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Abstract: An optimal mission assignment and path planning method of multiple unmanned aerial
vehicles (UAVs) for disaster rescue is proposed. In this application, the UAVs include the drug delivery
UAV, image collection UAV, and communication relay UAV. When implementing the modeling and
simulation, first, three threat sources are built: the weather threat source, transmission tower threat
source, and upland threat source. Second, a cost-revenue function is constructed. The flight distance,
oil consumption, function descriptions of UAV, and threat source factors above are considered. The
analytic hierarchy process (AHP) method is utilized to estimate the weights of cost-revenue function.
Third, an adaptive genetic algorithm (AGA) is designed to solve the mission allocation task. A fitness
function which considers the current and maximum iteration numbers is proposed to improve the
AGA convergence performance. Finally, an optimal path plan between the neighboring mission
points is computed by an improved artificial bee colony (IABC) method. A balanced searching
strategy is developed to modify the IABC computational effect. Extensive simulation experiments
have shown the effectiveness of our method.

Keywords: multiple UAVs; mission assignment; path planning; genetic algorithm; artificial bee colony;
disaster rescue

1. Introduction

Different from traditional disaster rescue applications [1] which utilize 3D terrain
reconstruction or ground target recognition, the multiple unmanned aerial vehicles (UAVs)-
based disaster rescue plan [2] utilizes the UAVs with distinct functions to realize people
searching, complete injury identification, and provide medical assistance in the disaster
zones [3]. In our past research works, a multi-UAV system is developed; this system
includes [4] the drug delivery UAV, image collection UAV, and communication relay UAV.
Compared with the single UAV system, the multiple UAVs can increase the resource
delivery ability, intensify the flight security, and reduce the mission cost. Many factors will
affect the rescue task including the environment factor [5] (such as the weather, terrain, and
artificial facilities), UAV performance factor [6] (such as the maximum flight distance, oil
consumption, or typical rescue function), and mission complexity itself. Currently, when
implementing the disaster rescue using the multi-UAV-based system, how to assign the
amount and combination mode of UAVs reasonably [7,8] and how to plan their flight paths
are the issues that should be researched carefully.
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Much research has been done to solve the UAV-based mission assignment and path
planning tasks. In [9], a distributed control law was developed to solve the issue of mission
assignment of multi-UAV. The coordination task was solved by reaching a consensus
on a defined coordination state. In [10], a coordinated standoff target tracking strategy
which considered the path shaping for multiple UAVs was presented. A new path shaping
technique was developed in that application. In [11], online path planning for joint detection
and tracking of multiple unknown radio-tagged objects was developed. This research
could be used for information collection using UAVs with on-board sensors. In general, the
research on mission assignment and path planning can be transferred into the optimization
modelling problem [12]. To solve that problem, the proper cost-revenue function should
be designed firstly, and then some optimization methods can be developed to solve it.
Currently, many research studies have been done in the fields of mission assignment and
path planning; however, the corresponding research in disaster rescue is still rare.

The essence of multi-UAV mission assignment and path planning is to use interactive
information and data analysis measurement to realize collaborative work of UAVs. Table 1
presents an algorithm review of multi-UAV mission assignment and path planning. Re-
garding mission assignment, the heuristic algorithm [13–15] uses the intuitive experiences
to build its computational strategy; the mathematical programming [16,17] employs the
classic algebra or matrix theory to solve optimal computation with various of constraints;
and the stochastic intelligent optimization [18–20] considers the typical theories, such as
biological or physical rules, to accomplish optimal computation. As for path planning, the
mathematical programming [21,22] can solve path generation with the consideration of
environment and kinematics factors; the artificial potential field method [23,24] considers
the balance between the attractive and repulsive forces to implement path searching; the
graph-based method [25–28] uses the modeling and computation of graph theory to accom-
plish path planning; and the intelligent optimization [29,30] can carry out path creation
using typical biological imitation algorithms.

In this paper, an optimal mission assignment and path planning method of multiple
UAVs for the disaster rescue application is proposed. The drug delivery UAV, image
collection UAV, and communication relay UAV are considered in this system. When
carrying out mission assignment, first, three threat sources [31] are designed, they are the
weather threat source, i.e., the wind and rain, transmission tower threat source, i.e., the
electromagnetic interference disturbance, and terrain threat source, i.e., the upland. Second,
a cost-revenue function is proposed. The flight distance, oil consumption, UAV function
descriptions, together with the threat source factors, are all employed to construct that
function. The analytic hierarchy process (AHP) method [32] is used to estimate the weights
of this model. Third, an adaptive genetic algorithm (AGA) [33] is considered to estimate
the optimal mission assignment. The new fitness function is proposed to improve the
performance of AGA. Finally, an improved artificial bee colony (IABC)-based optimal path
planning [34] for neighboring mission points is developed. The balanced searching strategy
is considered for a fast optimal computation.

The main contributions of this paper include: (1) a modelling method of the multi-
UAV optimal mission assignment and path planning for the disaster rescue is proposed.
Three threat source factors are defined, and a new cost-revenue function is built. (2) Both
an AGA and an IABC algorithms are developed. The new fitness function and the new
searching strategy are proposed to improve the computational performance of AGA and
IABC, respectively.

In the following sections, first, the problem formulation of multi-UAV mission assign-
ment and path planning will be presented. Second, the optimization modelling including
the threat sources, cost-revenue function, together with AGA and IABC will be introduced.
Third, some experiment results, such as the evaluations of AGA and IABC or disaster
rescue simulations, will be shown.
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Table 1. Review of mission assignment and path planning methods.

Representative Algorithm
Algorithm Category

Heuristic Algorithm Mathematical Programming Stochastic Intelligent Optimization Method

Mission assignment problem
Tabu search algorithm [13],

simulated annealing algorithm [14],
genetic algorithm (GA) [15], etc.

Enumeration algorithm [16],
dynamic programming [17], etc.

Evolutionary computation [18], swarm intelligence computing [19], artificial
immune algorithm [20], etc.

Representative Algorithm
Algorithm Category

Mathematical Programming Artificial Potential Field Method Graph-Based Method Intelligent Optimization Method

Path planning problem
Dynamic programming [21],

nonlinear programming method
[22], etc.

Basic artificial potential field
method [23], improved artificial
potential field method [24], etc.

Dijkstra algorithm [25], A*
algorithm [26], Voronoi diagram

method [27], probabilistic roadmaps
method [28], etc.

