} −
1
ι2

˜̄ε2
˙̄̂ε2 −

1
τ̄

˜̄σ ˙̄̂σ + φφ̇− ζT
2 C2ζ2

− χTF−1χ +
η23

2
‖χ‖2 +

B̄2

2η23
+

η24g∗2
2

ζT
2 ζ2 +

g∗2 ∆̄2

2η24
(63)

where

Λ2 = (4k̄1 +K2)
k4

b
2π

sin(E2) cos(E2)e2

‖e2‖4 +
CT

2 ‖L‖2

2η21
+

e2

2 cos2(E2)

+
‖G1‖4‖C1‖4 cos2(E2)e2

4η4
13

+ k̄1e2.

Proceed to the next step, the adaptive robust stochastic controller, adaptive updating
law and auxiliary system are constructed as follows:

u = −G−1
2 [Λ2 + F2 + Â2 − ˙̄h + C2ζ2 + ˆ̄ε2Tanh(

e2

b2
)

+
‖H‖2‖Ῡ‖e2 ˆ̄σ√
‖e2‖4 + ς2

+
e2Ψ cos2(E2)

φ2 + (eT
2 e2)2

]− d̂2 (64)

˙̂W2 = Γ2(P2C2I2 − λ2Ŵ2), (65)

˙̄̂ε2 = ι2(
eT

2 e2

cos2(E2)

3

∑
i=1

e2i tanh(
e2i

b2i
)− ˆ̄ε2) (66)
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˙̄̂σ = τ̄(
‖H‖2‖Ῡ‖‖e2‖4

cos2(E2)
√
‖e2‖4 + ς2

− λσ ˆ̄σ) (67)

φ̇ =


− φΨ

φ2 + (eT
2 e2)2

− κφφ, ‖e2‖ ≥ ι

0, ‖e2‖ < ι

(68)

where κφ > 0 is the design positive constant.

4.2. Stability Analysis of the Closed-Loop System

In this section, in order to analyze the stability of the whole closed-loop system, the
above design process of adaptive robust stochastic controller based on the NDO, auxiliary
system and TBLF is summarized as the following theorem.

Theorem 1. For the attitude nonlinear system of the NSV with multi-source disturbances, input
and output constraints and system uncertainties (11) and (12), satisfying Assumptions 1–5, the
NDO based on MTPN (21) and (50), the virtual controller (31), the adaptive robust stochastic
controller based on the NDO and auxiliary system (64), the adaptive updating laws (32), (65)–(67),
and the compensation system (68) are proposed, the following conclusion is established:

(1) The tracking errors meet the output constraint requirements in the sense of probability.
(2) All the closed-loop system signals are semi-globally uniform and ultimately bounded in the

sense of probability. In particular, by selecting appropriate design parameters, the tracking
error signals can converge to a small neighborhood ℵ in the sense of fourth-order moments,
and ℵ is defined in the following form:

ℵ = {e1j(t)|E[e4
1j] ≤

8Ξ
ρ

, ∀t > T0, j = 1, 2, 3} (69)

where T0 = max{0,
1
ρ

ln(
ρV(0)

Ξ
)}.

Proof. (1) When ‖e2‖ ≥ ι, selecting the Lyapunov candidate function as (52), according to
(63), and combining with the proposed controller (64), the adaptive laws (65)–(67) and the
compensation system (68), we have

LV ≤ LV1 −K2
k4

b
2π

tan(E2)−
1

4η4
13
‖G1‖4‖C1‖4‖e2‖4 − ‖C2‖2‖L‖2

2η21
− C2e2

2 cos2(E2)

− C2Ã2 + C2Lϑ̃2 − ϑ̃T
2 (S2L−M)ϑ̃2 + Ψ− ‖e2‖4Ψ

φ2 + (eT
2 e2)2

+ η21ϑ̃T
2 ϑ̃2

+
‖S2‖2‖Ã2‖2

2η21
+ tr{W̃T

2 Γ−1
2

˙̂W2}+ ε̄2
eT

2 e2

cos2(E2)
‖e2‖ − ε̄2

eT
2 e2

cos2(E2)

3

∑
i=1

e2i tanh(
e2i

b2i
)

