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Abstract: A translational oscillator with a rotational actuator (TORA) is an underactuated nonlinear
mechanical system with two degrees of freedom (DOF). This paper concerns the robust stabilization
control problem for the system with multiple external disturbances. First, a disturbance observer
is constructed based on the internal nonlinear dynamic behavior of the system. Second, a robust
stabilization controller is designed by the estimated disturbances and the fixed-time sliding mode
control method. The controller realizes the global robust stabilization control objective of the TORA
system, and the stability of both disturbance observer and robust closed-loop control system are
analyzed using the Lyapunov theorem. Finally, the effectiveness of the theoretical results are verified
by numerical experiments.

Keywords: underactuated TORA systems; disturbance observer; fixed-time sliding mode; robust
stabilization control

0. Introduction

Underactuated systems are a class of mechanical systems with fewer control inputs
than the system’s degrees of freedom (DOF). These kinds of systems are widespread
in everyday life. In order to study the motion control of underactuated systems, many
underactuated models were established by scholars [1]. Among them, a translational
oscillator with a rotational actuator (TORA) is a typical example. This model comes from a
practical application problem. It describes the resonance-trapping phenomenon when a
dual-spin spacecraft encounters resonance conditions during the spin process [2–5].

The TORA system has strong nonlinearity and has a nonholonomic constraint, and
this system cannot be strictly feedback linearized. As a result, it is difficult to design the
motion controller for the system. To solve the motion control problem for this system,
researchers have developed many control methods in the past few years [6–11]. In [12], a
recursive idea was used to construct the Lyapunov function, and a backstepping control
law was designed. In [13], a passivity-based control law was developed by the cascade
characteristics of the system from the energy point of view. In [14], a sliding mode surface
was constructed, and a control law was designed to stabilize the system along the surface.
On this basis, an adaptive sliding mode control method was presented in [15]. Moreover, a
fuzzy Lyapunov synthesis method was used in [16] to design a feedback controller.

Although the abovementioned control methods are effective to stabilize the TORA,
the design of the controller requires both the measurement information of velocity and
the position of the system. In order to save costs, some attempts have been made in the
controller design by using the position measurements only. For example, an equivalent
input disturbance control method was developed in [17]. In addition, scholars also studied
the stabilization control of the TORA when the saturation of control torque was concerned,
and an anti-saturation feedback control law design method was presented [18,19] .
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Although the presented method was very rigorous, the controller design was based on
the nominal model of the TORA and did not consider the existence of external disturbance
factors. As we all know, external disturbances are inevitable in the actual operating
environment of a control system. So, it is necessary to study the robust stabilization
control problem for the TORA system. In [20], a self-correction method was presented to
infinitely approach the uncertainty disturbance in the system and a robust H∞ controller
was designed. In [21], a disturbance-observer-based methodology was utilized for the
TORA system with unknown disturbances, and a sliding control law was presented to
ensure the robust stabilization of the system. However, the disturbances considered were
matched disturbance. That is, the considered disturbances exist in the control input channel.
This design method is invalid when there are mismatched disturbances in the system.

At present, the design of a disturbance observer for a nonlinear system with unknown
and/or unmeasured disturbances is a hotly discussed issue in the nonlinear control area.
Some disturbance observer design methods were presented [22,23]. On the basis of previ-
ous research results, this paper further studies the global robust stabilization of the TORA
system with multiple external disturbances including both matched and mismatched dis-
turbances. The main research content of this paper has three parts. Firstly, we design a
disturbance observer based on the internal nonlinear dynamics of the system. The multiple
external disturbances can be quickly estimated by this observer. Secondly, a coordinate
transformation is used to change the TORA to be a simple nonlinear system, and we design
a robust stabilization controller for the new system by using the estimated disturbances and
the fixed-time sliding mode control method. The controller ensures the global robust stabi-
lization of the TORA to be achieved. Thirdly, the effectiveness of the proposed theoretical
results are demonstrated via numerical experiments. This paper studies the robust control
problem for the TORA system in a more practical operating environment. The developed
controller has better practicability and adaptability. The research of this paper enriches the
control theory system of an underactuated TORA system. It can be extended to the global
robust stabilization of other underactuated mechanical systems.