Swarm intelligence computing [29],
bionic algorithm [30], etc.
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2. Problem Formulation

Figure 1 shows the sketch map of our investigated application. The multiple UAVs
are used to carry out the disaster medical rescue task from a start point; and after the
drug deliveries to each mission point, they will fly to a recovery point. The natural or
manmade environment factors will influence the flight security of UAVs; thus, how to assign
mission points to UAVs reasonably and how to plan their flight path safely, economically,
and efficiently should be considered. In Figure 1, the UAVs include the drug delivery
UAV, image collection UAV, and communication relay UAV. The drug delivery UAV can
take the first-aid kit and necessary medical supplies to the disaster zone. The image
collection UAV is equipped with various kinds of camera for video information collection.
The communication relay UAV carries the communication relay device to guarantee the
information transmission of entire system. Several villages locate in different sites of
disaster zone; each one of them needs to be rescued by these UAVs. Many environmental
factors can threaten the flight security of UAV. For example, the nimbus cloud [35] can
damage the motor or sensor of UAV, and it may also contaminate the drugs. The upland
may reduce the flight security of UAV. Furthermore, the transmission tower can influence
the communication system of UAV. Other factors, such as the maximum flight distance or
oil consumption will also affect this mission.
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3. Optimization Modelling and Its Solution
3.1. The Proposed Computational Flow Chart

Regarding the multi-UAV-based disaster rescue, two questions should be answered.
The first question is how to plan the optimal mission allocation. That means the quantity
and combination mode of multiple UAVs should be designed for a rescue task. The second
question is how to plan their optimal flight paths between two neighboring mission points.
Many factors, such as the threat sources and flight parameters will influence the cruise
path of UAV. To answer these questions, a novel method is proposed. Figure 2 shows its
computational flow chart. After the threat source modelling, a cost-revenue function is
designed. The AHP method is used to estimate the weights of cost-revenue function. A
kind of AGA is used to solve the optimal mission assignment and an IABC is considered
to estimate the optimal path between the neighboring mission points. The main inputs
of this model include the amount of UAV, coordinates of mission points (the villages in
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Figure 1) and threat source centers, and control parameters of AGA and IABC algorithms.
The outputs of this model are the mission assignment results of UAVs and their flight paths.
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3.2. The Threat Source Modelling Methods

In this study, it is supposed three types of exterior threat factor will influence the UAV
flight security: the severe weather, transmission tower, and upland.

(1) The severe weather threat source

In this study, the severe weather points to the wind and rain. Many methods can
be used to evaluate the intensity of wind and rain in a certain area, such as the remote
sensing satellite-based method [36] or atmosphere sensor-based technique [37]. Regarding
the remote sensing satellite-based method, some models, such as the weather research and
forecasting (WRF) model or the large Eddy simulations (LES) model [38], can be employed;
however, these models are too complex for our application currently. Without loss of
generality, the atmosphere observation data which are collected by the weather station
are considered in this model. Figure 3 shows the 3D sketch map of weather station and
the actual remote sensing map. In many cases, the weather station will be distributed in
the peak of highland. Then it can assess the atmosphere state around highland. Table 2
presents the definition of wind speeds and their threat degrees. Equation (1) gives out the
computational method of the severe weather threat source. In this paper, it is supposed
that the 2D shape of weather threat source is a circle; the circle center is set in the weather
station and the circle radius comes from the expert advice which consider the terrain and
local historical climate. From Table 2 and Equation (1) it can be seen if there is a rain, the
threat degree PWR will be high (PWR = 1); and if no rain appears in that zone, the threat
degree would be higher with the increment of wind speed.

Pi,j,p,WR =



1
(

Pi,j,p,R = 1
)∣∣∣∣(Pi,j,p,W = 5

)
&(dWR < DWR)

0.8
(

Pi,j,p,R = 0
)
&
(

Pi,j,p,W = 4
)
&(dWR < DWR)

0.6
(

Pi,j,p,R = 0
)
&
(

Pi,j,p,W = 3
)
&(dWR < DWR)

0.4
(

Pi,j,p,R = 0
)
&
(

Pi,j,p,W = 2
)
&(dWR < DWR)

0.2
(

Pi,j,p,R = 0
)
&
(

Pi,j,p,W = 1
)
&(dWR < DWR)

0 otherwise

(1)

Pi,p,WR =
1

M1

M1

∑
j=1

Pi,j,p,WR (2)

where Pi,j,p,WR represents the threat degree of rain and wind, i means the ith UAV, j means
the jth threat source, p is the pth iteration number, WR indicates the wind and rain threat
sources; Pi,j,p,R and Pi,j,p,W are the threat degrees of rain and wind, respectively; dWR is the
distance between the UAV and weather threat source center; DWR is the radius of weather
threat source; symbols “||” and “&” represent the relationship operators “or” and “and”
between two variables; Pi,p,WR is the integrated severe weather threat degree of the ith UAV;
and M1 is the total amount of weather threat source (weather station).
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Figure 3. Sketch map of weather station and its actual remote sensing map. (a) Sketch map of weather
station. (b) Actual remote sensing map which comes from Google earth (https://www.google.com/
earth/ accessed on 19 January 2020).

Table 2. Definitions of wind speeds and their threat degrees.

Wind Speed (m/s) (0.0, 0.2] (0.2, 7.9] (7.9, 13.8] (13.8, 24.4] (24.4, 100.0]

Threat Degree 1 2 3 4 5

(2) The transmission tower threat source

The transmission tower is extensive erected in the mountain area in China which
will create electromagnetic disturbance [39] to the navigation system of UAV. Although
many anti-disturbance techniques have been developed to decrease that negative effect for
UAV [40]; however, it is better to avoid the across-tower flight phenomenon. Figure 4 shows
the sketch maps of transmission tower and a simplified model of intensity distribution
of electromagnetic disturbance. In this paper, a bi-Gaussian mixed model (bi-GMM) [41]
is used to construct the intensity distribution model of electromagnetic disturbance. In
Figure 4a shows the sketch maps of electromagnetic radiation intensity distribution over
the transmission tower from the front view and side view; Figure 4b,c is the 2D and 3D
images of bi-GMM. Equations (3)–(5) are the computational methods of bi-GMM and the
total electromagnetic disturbances of transmission tower.

https://www.google.com/earth/
https://www.google.com/earth/
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fi,j,p,q(x, y) =
1

2πσ1i,j,p,qσ2i,j,p,q

√
1− ρ2

i,j,p,q

×

exp

− 1

2
(

1− ρ2
i,j,p,q

)[(x− µ1i,j,p,q
)2

σ12
i,j,p,q

−
2ρi,j,p,q

(
x− µ1i,j,p,q

)(
y− µ2i,j,p,q

)
σ1i,j,p,qσ2i,j,p,q

+

(
y− µ2i,j,p,q

)2

σ22
i,j,p,q

]
(3)

Pi,j,p,TT =
2

∑
q=1

ωj,p,q fi,j,p,q(x, y) (4)

Pi,p,TT =
1

M2

M2

∑
j=1

Pi,j,p,TT (5)

where fi,j,p,q(x, y) (q = 1, 2) is the probability density function of bi-GMM function, i means
the ith UAV, j is of the jth threat source (transmission tower), p is the pth iteration number, q
is the number of Gaussian function; µ1i,j,p,q and µ2i,j,p,q are the means, σ1i,j,p,q and σ2i,j,p,q
are the variances, ρi,j,p,q is the correlation coefficient; Pi,j,p,TT is the security threat degree
of the jth transmission tower; wj,p,q is the weight of two Gaussian functions; TT means the
transmission tower threat source; Pi,p,TT is the integrated transmission tower threat degree
of the ith UAV; M2 is the total number of transmission tower in the investigated area.
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(3) The upland threat source