+ ˜̄ε2 ˆ̄ε2 + λσ ˜̄σ ˆ̄σ + φφ̇− ζT
2 C2ζ2 +

‖S2‖2‖ε2‖2

2η21
+

σ̄2

2
+

σ̄2

η22
− χTF−1χ +

η23

2
‖χ‖2

+
B̄2

2η23
+

η24g∗2
2

ζT
2 ζ2 +

g∗2 ∆̄2

2η24

≤ LV1 −K2
k4

b
2π

tan(E2)− ϑ̃T
2 (S2L−M−

3η21

2
I)ϑ̃2 −

1
4η4

13
‖G1‖4‖C1‖4‖e2‖4

− C2e2

2 cos2(E2)
+
‖S2‖2‖Ã2‖2

2η21
+
‖S2‖2‖ε2‖2

2η21
+

σ̄2

2
+

σ̄2

η22
− λ2tr{W̃T

2 Ŵ2}

+ ε̄2$2
eT

2 e2

cos2(E2)
+ ˜̄ε2 ˆ̄ε2 + λσ ˜̄σ ˆ̄σ +

φ2Ψ
φ2 + (eT

2 e2)2
+ φφ̇− χTF−1χ +

η23

2
‖χ‖2
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+
B̄2

2η23
+

η24g∗2
2

ζT
2 ζ2 +

g∗2 ∆̄2

2η24

≤ LV1 −K2
k4

b
2π

tan(E2)− ϑ̃T
2 (S2L−M−

3η21

2
I)ϑ̃2 −

1
4η4

13
‖G1‖4‖C1‖4‖e2‖4

+
‖S2‖2‖Ã2‖2

2η21
+
‖S2‖2‖ε2‖2

2η21
+

σ̄2

2
+

σ̄2

η22
− λ2tr{W̃T

2 Ŵ2}+
ε̄2

2$2
2

2
+ ˜̄ε2 ˆ̄ε2

+ λσ ˜̄σ ˆ̄σ +
φ2Ψ

φ2 + (eT
2 e2)2

+ φφ̇− χTF−1χ− ζT
2 C2ζ2 +

η23‖χ‖2

2

+
B̄2

2η23
+

η24g∗2
2

ζT
2 ζ2 +

g∗2 ∆̄2

2η24
(70)

where $2 = ε̄2ς
3
∑

i=1
b2i.

Based on (68) and Young inequality, one has

φ2Ψ
φ2 + (eT

2 e2)2
+ φφ̇ = −κφφ2 (71)

tr(W̃T
2 Ŵ2) =

‖W̃2‖2

2
+
‖Ŵ2‖2

2
− ‖W

∗
2 ‖2

2
≥ ‖W̃2‖2

2
− ‖W

∗
2 ‖2

2
(72)

˜̄ε2 ˆ̄ε2 =
1
2
(ε̄2

2 − ˜̄ε2
2 − ˆ̄ε2

2) ≤
1
2
(ε̄2

2 − ˜̄ε2
2) (73)

˜̄σ ˆ̄σ =
1
2
(σ̄2 − ˜̄σ2 − ˆ̄σ2) ≤ 1

2
(σ̄2 − ˜̄σ2) (74)

Combining with (43), and substituting (71)–(74) into (70), thus one has

LV ≤ −
2

∑
i=1
Ki

k4
b

2π
tan(Ei)−

2

∑
i=1

κiϑ̃
T
i ϑ̃i −

2

∑
i=1

λ̄i‖W̃i‖2 − ‖χ‖2 −
˜̄ε2
2

2
−

λσ ˜̄σ2
2

2

− κφφ2 −
2

∑
i=1

iζ
T
i ζi +

2

∑
i=1

λi‖W∗i ‖2

2
+

3η
3
4
13

4
+

1
2η15

d̄2
1 +
‖S2‖2 ε̄2

2
2

+
σ̄2

2

+
σ̄2

η2
+

ε̄2
2

2
+

λσσ̄2
2

2
+

ε̄2
2$2

2
2

+
B̄2

2η22
+

g∗2 ∆̄2

2η24

≤ −ρV + Ξ (75)

where, ρ = min{4Ki, 2κi,
λ̄i

λmax(Γ−1
i )

, 2, ι2, λστ̄, 2κφ}, κ1 = λmin(S1) − 1
2η11
− η14

2 −
η15
2 >

0, κ2 = λmin(S2L−M)− 3η21
2 > 0, λ̄1 = λ1

2 −
‖S1‖2‖P1‖2‖I1‖2

2η14
> 0, λ̄2 = λ2

2 −
‖S2‖2‖P2‖2‖I2‖2

2η23

> 0,  = λmin(F−1)− 1
2η12
− η22

2 > 0, 1 = λmin(C1)−
η16g∗1

2 > 0, 2 = λmin(C2)−
g∗1

2η16
−

η24g∗2
2 > 0, Ξ =

2
∑

i=1

λi‖W∗i ‖
2

2 +
3η

3
4

13
4 +

d̄2
1

2η15
+
‖S2‖2 ε̄2

2
2 + σ̄2

2 + σ̄2

η2
+

ε̄2
2
2 +

λσ σ̄2
2

2 +
ε̄2

2$2
2

2 + B̄2

2η22
+

g∗2 ∆̄2

2η24
.