1. Dynamic Motion Equations of TORA

As shown in Figure 1, the physical model of the TORA system consists of a cart and a
small ball. The cart moves horizontally, and the ball oscillates in a two-dimensional vertical
plane. One end of the cart is connected to a fixed vertical plane through a spring. There
is an input force driving the ball to rotate. Due to the coupling relationship between the
car and the ball, the motion of the ball can drive the car to move. It is clear that the TORA
has two DOFs and has only one input torque. So, it is a typical 2-DOF underactuated
mechanical system.

In Figure 1, M is the mass of the cart, m is the mass of the oscillating ball, k is the elastic
coefficient of the spring, r is the radius of rotation, J is the torque, x(t) is the displacement
of the cart, θ(t) is the angle that the ball, and τ(t) is the driving force exerted on the ball.
By a simple calculation, we respectively obtain the kinetic energy and potential energy of
the TORA system as

T =
1
2

m[(ẋ + rθ̇cosθ)2 + (rθ̇sinθ)2] +
1
2

Jθ̇2, P =
1
2

kx2.

We choose the Lagrangian function of the system to be L = T − P . By using the
Euler–Lagrange modeling method [17], it is easy to obtain the following dynamic motion
equations of the TORA system[

M + m mr cos θ
mr cos θ mr2 + J

][
ẍ
θ̈

]
+

[
−mrθ̇2 sin θ + kx

0

]
=

[
d∗1

τ + d∗2

]
, (1)

where d∗1 and d∗2 are unknown external disturbances. For the nominal model of (1), it is easy

to verify that the origin point
[
x, ẋ, θ, θ̇

]T
= [0, 0, 0, 0]T is an open-loop equilibrium point of

the system. The commonly discussed issue by researchers is to stabilize the TORA at the
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equilibrium point. The main work of this paper is to eliminate the influence of external
disturbances and to realize the robust stabilization control of the system at this point. We
will describe how to use a disturbance observer and sliding mode control technology to
design a robust controller τ below.

k

r

J

 ( (t)

 (t)

θ(t)

M

m

x

Figure 1. Physical model of the TORA system.

2. Design of a Disturbance Observer

In this section, a disturbance observer is constructed for (1) to estimate the unknown
disturbances d∗1 and d∗2 . Here, it assumes that d∗1 and d∗2 are third-order differentiable and∥∥∥∥∥∥

[
d3d∗1
dt3

d3d∗2
dt3

]T
∥∥∥∥∥∥ ≤ ζ,

where ζ is a positive constant.
We change the system (1) into the following form[

ẍ
θ̈

]
= D−1(θ)

{[
0
τ

]
−
[
−mrθ̇2 sin θ + kx

0

]}
+

[
d1
d2

]
, (2)

where

D(θ) =

[
M + m mr cos θ

mr cos θ mr2 + J

]
,
[

d1
d2

]
= D−1(θ)

[
d∗1
d∗2

]
. (3)

Based on the expression of (2), a disturbance observer is designed to be[
ḣ11
ḣ21

]
= −A

(
−D−1(θ)

[
−mrθ̇2 sin θ + kx

−τ

]
+

[
d̂10
d̂20

])
+

[
d̂11
d̂21

]
,[

d̂10
d̂20

]
=

[
h11
h21

]
+ A

[
ẋ
θ̇

]
,

(4)

[
ḣ12
ḣ22

]
= −B

(
−D−1(θ)

[
−mrθ̇2 sin θ + kx

−τ

]
+

[
d̂10
d̂20

])
+

[
d̂12
d̂22

]
,[

d̂11
d̂21

]
=

[
h12
h22

]
+ B

[
ẋ
θ̇

]
,

(5)

[
ḣ13
ḣ23

]
= −C

(
−D−1(θ)

[
−mrθ̇2 sin θ + kx

−τ

]
+

[
d̂10
d̂20

])
,[

d̂12
d̂22

]
=

[
h13
h23

]
+ C

[
ẋ
θ̇

]
,

(6)
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where

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
, C =

[
c11 c12
c21 c22

]
,

aij, bij, and cij are constants (i, j =1, 2). In (4), (5), (6) we set d̂i0, d̂i1, d̂i2 to be the estimated
value of the disturbance di, ḋi, and d̈i, respectively (i = 1, 2). We define the estimated error
vector to be