The upland will threaten the flight security of UAV because a crash may happen
if the UAV is controlled improperly or flies too close to upland; therefore, the distance
between the UAV and upland should affect the intensity of upland threat source. For
the sake of simpleness, a circular cone model [42] is built in this study to imitate upland
threat source. This kind of simplified model is like the actual terrain in China’s Sichuan or
Guangxi Province. Figure 5 shows the sketch map of the upland threat source model. Three
situations are considered in this model. In the first situation, if the flight height of UAV
is larger than the height of upland (Ai,j,pOi,j,p,m) or the maximum security flight distance
of upland (Gi,j,p Hi,j,p), the collision probability is 0. In the second situation, if the flight
height of UAV is between the minimum security flight distance of upland (Ci,j,pDi,j,p) and
the maximum security flight distance of upland (Gi,j,p Hi,j,p), the collision probability will
be proportional to the UAV flight height from the upland surface. In the third situation,
if the flight height of UAV is lower than the minimum security flight distance of upland
(Ci,j,pDi,j,p), the collision probability would be 1 in this model. From Figure 5 the larger
the distance between UAV and upland surface is, the smaller the threat degree of upland
would be. Equations (6)–(8) show the threat degree estimation method of one circular cone
upland, some geometry relationships are employed here; and Equation (9) presents the
total threat degree of multiple uplands in the disaster area.
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θi,j,p = arcsin

 Ai,j,pOi,j,p,m√
Ci,j,pOi,j,p,m

2
+ Ai,j,pOi,j,p,m

2

 (6)

Bi,j,pOi,j,p,t =
Ai,j,pOi,j,p,m −Oi,j,p,tOi,j,p,m

tan θi,j,p
(7)

Pi,j,p,UT =


0

(
Ei,j,pFi,j,p > Bi,j,pOi,j,p,t + Gi,j,pHi,j,p

)∣∣∣∣(Oi,j,p,tOi,j,p,m > Ai,j,pOi,j,p,m
)

Bi,j,pOi,j,p,t + Gi,j,pHi,j,p − Ei,j,pFi,j,p

Gi,j,p Hi,j,p − Ci,j,pDi,j,p

(
Oi,j,p,tOi,j,p,m ≤ Ai,j,pOi,j,p,m

)
&
(

Bi,j,pOi,j,p,t + Ci,j,pDi,j,p ≤ Ei,j,pFi,j,p
≤ Bi,j,pOi,j,p,t + Gi,j,p Hi,j,p

)
1

(
Oi,j,p,tOi,j,p,m ≤ Ai,j,pOi,j,p,m

)
&
(
Ei,j,pFi,j,p < Bi,j,pOi,j,p,t + Ci,j,pDi,j,p

) (8)

Pi,p,UT =
1

M3

M3

∑
j=1

Pi,j,p,UT (9)

where the symbols θi,j,p , Ai,j,pOi,j,p,m , Ci,j,pOi,j,p,m , Bi,j,pOi,j,p,t , Oi,j,p,tOi,j,p,m , Ei,j,pFi,j,p ,
Gi,j,p Hi,j,p , Ci,j,pDi,j,p are defined in Figure 5; i means the ith UAV, j is the jth upland threat
source, p is the pth iteration number, m means the circle center of the circular cone in bottom;
t is the circle center of circular cone in middle; “||” and “&” represent the relationship
operators of “or” and “and” between two variables; Pi,j,p,UT represents the threat source of
the jth upland; UT means the upland threat source; Pi,p,UT is the integrated upland threat
effect of the ith UAV; M3 is the total number of upland in the disaster zone.
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3.3. The Cost-Revenue Function

Both a cost function and a revenue function [43] are designed to accomplish the optimal
mission assignment and path planning of multi-UAVs. When constructing the cost function,
the flight distance, oil consumption, UAV function descriptions, UAV recovery issue, and
threat source factors are considered. Equations (10)–(12) present the computational methods
of these factors. From these equations, the threat degree can be decreased if the mission
group contains the image collection UAV and communication relay UAV. The revenue
function can represent the mission accomplishment degree of rescue mission. Equation (13)
gives out its computational method. Finally, the definition of cost-revenue function is
shown in Equations (14) and (15). In this model, regarding Equations (11) and (12), many
weights are used. To determine their values objectively, the AHP method is utilized. The
AHP is an operation method which can estimate the specific weight values of varied factors
by comparing their importance in pairs. Figure 6 shows the hierarchy structure of AHP.
Table 3 shows its evaluation criterion.
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Ci,p,Total = Ci,p,MP + Ci,p,RP (10)

Ci,p,MP =
K

∑
k=1

{
δD

MPPi,p,D(k) + δO
MPPi,p,O(k)+

(1− tp × γ)
[
δWR

MP Pi,p,WR(k) + δTT
MPPi,p,TT(k) + δUT

MPPi,p,UT(k)
] } (11)

Ci,p,RP = δD
RPPi,p,D(c) + δO

RPPi,p,O(c)+
(1− tp × γ)

[
δWR

RP Pi,p,WR(c) + δTT
RP Pi,p,TT(c) + δUT

RP Pi,p,UT(c)
] (12)

Ri,p,Total =
K

∑
k=1

{
1−

[
1−

(
α + sp × β

)]rp
}
× R(k) (13)

T1i,p = ω1Ci,p,Total −ω2Ri,p,Total (14)

T2p =
I

∑
i=1

T1i,p (15)

where Ci,p,Total is the total cost and revenue in the pth iteration computation of the ith

UAV; Ci,p,MP is the cost function of the mission point; Ci,p,RP is the cost function of the
recovery point; δD

MP, δO
MP, δWR

MP , δTT
MP, δUT

MP are the weights of distance factor, oil consumption
factor, weather threat factor, transmission tower threat factor, and upland threat factor,
respectively; K is the total number of mission points; similarly, δD

RP, δO
RP, δWR

RP , δTT
RP , and

δUT
RP are the corresponding weights of recovery point; Pi,p,D(k), Pi,p,O(k), Pi,p,WR(k), Pi,p,TT(k),

and Pi,p,UT(k) are the cost values of distance factor, oil consumption factor, costs of weather
threat factor, transmission tower factor, and upland threat factor of the mission point k;
and Pi,p,D(c), Pi,p,O(c) Pi,p,WR(c), Pi,p,TT(c), and Pi,p,UT(c) are the corresponding cost values in
recovery point; rp, sp, and tp are the amounts of drug delivery UAV, image collection UAV,
and communication relay UAV in the pth iteration, respectively; α is the parameter of drug
delivery UAV which means the rate of a successful drug delivery; β is the parameter of
image collection UAV which indicates the improvement probability of a drug delivery; γ
is the parameter of communication relay UAV which presents the decreasing probability
of all kinds of threat degrees; R(k) is the revenue of the kth mission point; ω1 and ω2 are
weights, ω1 = 1.0 and ω2 = 10.0; I is the total number of UAVs.
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Table 3. Evaluation criterion of AHP.

Intensity of Importance Definition

1 Equally important
3 Weakly important
5 Essentially important
7 Very strongly important
9 Absolutely important

2, 4, 6, 8 Importance between the above odd numbers

3.4. The Optimal Computational Methods: AGA and IABC

Two optimal computational methods are designed for mission assignment and path
planning: an AGA is proposed for mission assignment and a kind of IABC method is
considered for path planning of neighboring mission points.
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(1) The optimal mission assignment of multiple mission points using AGA
The multi-UAV can be allocated into different UAV groups by AGA to accomplish the
rescue task. The computational steps of AGA are listed below.