(2) When ‖e2‖ < ι, based on (68), so that φ̇ = 0. Meanwhile, (71) can be rewritten as

φ2Ψ
φ2 + (eT

2 e2)2
+ φφ̇ = −κφφ2 + Λ (76)

where Λ = κφφ2 + φ2Ψ
φ2+(eT

2 e2)2 . Due to ‖e2‖ < ι, and φ is selected as a non-zero constant, it is

easy to know that there exists a positive constant ν̄ > 0 such that Λ ≤ ν̄.
Thus, (75) can be rewritten as

LV ≤ −ρV + Ξ̄ (77)
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where Ξ̄ = Ξ + ν̄.
In order to analyze the probability boundedness of error signals, Ξ and Ξ̄ are uniformly

expressed by Ξ∗. Furthermore, combining with (75) and (77), one has

dE[V]

dt
≤ −ρE[V] + Ξ∗ (78)

Then, it can be obtained that

E[V] ≤ (V(0)− Ξ∗

ρ
)e−ρt +

Ξ∗

ρ

≤ e−ρtV(0) +
Ξ∗

ρ
(79)

Therefore, this means that the mean value of V is convergent and satisfies the output
constraint requirement in the sense of probability.

Futhermore, owing to

e4
1j ≤ (eT

1 e1)
2 ≤

2k4
b

π
tan(

π(eT
1 e1)

2

2k4
b

) ≤ 4V (80)

So then, we have

E[e4
1j] ≤ 4E[V] ≤ 8Ξ∗

ρ
, ∀t > T0 (81)

where T0 = max{0,
1
ρ

ln(
ρV(0)

Ξ∗
)}.

Therefore, it is obvious that the tracking error signals converge to a small neighborhood
ℵ of zero in the sense of the fourth moment.

5. Simulation Results

In this section, considering the influence of multi-source disturbances, input–output
constraints and system uncertainties, numerical simulation analysis is carried out for the
attitude nonlinear system of the NSV to illustrate the feasibility and effectiveness of the
adaptive robust stochastic control scheme based on the NDO, auxiliary system and TBLF.
The physical structure parameters of the NSV are shown in Table 1.

Table 1. The physical structure parameters of NSV (partly).

Meaning Value Unit

vehicle length 60.69 m/s
vehicle mass 136,820 kg

reference area 334.73 m2

mean aerodynamic chord 24.384 m
wing string length 18.288 m

sweep angle 75.97 deg
rudder chord length 6.9494 m

In the simulation process, it is assumed that there exists system uncertainty of ±(20%)
for the aerodynamic force and aerodynamic moment coefficients of the NSV attitude system
model. Consider the control surface deflection angle δe, δa and δr as the actual control inputs,
which are affected by stochastic noises σiξ1i(i = 1, 2, 3), denoting stochastic input moment
disturbance d̄(t) = GδΣξ1, where Σ = diag{σ1, σ2, σ3}, and ξ1 = [ξ11, ξ12, ξ13]

T with ξ1i
being the standard Gaussian white noise. As described in [7], the moment disturbance d̄(t)
acting on the fast-loop subsystem in the form of torque.
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In addition, the external time-varying disturbance d1(t) = 0.02 · [sin(2t)e−0.1t, sin(t)e−0.1t,
sin(2t)e−0.1t]T is added to the slow-loop subsystem, and another kind of external distur-
bance d2(t) = [d21(t), d22(t), d23(t)]T with partial known information is added to the
fast-loop subsystem, where d2j(t) is generated by the following exosystem:{

v̇j =Mjvj +Njξ j,

d2j(t) = Ljvj
(82)

Meanwhile, setting σ1 = σ2 = σ3 = 0.05, the system matrices of (82) are chosen as:

M1 = M2 = M3 =

[
0 3
−3 0

]
, N1 = N2 = N3 =

[
1 0
0 1

]
, L1 =

[
0 2

]
,L2 =[

3 0
]
,L3 =

[
1 1

]
.