η =
[

d̃10 d̃20 d̃11 d̃21 d̃12 d̃22
]T ,

d̃i0 = di − d̂i0, d̃i1 = ḋi − d̂i1, d̃i2 = d̈i − d̂i2, i = 1, 2.
(7)

Combining (2), (4), (5), and (6) yields[
˙̂d10
˙̂d20

]
= A

[
d̃10
d̃20

]
+

[
d̂11
d̂21

]
, (8)

[
˙̂d11
˙̂d21

]
= B

[
d̃10
d̃20

]
+

[
d̂12
d̂22

]
, (9)

[
˙̂d12
˙̂d22

]
= C

[
d̃10
d̃20

]
. (10)

From (7), (8), (9), it is not difficult to obtain the error equation as

η̇ = H1η + Eξ,

H1 =

 −A I2 0
−B 0 I2
−C 0 0

, E =

 0
0
I2

, ξ =
[ ...

d 1
...
d 2
]T .

(11)

Theorem 1. If the gain matrices A, B, and C in (11) satisfy that H1 is a Hurwitz matrix, then the
estimated disturbance error η is bounded.

Proof. Since H1 is a Hurwitz matrix, the matrix equation PT H1 + HT
1 P = −Q has only

a positive-definite solution P for any positive-definite matrix Q. Choosing a Lyapunov
function of (11) to be Vη = ηT Pη, we have

λmin(P)‖η‖2
2 = λmin(P)ηTη ≤ Vη ≤ λmax(P)ηTη = λmax(P)‖η‖2

2 .

It
Vη

λmin(P)
≥ ‖η‖2

2 ≥
Vη

λmax(P)
. (12)

It follows from (11) that

V̇η = η̇T Pη + ηT Pη̇ = −ηTQη + 2ηT Pξ ≤ −λmin(Q)‖η‖2
2 + 2λmax(P)‖η‖2ζ . (13)

Substituting (12) into (13) yields

V̇η ≤ −
λmin(Q)

λmax(P)
Vη +

2ζλmax(P)√
λmin(P)

√
Vη . (14)

Let µ = λmin(Q)
λmax(P)Vη , υ = 2ζλmax(P)√

λmin(P)
. From (14), we have

˙√Vη ≤ −
µ

2

√
Vη +

υ

2
.
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Solving the equation gives√
Vη ≤

√
Vη0e

∫ t
t0

µ
2 dτ

+
∫ t

t0

e
∫ s

t0
(− µ

2 )dτ υ

2
ds ≤

(√
Vη0 −

υ

µ

)
e−

µ
2 (t−t0) +

υ

µ
. (15)

From (15), the following inequality holds when t→ ∞

√
Vη ≤

υ

µ
. (16)

Since Vη ≥ λmin(P)‖η‖2
2 , we obtain ‖η‖2 ≤ υ

µ
√

λmin(P)
. The proof is completed.

3. Design of Robust Stabilization Controller

For the system (1), we construct a coordinate transformation to be

z1 = x + mr sin θ
M+m ,

z2 = (M + m)ẋ + mrθ̇ cos θ,

z3 = θ,

z4 = θ̇.

(17)

The inverse transformation of (17) is

x = z1 − mr sin z3
M+m ,

ẋ = 1
(M+m)

(z2 −mrz4 cos z3),

θ = z3,

θ̇ = z4.

(18)

It is clear that
[
x, ẋ, θ, θ̇

]T
= [0, 0, 0, 0]T and [z1, z2, z3, z4]

T = [0, 0, 0, 0]T are equivalent.
From (1), we have 

ż1 = 1
M+m z2,

ż2 = Ψ(z1, z3) + δ∗1 ,

ż3 = z4,

ż4 = γ(z1, z2, z3, z4) + f (z3)τ + δ∗2 ,

(19)

where

Ψ(z1, z3) = −kz1 +
kmr

M + m
sin z3 − αz3, δ∗1 = d∗1 + αz3,

γ(z1, z2, z3, z4) =
−m2r2z2

4 sin z3 cos z3 + kmr[z1 − (M + m)−1mr sin z3] cos z3

β(θ)
,

f (z3) =
(M + m)

β(θ)
> 0, δ∗2 =

(M + m)d∗2 −mr cos θd∗1
β(θ)

, β(θ) = det D(θ).