(a) The population initialization. The initial population is generated, i.e., a series
of initial solutions of mission assignment are created by the random number.
The population size N_AGA, the current iteration number p_AGA, the maxi-
mum iteration number p_AGAmax, the crossing probability Pp_AGA,C, and the
mutation probability Pp_AGA,M etc., are set.

(b) The fitness function calculation [44]. The calculation method of the fitness
function is shown by Equation (16).

fp_AGA = T2p_AGA (16)

where fp_AGA is the fitness function in the p_AGAth iteration; T2p_AGA is defined
in (15).

(c) The iterative computation of AGA. Three kinds of computations are imple-
mented [45]: the selection operation, crossover operation, and mutation oper-
ation. First, the selection operation considers the estimation result of fitness
function, and its probability is defined in Equation (17). The roulette wheel
selection method is utilized in this study. Second, the crossover processing is
carried out by exchanging several gene fragments at the positions of two ran-
domly selected individuals. Third, the mutation step is achieved by switching
two genes of one randomly selected individual. The probabilities of crossover
and mutation operations are defined in (18) and (19).

Pp_AGA,S =
fp_AGA

N_AGA
∑

p_AGA=1
fp_AGA

(17)

Pp_AGA,C =

ap_AGA ×
Pp_AGA,C_max( fp_AGA,max − fp_AGA)

fp_AGA,max − fp_AGA,mean
fp_AGA ≥ fp_AGA,mean

bp_AGA × Pp_AGA,C_max fp_AGA < fp_AGA,mean

(18)

Pp_AGA,M =

cp_AGA ×
Pp_AGA,M_max( fp_AGA,max − fp_AGA)

fp_AGA,max − fp_AGA,mean
fp_AGA ≥ fp_AGA,mean

dp_AGA × Pp_AGA,M_max fp_AGA < fp_AGA,mean

(19)

where Pp_AGA,S is the selection probability; fp_AGA is the fitness function in the
p_AGAth iteration; N_AGA is the maximum population number; Pp_AGA,C is
the cross probability; ap_AGA, bp_AGA, cp_AGA, and dp_AGA are the control pa-
rameters in the p_AGAth iteration, ap_AGA = 1.0, bp_AGA = 1.2, cp_AGA = 1.0, and
dp_AGA = 1.35 in this study; Pp_AGA,C_max is the maximum of cross probability;
fp_AGA,max is the maximum of fitness function; fp_AGA,mean is the mean of fitness
function; Pp_AGA,M is the mutation probability; Pp_AGA,M_max is the maximum
of mutation probability.

Due to the convergence speed of traditional GA is slow with the accumulation of
iteration number; an adjustment parameter is defined which is related with the iteration
number. Then the new fitness function can be computed. Equations (20)–(22) present the
corresponding computational methods.

fp_AGA = KAGA × T2p_AGA (20)

KAGA =
p_AGA

1
hi

T2max
p_AGA

(21)
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hi = 1 + lg(p_AGAmax) (22)

where KAGA is an adjustment parameter; hi is a variable; T2max
p_AGA is the maximum of

cost-revenue function; p_AGAmax is the maximum iteration number.
Without loss of generality, let us take the mission allocation issue of two UAV groups

as an example. Figure 7 shows the sketch map of chromosome coding method [46] of
proposed AGA. In Figure 7, two code sequences compose this chromosome fragment;
which also means we only consider dividing the mission implementation units into two
parts. Two code sequences have the equal size and the same gene definition method. For
example, in the left code sequence, the first three codes indicate the amounts of drug
delivery UAV, image collection UAV, and communication relay UAV, respectively; and its
left codes mean the mission points which can be filled by “0” or “1”; where “0” means this
UAV group will not go to this mission point, while “1” is this group will go to this mission
point. Clearly, the amount of these left codes should equal to the amount of the mission
point. After coding, this chromosome fragment can be used to implement the selection,
crossover, and mutation operations.
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(2) The optimal path planning between neighboring mission points using IABC
An IABC algorithm is used to find the optimal path between neighboring mission
points. The basic computational steps of artificial bee colony (ABC) algorithm are
presented below.

(a) The population initialization. The random solutions of ABC algorithm are
created. The corresponding computation method [47] can be written by (23).
The maximum iteration is also set, and the initial iteration number is 0.

xij = xmin
j + rand(−1, 1)

(
xmax

j − xmin
j

)
(23)

where xij is the coordinate of flight path; xj
min and xj

max are the minimum and
maximum values of xij; i = 1, 2, . . . , NP, and NP is the total number of bees;
j = 1, 2, . . . , D. Here D is the dimension of estimated parameter, D = 2 in this
study.

(b) The path updating of employed foragers. First, the solutions vij of employed
foragers can be computed by (24), and then the fitness function will be estimated.
Here, the fitness function uses the cost-revenue function in Equation (14) to esti-
mate its fitness degree by Equation (25). The classical greedy algorithm [48] is
used to select the proper solution. Second, the probability Pp_IABC is calculated
by (26) and the corresponding scouter can be selected properly. Third, the
solution vij of the onlooker from the solutions xij selected depending on Pp_IABC
will also be computed by (24); and the greedy algorithm will be used again to
select the proper solution. Fourth, the abandoned solution of scouter will be
determined, and a new randomly solution will be considered for them. Fifth,
the best solution will be recorded in this round and the iteration counter will
be added by 1.

vij = xij + rand(−1, 1)
(

xij − xkj

)
(24)
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fp_IABC =


1

1 + T1p_IABC
T1p_IABC ≥ 0

1 +
∣∣T1p_IABC

∣∣ else
(25)

Pp_IABC =
fp_IABC

NP
∑

p_IABC=1
fp_IABC

(26)

where i = 1, 2, . . . , NP; j = 1, 2, . . . , D, and k = 1, 2, . . . , NP; k and j are
the randomly chosen indexes, and k 6= i; fp_IABC is the fitness function of
solution which is proportional to the nectar amount; T1p_IABC is the cost-
revenue function of the p_IABCth iteration.

(c) The iteration computation will be terminated if the iteration counter reach its
upper limitation.

The traditional ABC algorithm may have a shallow search depth, a low evolution
efficiency of excellent individual, and a high abandon probability of good nectar source.
To conquer these drawbacks to some extent, a balanced searching strategy is proposed.
Equations (27)–(29) present its computational method. Clearly, during the early iteration
computations, δ(p_IABC) > ε(p_IABC), this algorithm will have a good global searching
ability in that stage; and with the implementation of iteration, the global optimal solution
of current population xbest,j will avoid the local minimum solution, fasten convergence
speed, and keep algorithm to hold the global searching ability to some extent. In that stage,
the convergence speed still can high.

xij = xij + rand(−1, 1)×
(

xbest,j − xij

)
× ε(t) + rand(−1, 1)×

(
xkj − xij

)
× δ(t) (27)

ε(p_IABC) = log2

(
1 +

p_IABC
p_IABCmax

)
(28)

δ(p_IABC) = 1− ε(p_IABC) (29)

where xbest,j is the jth dimension component of global optimal solution of current population;
ε(p_IABC) and δ(p_IABC) are the balanced searching factors, p_IABC is the current iteration
number, p_IABCmax is the maximum iteration number.