The initial values of relevant parameters of the NSV are shown in Table 2, and the corre-
sponding sampling period is chosen as 0.002 s. According to the physical characteristics of the
NSV, the saturation value of control input moment is set to ūM = [2000, 20,000, 20,000]T kN·m.
The constraint function of the output tracking error is chosen as kb(t) = 3e−t + 0.5, and the
desired reference attitude angle signals are selected as

Ωr =


αr =

{
[2.5 sin(0.25πt− 0.5π) + 1.5] deg, 0 ≤ t ≤ 4

4 deg, t > 4

βr = 0.5 sin(0.3πt) deg,

µr = [−2 sin(t) + 0.5 cos(0.5t))] deg

(83)

Table 2. Simulation initial parameters.

Variable Intial Value Unit

velocity V0 = 3000 m/s
height H0 = 22,000 m

pitch angle α0 = 0.5 deg
yaw angle β0 = 0.5 deg
roll angle µ0 = 0 deg

angular rate p0 = q0 = r0 = 0 deg/s

In order to compensate for the influence of input saturation, an auxiliary system
is designed as (13), and the matrix parameters are C1 = diag{20, 20, 20} and C2 =
diag{50, 50, 50}. Meanwhile, the NDOs are designed as (21) and (50) to estimate the
external disturbances d1(t) and d2(t). The gain matrices of the NDO are chosen as follows:

S1 =

 10 0 0
0 10 0
0 0 10

, S2 =

 −1.5 1.5 0 0 0 0
0 0 1.5 1 0 0
0 0 0 0 −2 4

T

,

In addition, the relevant parameters of controller and adaptive updating laws are
selected as shown in Table 3.

For the stochastic nonlinear system (11) of the NSV attitude system, it is necessary to
use six MTPNs to approximate the uncertainties, and the structural form of MTPN is in
accordance with (4). For the intermediate layer of MTPN, the sum of the highest powers of
the product terms can be selected as 3; that is, the number of nodes is l1j = l2j = 19, j =
1, 2, 3.
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Table 3. Relevant simulation parameters of the controller and adaptive laws.

Parameter Variable Value Parameter Variable Value

k̄1 2 τ̄ 1

K1 diag{1.5, 1.5, 1.5} ζ 1

K2 diag{2, 2, 2} ι 0.01

ι1 = ι2 0.1 κφ 2

η11 = η12 = η13 1 F diag{0.1, 0.1, 0.1}
η21 = η22 0.1 Γ1 = Γ2 I19

λ1 = λ2 = λσ 0.1 b 2

By selecting appropriate control parameters, the NSV attitude motion simulation
results are shown in Figures 3–7. Figures 3 and 4 describe the estimation performance
response and disturbances estimation errors of the designed NDO. It can be seen that the
designed NDO can estimate external disturbances, and the estimation errors converge to a
sufficiently small neighborhood of zero. In Figure 5, we can see the tracking effect of the
NSV attitude angle, and the system output signals can quickly track the desired reference
attitude angle signals. The attitude tracking performance and output constraint conditions
of the NSV are shown in Figure 6. It can be seen that the tracking error signals can quickly
converge to a small neighborhood and meet the preset output constraint requirements.
Figure 7 shows the saturated control input. Therefore, through the analysis of the above
simulation results, it is obvious that the proposed adaptive robust stochastic control scheme
based on the NDO, MTPN and TBLF in this paper can effectively ensure that NSV has
satisfactory flight control performance.
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Figure 3. Slow-loop disturbance estimation response curve of the NDO: (a) d1 and d̂1 (rad/s); (b) the
estimation error d̃1 (rad/s).
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Figure 4. Fast-loop disturbance estimation response curve of the NDO: (a) d2 and d̂2 (rad/s2); (b) the
estimation error d̃2 (rad/s2).
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Figure 5. Tracking response curves of attitude angles: (a) pitch angle α; (b) yaw angle β; (c) roll
angle µ.
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Figure 6. Constrained tracking error response curves of attitude angles.
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Figure 7. Control input moment response curve.

6. Conclusions

In order to obtain high precision flight control performance, it is also necessary to fully
consider the influence of different types of external disturbances to improve the robustness
of the NSV flight control system. Meanwhile, the input and output constraint requirements
must be considered in the safe flight control of NSVs. In this paper, the attitude tracking
control problem of the NSV with multi-source disturbances, input and output constraints
and system uncertainties is considered, and an adaptive robust stochastic control scheme
is proposed based on the NDO, MTPN and TBLF. By means of the stochastic Lyapunov
stability theory, the probability boundedness of the closed-loop system signals are proved.
In future research, it will be necessary to consider multiple time-varying switching dis-
turbances (such as wind disturbances, hypersonic magnetic fluid interference, etc.). By
integrating the stochastic Markov jump system theory and the processing technology for
output constraint, the advanced flight control scheme needs to be developed to ensure the
reliable flight of the NSV.
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