It can be deduced from (3) that

δ∗1 =(M + m)d1 + mr cos z3d2 + αz3 ,

δ∗2 =d2,

δ̇∗1 =(M + m)ḋ1 + mr cos z3ḋ2 + αz4 −mrz4 sin z3d2 ,

δ̈∗1 =(M + m)d̈1 + mr cos z3d̈2 + αż4 − 2mrz4 sin z3ḋ2

−mrż4 sin z3d2 −mrz2
4 cos z3d2 .

(20)
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For the system (19), the main task in this section is to design a controller that guarantees
the robust stabilization of the system at the origin. From (20), we choose

δ̂∗1 =(M + m)d̂10 + mr cos z3d̂20 + αz3 ,

δ̂∗2 =d̂20,

δ̂∗11 =(M + m)d̂11 + mr cos z3d̂21 + αz4 −mrz4 sin z3d̂20 ,

δ̂∗12 =(M + m)d̂12 + mr cos z3d̂22 − 2mrz4 sin z3d̂21

+ αż4 − (mrż4 sin z3 + mrz2
4 cos z3)d̂20 .

(21)

to be the estimated value of δ∗1 , δ∗2 , δ̇∗1 , and δ̈∗1 , respectively, and we further obtain

˙̂δ∗1 =(M + m) ˙̂d10 + mr cos z3
˙̂d20 + αz4 −mrz4 sin z3d̂20 ,

˙̂δ∗11 =(M + m) ˙̂d11 + mr cos z3
˙̂d21 + αż4 −mrz4 sin z3d̂21 −mrz4 sin z3

˙̂d20

− (mrż4 sin z3 + mrz2
4 cos z3)d̂20 .

(22)

Define the following variables

χ1 = z1,

χ2 = z2,

χ3 = Ψ(z1, z3) + δ̂∗1 ,

χ4 = dΨ
dt + δ̂∗11.

(23)

It follows from (19) and (23) that

χ̇1 = χ2
M+m ,

χ̇2 = Ψ(z1, z3) + δ∗1 ,

χ̇3 = dΨ
dt + ˙̂δ∗1 ,

χ̇4 = d2Ψ
dt2 + ˙̂δ∗11,

(24)

where
dΨ
dt

=
∂Ψ
∂z1
· z2

M + m
+

∂Ψ
∂z3
· z4

= − kz2

M + m
+

[
kmr

M + m
cos z3 − α

]
z4 ,

d2Ψ
dt2 = − k

M + m
[Ψ(z1, z3) + δ∗1 ]−

kmr
M + m

sin z3 · z2
4

+

[
kmr

M + m
cos z3 − α

]
· [γ(z) + f (z3)τ + δ∗2 ]

= − kΨ(z1, z3)

M + m
− kmr

M + m
sin z3 · z2

4 +

[
kmr

M + m
cos z3 − α

]
γ(z)− k

M + m
δ∗1

+

[
kmr

M + m
cos z3 − α

]
δ∗2 +

[
kmr

M + m
cos z3 − α

]
f (z3)τ .
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We design a sliding mode surface for (24) to be S = ω1χ1 + ω2χ2 + ω3χ3 + χ4, where
ωi > 0 (i = 1, 2, 3) are constants. Differentiating S along (19) yields

Ṡ = ω1χ̇1 + ω2χ̇2 + ω3χ̇3 + χ̇4

= ω1 ·
z2

M + m
+ ω2 ·Ψ + ω3

∂Ψ
∂z1
· z2

M + m
+ ω3

∂Ψ
∂z3

z4

− kΨ(z1, z3)

M + m
− kmr

M + m
sin z3 · z2

4 +

[
kmr

M + m
cos z3 − α

]
γ(z)− k

M + m
δ∗1

+

[
kmr

M + m
cos z3 − α

]
δ∗2 +

[
kmr

M + m
cos z3 − α

]
f (z3)τ

+ ω2δ∗1 + ω3
˙̂δ∗1 + ˙̂δ∗11 .