4. Results and Discussions

A series of test and evaluation experiments are performed to assess the validity and
effectiveness of proposed models and methods. All the simulation programs are written
by Python (Pycharm2020) in our PC (4.0 GB RAM, 1.70 GHz Intel (R) Core(TM) i3-4005U
CPU). To evaluate the effectiveness of proposed system and method, first, an assessment
experiment of AGA is made; second, an evaluation experiment of IABC is performed; third,
the experiment of multi-UAV optimal mission assignment and path planning for disaster
rescue is implemented; finally, some discussions, extended experiments, and applications
are illustrated.

4.1. The Evaluation Experiment of AGA

A mission assignment comparison between the GA and our AGA was made. The task
assignment for the sole UAV was used for evaluation. Only the air-line distance between
mission points was considered for simulation. The all-permutation of mission point was
employed as the chromosome coding method. Both an 8 and an 18 mission points tests
were considered in the evaluation experiments. The initial population size was 60, the
maximum crossover probability was 0.8, the maximum mutation probability was 0.01; and
the maximum iteration numbers were 300, 400, and 500. The coordinates of mission point
are presented in Table 4. Table 5 shows the comparison results of fitness function and
processing time of GA and AGA. Regarding GA and AGA, the fitness function means the
difference between the cost function and revenue function (see Equation (16)); thus, the
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smaller the fitness function is the better the optimal computation effect will be. From Table 5,
our AGA can achieve the better computational performance. The processing time of AGA
is larger because it uses more resource for the selection, crossover, and mutation operations.
A statistical evaluation of GA and AGA was also performed. After implementing the
mission assignment experiment for 50 times [49], we investigated the average minimum
and mean fitness functions of GA and AGA when the iteration times were 300, 400, and
500, respectively. Figure 8 gives out the results. From Figure 8, our AGA can acquire better
performance. Table 6 illustrates the mission assignment results of GA and AGA: when
the number of mission points are small, GA and AGA will get the similar assignment
result; while the results will have remarkable differences when the amount of mission point
is large.

Table 4. Coordinates of mission point in the AGA evaluation experiment.

Test Experiment 1

Number of Mission
Point

Coordinate of
Mission Point

Number of Mission
Point

Coordinate of
Mission Point

1 (50, 70) 5 (75, 75)
2 (20, 48) 6 (90, 30)
3 (30, 65) 7 (26, 30)
4 (60, 80) 8 (80, 40)

Test Experiment 2

Number of Mission
Point

Coordinate of
Mission Point

Number of Mission
Point

Coordinate of
Mission Point

1 (50, 70) 10 (105, 60)
2 (20, 48) 11 (98, 49)
3 (30, 65) 12 (93, 87)
4 (60, 80) 13 (47, 12)
5 (75, 75) 14 (84, 17)
6 (90, 30) 15 (39, 75)
7 (26, 30) 16 (98, 74)
8 (80, 40) 17 (75, 24)
9 (60, 20) 18 (39, 8)

Table 5. Population evaluation indices comparisons of GA and AGA.

Fitness Function Value

Best Value Worst Value Standard
Deviation Value Mean Value

Test
experiment 1

GA 203.5649 322.9047 33.6182 261.5839
AGA 200.8118 286.4434 30.7327 225.2601

Text
experiment 2

GA 506.3372 744.7273 56.8380 623.5432
AGA 369.5323 493.2025 30.5143 429.6063

Processing Time (s)

Best Value Worst Value Standard
Deviation Value Mean Value

Test
experiment 1

GA 1.61 2.16 0.11 1.75
AGA 1.92 2.75 0.24 2.49

Text
experiment 2

GA 2.1 3.1 0.26 2.59
AGA 3.36 4.44 0.16 3.86
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Table 6. Evaluation results of GA and AGA using different experiments and iteration times.

Result of Optimal Mission Point Schedule

Iteration Times = 300 Iteration Times = 400 Iteration Times = 500

Test
experiment 1

GA 2, 3, 4, 5, 1, 7, 6, 8 2, 7, 3, 1, 5, 4, 8, 6 7, 3, 2, 1, 4, 5, 8, 6
AGA 7, 2, 3, 1, 4, 5, 8, 6 7, 2, 3, 1, 4, 5, 8, 6 7, 2, 3, 1, 4, 5, 8,6

Test
experiment 2

GA
13, 8, 6, 4, 5, 11, 10, 12,
16, 17, 9, 2, 1, 15, 3, 18,

7, 14

14, 9, 13, 2, 1, 11, 10, 16,
17, 18, 7, 15, 3, 4, 5, 12,

8, 6

7, 2, 14, 6, 10, 11, 8, 17,
9, 13, 18, 16, 12, 15, 1, 3,

4, 5

AGA
2, 1, 12, 16, 10, 11, 17,

14, 6, 8, 5, 4, 15, 3, 7, 18,
13, 9

13, 18, 7, 2, 3, 15, 1, 9,
14, 17, 4, 5, 12, 16, 8, 6,

11, 10

3, 15, 1, 17, 9, 2, 7, 18,
13, 14, 6, 8, 11, 5, 4, 12,

16, 10

4.2. The Evaluation Experiment of IABC

An optimal path planning comparison experiment between ABC and IABC was
investigated. In this experiment, only the cost function was used to build the fitness
function (see (14)). Table 7 presents the parameter settings of threat sources. The initial
parameters of ABC and IABC were: the population size was 100; the data dimension was 15;
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the coordinates of start and end points were (0, 85) and (120, 30). To assess the performance
of ABC and IABC, the optimal fitness function, path length, and processing time were
considered. Table 8 presents the corresponding results. Regarding ABC and IABC, the
larger the fitness function is the better the algorithm performance will be. Because the
IABC employs a balanced searching strategy which adds more amounts of computation,
the processing speed of proposed IABC is slow. However, there is no processing time
requirement in our application currently, thus the corresponding result is acceptable. Finally,
from Table 8, our method can get better fitness function and use less path length, as a result
we think its performance is better than the traditional method.

Table 7. Parameters setting methods of threat sources.

Num
Center Coordinate, Radius, Rain

State a, and Wind Degree of
Severe Weather Threat Source

Center Coordinate, (µ1i,j, p,1, σ12
i,j,p,1),

(µ2i,j,p.2, σ22
i,j,p.2), wj,p,1, and wj,p.2 of

Transmission Tower Threat Source

Center Coordinate, Minimum
Height, Maximum Height, and

Radius of Upland Threat Source

1 (31, 21), 10, 0, 4 (13, 63), (1, 5), (1, 9), 0.5, 0.5 (38, 48), 150, 300, 13
2 (67, 32), 15, 1, 2 (60, 75), (2, 6), (2, 10), 0.5, 0.5 (88, 77), 150, 300, 10
3 (75, 97), 8, 0, 3 (20, 83), (3, 7), (3,11), 0.5, 0.5 (70, 60), 150, 300, 6
4 (39, 90), 9, 0, 3 (92, 57), (4, 8), (4, 12), 0.5, 0.5 (101, 25), 150, 300, 14

a The rain state is: if there is a rain the value will be 1; otherwise the value should be 0.

Table 8. Evaluation results of ABC and IABC using different indices and iteration times.