(25)

Based on (25), the equivalent control law is designed to be

τeq =−
[(

kmr
M + m

cos z3 − α

)
f (z3)

]−1
[

ω1 ·
z2

M + m
+ ω2 ·Ψ + ω3

∂Ψ
∂z1
· z2

M + m
+ ω3

∂Ψ
∂z3

z4

− kΨ(z1, z3)

M + m
− kmr

M + m
sin z3 · z2

4 +

(
kmr

M + m
cos z3 − α

)
γ(z)−

(
k

M + m
−ω2

)
δ̂∗1

+

(
kmr

M + m
cos z3 − α

)
δ̂∗2 + ω3δ̂∗11 + δ̂∗12

]
.

(26)

From (20), (21), (22) we can obtain

δ∗1 − δ̂∗1 = (M + m)d̃10 + mr cos z3d̃20,

˙̂δ∗1 − δ̂∗11 = (M + m)
(

˙̂d1 − d̂11

)
+ mr cos z3

(
˙̂d2 − d̂21

)
=

[
a11(M + m) + a21mr cos z3

]
d̃10 +

[
a12(M + m) + a22mr cos z3

]
d̃20,

˙̂δ∗11 − δ̂∗12 = (M + m)
(

˙̂d11 − d̂12

)
+ mr cos z3

(
˙̂d21 − d̂22

)
−mrz4 sin z3

(
˙̂d2 − d̂21

)
=

[
(M + m)b11 + mr cos z3b21 − a21mrz4 sin z3

]
d̃10

+

[
(M + m)b12 + mr cos z3b22 − a22mrz4 sin z3

]
d̃20,

δ∗2 − δ̂∗2 = d̃20 .

(27)
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Substituting (26) into (25) yields

Ṡ =

{[
− k

M + m
+ ω2

]
(M + m) + ω3[a11(M + m) + a21mr cos z3]+

[
(M + m)b11 + b21mr cos z3 − a21mrz4 sin z3

]}
d̃10

+

{[
− k

M + m
+ ω2

]
mr cos z3 + ω3[a12(M + m) + a22mr cos z3]+

(M + m)b12 + b22mr cos z3 − a22mrz4 sin z3 +

(
kmr

M + m
cos z3 − α

) }
d̃20

=Y1d̃10 + Y2d̃20 ,

(28)

where

Y1 = −k + (M + m)[ω2 + ω3a11 + b11] + [a21ω3 + b21]mr cos z3 − a21mrz4 sin z3 ,

Y2 = −α + (M + m)[a12ω3 + b12] + [ω2 + a22ω3 + b22]mr cos z3 − a22mrz4 sin z3.

From (26) and (28), we design the controller τ for (24) as

τ = τeq + τ1, (29)

where

τ1 =−
[(

kmr
M + m

cos z3 − α

)
f (z3)

]−1[
−|Y1|d̄10 − |Y2|d̄20 − ρ sgn(S)− ϕS2 sgn(S)

]
, (30)

where
∣∣d̃10

∣∣ ≤ d̄10,
∣∣d̃20

∣∣ ≤ d̄20, ϕ, and ρ are positive constants. A Lyapunov function for
(24) is selected to be V = 1

2 S2. It follows from (25), (28)–(30)that

V̇ =SṠ = S
[
Y1d̃10 + Y2d̃20 − |Y1|d̄10 − |Y2|d̄20 − ρ sgn(S)− ϕS2 sgn(S)

]
≤S
[
−ρ sgn(S)− ϕS2 sgn(S)

]
= −ρ|S| − ϕS2|S|

=− ρ|S| − ϕ|S|3 = −ρ
√

2V
1
2 − ϕ

√
23V

3
2 ≤ 0.

(31)

According to Lemma 3 in [24], S converges to 0 in a fixed time when (31) is satisfied,
and the settling time t f satisfies that

t f ≤
1

ϕ
√

23( 3
2 − 1)

+
1

ρ
√

2(1− 1
2 )

=
1

ϕ
√

2
+

√
2

ρ
.