Iteration Times Method Optimal Fitness Function Path Length Processing Time

300
ABC 0.8957 172.5320 3.58
IABC 0.8984 167.8581 5.76

Iteration Times Method Optimal Fitness Function Path Length Processing Time

400
ABC 0.8980 168.1855 4.51
IABC 0.8987 167.7283 7.42

Iteration Times Method Optimal Fitness Function Path Length Processing Time

500
ABC 0.8975 167.4791 5.54
IABC 0.8987 167.4733 9.03

The simulation results of fitness function, path length, and processing time using
different iteration times are illustrated in Table 9. The best, worst, mean, and standard devi-
ation values of fitness function, path length, and processing time of different populations
are presented. From Table 9, our IABC can get the larger fitness function, shorter flight
path length, while longer processing time. Since the processing time is acceptable (i.e.,
not important) for our application, our IABC is better than ABC in Table 9. Figures 9–11
present the visualization examples of optimal path planning and the statistical results of
fitness function using different iteration times. The total experiment times of ABC and
IABC were 30. The best fitness function values of populations in each simulation were
used to compute the statistical data in Figures 9–11. From Figures 9–11, the IABC can get
smoother flight path and its fitness function indices are larger than those of ABC most of
time; therefore, we think our IABC has better performance instead of ABC.
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Table 9. Performance evaluation results of ABC and IABC using different iteration times.

Fitness Function/The Iteration Times Is 300

Best Value Worst Value Standard Deviation Value Mean Value

ABC 0.8985 0.8943 1.3 × 10−3 0.8972
IACB 0.8986 0.8967 4.6143 × 10−4 0.8981

Path Length/The Iteration Times Is 300

Best Value Worst Value Standard Deviation Value Mean Value

ABC 167.2298 172.5320 1.3489 168.6910
IACB 164.8105 168.5795 0.97294 167.6903

Processing Time (s)/The Iteration Times Is 300

Best Value Worst Value Standard Deviation Value Mean Value

ABC 3.56 4.27 0.1541 3.95
IACB 5.70 6.36 0.1322 6.02

Fitness Function/The Iteration Times Is 400

Best Value Worst Value Standard Deviation Value Mean Value

ABC 0.8987 0.8964 5.3594 × 10−4 0.8982
IACB 0.8988 0.8981 1.7287 × 10−4 0.8986

Path Length/The Iteration Times is 400

Best Value Worst Value Standard Deviation Value Mean Value

ABC 166.6625 169.4589 0.6558 168.2398
IACB 166.5989 168.4041 0.4691 167.8869

Processing Time (s)/The Iteration Times Is 400

Best Value Worst Value Standard Deviation Value Mean Value

ABC 5.23 4.53 0.1462 4.70
IACB 7.86 7.55 0.0778 7.68

Fitness Function/The Iteration Times Is 500

Best Value Worst Value Standard Deviation Value Mean Value

ABC 0.8987 0.8975 2.8031 × 10−4 0.8985
IACB 0.8988 0.8982 1.3235 × 10−4 0.8987

Path Length/The Iteration Times is 500

Best Value Worst Value Standard Deviation Value Mean Value

ABC 167.4791 169.0534 0.3398 168.4406
IACB 167.3409 168.5107 0.2934 168.2355

Processing Time (s)/The Iteration Times Is 500

Best Value Worst Value Standard Deviation Value Mean Value

ABC 5.29 6.09 0.2080 5.60
IACB 8.83 10.13 0.3193 9.41
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4.3. The Evaluation Experiment of Disaster Rescue Simulation

An evaluation experiment of disaster rescue was performed. The AHP was used to
estimate the weights of cost-revenue function in Equations (11) and (12). In this experiment,
Tables 10–13 give out the judgmental matrixes of AHP criteria hierarchy of mission point,
the judgmental matrixes of UAV performance alternative hierarchy of mission point, the
judgmental matrixes of threat source alternative hierarchy of mission point, and the final
importance weights of mission point. Tables 14–17 present the corresponding judgmental
matrixes and final importance weights of recovery point. Regarding the data in Tables 10–12
and Tables 14–16, the judgmental matrixes come from the advice of disaster rescue experts.
From Tables 13 and 17, the weather threat source is the most important factor; while the
flight distance is the least important factor for mission points and the oil consumption
factor is the least important factor for recovery point. Since the recovery point will always
be selected in the site which does not have too many threat sources, this result is reasonable
for our application.

Table 10. Judgmental matrixes of AHP criteria hierarchy of mission point.

Threat Source UAV Performance

Threat source 1 7
UAV performance 1/7 1

Table 11. Judgmental matrixes of UAV performance alternative hierarchy of mission point.

Oil Consumption (δO
MP) Flight Distance (δD

MP)

Oil consumption (δO
MP) 1 9

Flight distance (δD
MP) 1/9 1
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Table 12. Judgmental matrixes of threat source alternative hierarchy of mission point.

Weather (δWR
MP ) Transmission Tower (δTT

MP) Upland (δUT
MP)

Weather (δWR
MP ) 1 9 9

Transmission tower (δTT
MP) 1/9 1 1

Upland (δUT
MP) 1/9 1 1

Table 13. Final estimated importance weights of AHP of mission point.

Name δD
MP δO

MP δWR
MP δTT

MP δUT
MP

Value 0.0125 0.1125 0.7159 0.0795 0.0795

Table 14. Judgmental matrixes of AHP criteria hierarchy of recovery point.

Threat Source UAV Performance

Threat source 1 3
UAV performance 1/3 1

Table 15. Judgmental matrixes of UAV performance alternative hierarchy of recovery point.

Oil Consumption (δO
RP) Flight Distance (δD

RP)

Oil consumption (δO
RP) 1 6

Flight distance (δD
RP) 1/6 1

Table 16. Judgmental matrixes of threat source alternative hierarchy of recovery point.

Weather (δWR
RP ) Transmission Tower (δTT

RP) Upland (δUT
RP )

Weather (δWR
RP ) 1 8 8

Transmission tower (δTT
RP) 1/8 1 2

Upland (δUT
RP ) 1/8 1/2 1

Table 17. Final estimated importance weights of AHP of recovery point.

Name δD
RP δO

RP δWR
RP δTT

RP δUT
RP

Value 0.2143 0.0357 0.5968 0.094 0.0592

An integrated evaluation of mission assignment and path planning was performed,
the initial experiment parameters were: the amounts of drug delivery, image collection, and
communication relay UAVs were 15, 3; and 2; the UAVs were classified into two groups;
the coordinates of start point of UAV groups were (0, 50) and (0, 52); the coordinate of
recovery point was (120, 50); α = 0.5, β = 0.1 and γ = 0.1; R(k) = {1.0, 1.3, 1.2, 1.5, 1.4,
1.2}. Other parameters of threat sources, GA, AGA, ABC, and IABC were the same to the
parameters in Sections 4.2 and 4.3. The mission point coordinates are shown in Table 18.
Table 19 shows the results. In Table 19, methods of GA+ABC, GA+IABC, AGA+ABC, and
AGA+IABC are investigated; the results of group assignment, mission assignment, total
revenue (see (13)), total cost (see (10)), processing time, and path length are simulated.
From Table 19, the AGA+IABC can get the best performance except for the processing
time. Figure 12 shows our visualization results. Table 20 illustrates the statistical results of
average revenue, average cost, average processing time, and average path length. From
Table 20, our AGA+IABC can get the best revenue, the least cost, and the shortest path
length most of time; thus we believe this method to be good enough for our application.
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Table 18. Coordinates of mission point in the disaster rescue evaluation experiment.

Number of
Mission Point

Coordinate of
Mission Point

Number of
Mission Point

Coordinate of
Mission Point

Number of
Mission Point

Coordinate of
Mission Point

1 (23, 70) 3 (44, 72) 5 (85, 43)
2 (25, 40) 4 (51, 38) 6 (75, 82)

Table 19. Results of multi-UAV optimal mission assignment and path planning using different
optimization methods.

Method Name Group Assignment
Result a

Mission
Assignment Result b

Total Revenue
Result

Total Cost
Result

Processing
Time (s) Path Length

GA+ABC Group A: 8, 1, 2
Group B: 7, 2, 0

Group A: 1, 3, 6
Group B: 2, 4, 5 79.5684 0.1453 62.27 340.9001

GA+IABC Group A: 7, 2, 0
Group B: 8, 1, 2

Group A: 2, 4, 5
Group B: 1, 3, 6 79.4320 0.1633 82.44 334.9619

AGA+ABC Group A: 7, 2, 0
Group B: 8, 1, 2

Group A: 2, 4, 5
Group B: 1, 3, 6 79.5740 0.1435 92.62 337.5118

AGA+IABC Group A: 7, 2, 0
Group B: 8, 1, 2

Group A: 2, 4, 5
Group B: 1, 3, 6 79.6475 0.1326 113.68 329.1168

a The group assignment result means the grouping results of drug delivery, image collection, and communication
relay UAVs. b The Mission assignment result means the flight orders of mission points.
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results of AGA+ABC. (d) Visualization results of AGA+IABC.
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Table 20. Statistical results of average revenue, average cost, average processing time, and average
path length using different mission assignment and path planning methods.

Average Revenue Result

Best Value Worst Value Standard Deviation Value Mean Value

GA+ABC 79.6017 79.1356 0.1157 79.4761
GA+IABC 79.6265 79.3540 0.0706 79.5123
AGA+ABC 79.5799 77.7220 0.5315 79.3207
AGA+IABC 79.6475 79.4919 0.0363 79.5749

Average Cost Result

Best Value Worst Value Standard Deviation Value Mean Value

GA+ABC 0.1418 0.1788 0.0105 0.1534
GA+IABC 0.1350 0.1633 0.0072 0.1461
AGA+ABC 0.1374 0.1985 0.0174 0.1530
AGA+IABC 0.1326 0.1489 0.0039 0.1413

Average Processing Time (s)

Best Value Worst Value Standard Deviation Value Mean Value

GA+ABC 61.31 69.34 2.1148 64.52
GA+IABC 79.13 86.84 2.1571 83.54
AGA+ABC 89.92 95.73 1.9324 93.08
AGA+IABC 102.24 114.87 3.4733 108.71

Average Path Length

Best Value Worst Value Standard Deviation Value Mean Value

GA+ABC 329.5748 340.9091 3.7418 336.6497
GA+IABC 329.8217 343.4356 3.4055 334.4394
AGA+ABC 331.0667 379.0624 12.5883 339.6279
AGA+IABC 328.6109 337.5947 2.7720 331.9636

4.4. Discussions

With the fast technique advancement, the multi-UAV and multi-UAV mission forma-
tion [50] have been widely studied to assist the disaster rescue of villages which locate far
away from the big city. Currently, the familiar hypothetical rescue task always happens in
the southwest China because the earthquake belt crosses this area. The terrain in southwest
China always has the basin or karst landform [51] (see Figure 3b), the weather there is rainy
and windy most of the year. Thus, it is necessary to make a careful design of task assign-
ment of medical rescue before the serious earthquake damage happens. Comparing with
a single UAV, the multiple UAVs can take larger amount of rescue resources, accomplish
more rescue functions, and behave better flight stability. Thus, how to assign the proper
UAVs for different rescue points and how to plan their flight paths should be studied before
the implementation of rescue. To conquer these problems to some extent, an intelligent
algorithm is developed in this study which considers the flight factor, the UAV function
factor, the threat source factor, and the UAV recovery factor, etc. This research work can be
used for the decision support of disaster medical rescue.

Three types of threat source models were considered in this study, i.e., the weather
threat source, transmission tower threat source, and upland threat source. The modeling of
weather phenomenon really is a complex task because too many factors will affect the local
weather, such as the wind, temperature, humidity, sun light, and even the local terrain. In
this study, a simplified weather threat source was proposed for a fast computation purpose;
only the factors of wind and rain were considered. The influence scope of bad weather was
abstracted by a circle around the weather station. In future, the atmosphere temperature
model [52] can be researched for our application. The electromagnetic disturbance cannot be
omitted for any UAV applications. The manmade disturbance source, i.e., the transmission
tower, was modeled in this study. In fact, the power line itself and the nature disturbance
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sources (such as the thunder, ground radiation, etc.) can also be studied in future. A
simplified upland model was used in our model. The distance from the ground was
considered to assess the degree of threat source intensity. Clearly, the 3D terrain model can
be used to replace that circular cone in our next research step.

A kind of revenue-cost function was designed to guide the optimal computation of
mission assignment and path planning. Both the revenue and cost in the mission point
and recovery point were considered. The revenue function reflects the rescue value of
typical mission point (i.e., the village); the larger the revenue function value is the better
the optimal computation will be. The cost function indicates the risk, material cost, and
mission complexity during the disaster rescue; the smaller the cost function value is the
better the model computation effect will be. The function assignment of UAVs is controlled
by the parameters in the revenue and cost functions. In this study, the flight distance, oil
consumption, UAV function descriptions, threat source factors, and mission point revenue
participated the construction of revenue–cost function. To improve the modeling objectivity,
the AHP model was used to estimate the weights of revenue-cost function. The opinions of
disaster rescue experts were used to build the AHP model. The meeting discussion can
be considered for expert opinion collection. Clearly, more factors can be considered in the
design of revenue-cost function in future, such as the minimum turning radius of UAV,
precision of satellite navigation, and other threat source factors, etc.

Both an AGA and an IABC [53] were developed for mission assignment and path
planning in the disaster rescue task. Regarding the mission assignment, the GA-based
method [54,55] has been proofed to be the best scheduling method in our former research;
thus it is not necessary to consider other techniques for solving this task. Differently, as
for the path planning problem, many other optimization methods can be considered, such
as the particle swarm optimization (PSO) [56] method, artificial potential field algorithm
(APFA) [57], or bat algorithm [58], etc. After a series of tests, it can be found the performance
of bat algorithm cannot fulfill our application requirement; thus, only the PSO and APFA
were evaluated. Figure 13 presents the visualization results of multi-UAV optimal mission
assignment and path planning using GA, AGA, PSO, and APFA. From Figure 13, the PSO-
based method can get a smoother flight path. Table 21 gives out the statistical evaluation
result of average revenue, average cost, average processing time, and average path length
using GA, AGA, PSO, and APFA. The simulation times was 40. From Table 21, similar to the
results in Table 20, the methods of AGA+PSO and AGA+APFA can get better performances
than the methods of GA+PSO and GA+APFA, respectively. These results can illustrate the
effectiveness of proposed AGA to some extent.