From the above statements, we know that the system (24) can reach the sliding surface
S = 0 by the control input τ in (29). When S = 0, it follows from (24) that

χ̇ = H2χ + ∆,
χ =

[
χ1 χ2 χ3

]T , ∆ =
[

0 δ∗1 − δ∗1 δ̇∗1 − δ∗11
]T ,

H2 =

 0 1
M+m 0

0 0 1
−ω1 −ω2 −ω3

, χ4 = −ω1χ1 −ω2χ2 −ω1χ3.

(32)
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Note that δ∗1 − δ̂∗1 and ˙̂δ∗1 − δ̂∗11 are bounded from (27). It is assumed that the matrix
H2 in(32) is a Hurwitz matrix for appropriate parameters ω1, ω2, and ω3. Following the
same proof of Theorem 1 gives that χ1, χ2, χ3, and χ4 are ultimately uniformly bounded
around a small ball of the origin. As a result, the robust stabilization control of (19) at the
origin is achieved.

4. Numerical Examples

In this section, two numerical examples are presented to verify the effectiveness of our
developed control strategy.

The parameters of the TORA system were selected to be [17]:

M = 1 kg, m = 0.4 kg, r = 0.025 kg ·m2, k = 15 N/m. (33)

The initial state of the TORA system was chosen to be[
x, ẋ, θ, θ̇

]T
= [ 0.5, 0.6, 0.6, 0.5]T. (34)

Moreover, the gain matrices in (4), (5), and (6) were selected as

A =

[
a11 a12
a21 a22

]
= 10I2, B =

[
b11 b12
b21 b22

]
= 90I2, C =

[
c11 c12
c21 c22

]
= 295I2. (35)

It is easy to verify that the matrix H1 in (11) is a Hurwitz matrix with eigenval-
ues ν1,2,3,4 = −2.73± 7.59j, ν5,6 = −4.52. The parameters in the controllers (26) and (30)
were designed to be

ω1 = 2, ω2 = 1000, ω3 = 200, σ = 100, ρ = 100 . (36)

Suppose the diaturbances are

d∗1 = 0.1 sin t− 10θ, d∗2 = 0.1 sin t + 0.05 + 0.1θ̇. (37)

Figure 2 shows the simulation results of the disturbance di and its estimated value
d̂i0(i = 1, 2). Note that the disturbance observer (4)–(6) has good estimation accuracy for
the disturbances. Under the operation of the robust controller (29), the time responses of
the TORA system are shown in Figure 3. It is clear that the controller (29) can overcome
the influence of disturbances, and the TORA system achieves robust stabilizing control
objective at the origin position better. These show the effectiveness of our developed
theoretical analysis results.

In order to further verify the advantage of our developed method, we carried out
a comparative simulation experiment. The same initial value and the disturbance of the
system were chosen as in Ref. [21]

[
x, ẋ, θ, θ̇

]T
= [ − 0.5, 0, 0.5, 0]T, d∗2 =

10 sin t
10 + 0.5t2 . (38)

The simulation results under the above conditions are shown in Figure 4. It is clear
that our method can still achieve the robust stabilization of the TORA. The settling time is
less than 4 s. In contrast, the settling time in [21] is about 25 s. This shows the advantage
of the presented method in this paper. In addition, the method presented in [21] is only
applicable to the system with matched disturbances. In comparison, our presented method
is applicable to the system with both matched and/or mismatched disturbances. Thus, our
method has a wider application range than that in Ref. [21].
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Figure 2. Actual value and observed values of the disturbances d1 and d2 in (37).
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Figure 3. Time responses of the TORA system by the robust controller (29) with (34) and (37).
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Figure 4. Time responses of the TORA system by the robust controller (29) with (38).

5. Conclusions

This paper discussed the robust stabilization control of an underactuated TORA system
with multiple external disturbances. First, a nonlinear disturbance observer was constructed
to quickly estimate the external disturbances. Then, the coordinate transformation and
fixed-time sliding mode control method were used to design a robust controller, and the
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simulation results demonstrated the validity of our presented theoretical analysis results.
In the future, we will further study other design methods for robust stabilzation controllers
for the TORA system on the basis of research results in this paper.
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