A series of evaluation experiments were performed to assess the effect of proposed
computational method in this study. Many evaluation indices, such as the statistical value
of fitness function, iteration times, or program processing time, were used. For example,
regarding the IABC algorithm, it needs more computational resource for the computation
of balanced searching strategy (see Equations (27)–(29)) than the ABC method; however its
convergence speed is faster than ABC. The experiment results showed if we investigated
the algorithm performance of 1000 iterations, the convergence times (i.e., the value of
fitness function would not be changed) of ABC and IABC were 440 and 316, respectively;
and the processing time of ABC and IABC were 12.1826 s and 15.0539 s; thus, the average
convergence time of ABC and IABC were 5.3603 s and 4.757 s, respectively. As for the
iteration times in the GA and AGA evaluation experiments, the larger the iteration times is
the smaller the fitness function will be (see Figure 8). When it comes to the iteration times
of ABC and IABC, the path length will decrease firstly and then increase slightly with the
rise of iteration times; and the fitness function will increase, the processing time will rise
distinctly. Clearly, all these results can illustrate the good performance of our proposed
methods.
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AGA+PSO. (c) Visualization results of GA+APFA. (d) Visualization results of GA+APFA.

The proposed algorithm can be used for practical application. An optimal computation
module together with a visualization simulation software [59] were developed for the
disaster rescue task in our application. Currently, both the fixed wing UAV and the multi-
rotor unmanned helicopter can be used for this application. In our software, the 3D
terrain came from the satellite remote sensing data. Figure 14 presents the corresponding
visualization results. In Figure 14, the color 3D terrain is illustrated; the optimal paths are
presented by the white dash lines; the threat sources are marked by the hemispheres with
blue or red color; and multiple helicopters are also displayed in that scene. In Figure 14,
the UAVs are classified into two groups. Regarding this software, because the optimal
computation will cost too much time, as a result the optimal mission assignment and path
planning will be computed firstly, and then the corresponding results will be displayed
by the 3D visualization program. Another issue in this study is: the height information of
UAV is not considered in our model; this designing comes from the fact that the UAV uses
the altimeter to control its flight height from the ground; and in many cases its flight height
can be a fixed value.
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Table 21. Statistical evaluation results of average revenue, average cost, average processing time, and
average path length using GA, AGA, PSO, and APFA.

Average Revenue Result

Best Value Worst Value Standard Deviation Value Mean Value

GA+PSO 79.5746 77.4224 0.7295 79.0008
AGA+PSO 79.5918 78.0337 0.3909 79.3464
GA+APFA 79.4929 77.5304 0.5118 79.0061

AGA+APFA 79.5426 78.9268 0.1757 79.3605

Average Cost Result

Best Value Worst Value Standard Deviation Value Mean Value

GA+PSO 0.1444 0.2815 0.0317 0.1615
AGA+PSO 0.1411 0.1919 0.0170 0.1533
GA+APFA 0.1445 0.1847 0.0116 0.1601

AGA+APFA 0.1419 0.1721 0.0083 0.1508

Average Processing Time (s)

Best Value Worst Value Standard Deviation Value Mean Value

GA+PSO 112.47 120.24 115.82 2.8234
AGA+PSO 178.92 188.56 185.02 1.8648
GA+APFA 1694.52 1798.42 30.5664 1740.98

AGA+APFA 1802.07 1892.88 25.0210 1855.64

Average Path Length

Best Value Worst Value Standard deviation Value Mean Value

GA+PSO 329.8403 397.2150 19.3590 352.9970
AGA+PSO 330.4529 344.4585 14.9107 350.3686
GA+APFA 364.3596 432.0467 16.3501 379.0128

AGA+APFA 358.4359 379.2276 6.5640 367.8603Actuators 2021, 10, x FOR PEER REVIEW 25 of 32 
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The proposed algorithm has at least three advantages. First, our model considers the
practical engineering application of disaster rescue carefully. As we have stated above,
this method is designed for the medical rescue in southwest China. The typical terrain,
weather condition, and artificial facility [60] are all considered when constructing the cor-
responding target functions. The typical multiple UAVs for the medical disaster rescue
are also designed. The function characters of multi-UAV are also proposed for the optimal
computation. Second, its computational precision is comparable high. Comparing with
other application, an integrated evaluation of mission assignment and path planning is
performed. This processing method can refine our computational result. Third, the model
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extensibility is good. Clearly, any other optimal methods can be used easily in our computa-
tional framework; this system and method can be popularized for any applications outside
China only with limited model adjustments. Our algorithm also has some shortcomings.
For example, the models of threat sources can be improved and the human-computer
interactivity of this system is limited. In future more intelligent techniques can be used in
our model.

5. Conclusions

In this study, a multi-UAV mission assignment and path planning method is proposed
for the disaster medical rescue. The multiple UAVs include the drug delivery UAV, image
collection UAV, and communication relay UAV. Three kinds of threat source models are
considered: the severe weather, transmission tower, and upland. When building the
cost-revenue function of optimization model, the flight distance, oil consumption, UAV
function, and threat sources are utilized. The AHP model is utilized to estimate the weights
in this model. Both the cost-revenue functions for the mission point and recovery point
are designed. An AGA is designed to solve the optimal mission assignment for mission
points; a fitness function which considers the current and maximum iteration numbers
are employed to improve the algorithm convergence performance. An IABC method is
considered to solve the optimal path planning between the neighboring mission points; a
balanced searching strategy is developed to improve the algorithm computational effect.
Many evaluation results have proofed the effect of proposed model. This research work
can be used for decision support of disaster medical rescue in future.
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Abbreviations
Here is a list with the main abbreviations used in this article.

ABC Artificial bee colony
AGA Adaptive Genetic algorithm
AHP Analytic hierarchy process
APFA Artificial potential field algorithm
GA Genetic algorithm
GMM Gaussian mixed model
IABC Improved artificial bee colony
LES Large Eddy Simulations
PC Personal computer
PSO Particle swarm optimization
UAV Unmanned aerial vehicle
WRF Weather research and forecasting
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Nomenclature

Pi,j,p,WR
The threat degree of rain and wind of the ith UAV in the jth threat source under
the pth iterative computation.

Pi,j,p,R
The threat degree of rain of the ith UAV in the jth threat source under the pth

iterative computation.

Pi,j,p,W
The threat degree of wind of the ith UAV in the jth threat source under the pth

iterative computation.
dWR The distance between UAV and weather threat source center.
DWR The radius of weather threat source.

Pi,p,WR
The integrated weather threat degree of the ith UAV under the pth iterative
computation.

M1 The total amount of weather threat source.

fi,j,p,q(x, y)
The probability density function of bi-GMM function of the ith UAV in the jth

threat source under the pth iterative computation, q is the number of Gaussian
function.

µ1i,j,p,q
The mean of Gaussian function 1 of the ith UAV in the jth threat source under
the pth iterative computation, q is the number of Gaussian function.

µ2i,j,p,q
The mean of Gaussian function 2 of the ith UAV in the jth threat source under
the pth iterative computation, q is the number of Gaussian function.

σ1i,j,p,q
The variance of Gaussian function 1 of the ith UAV in the jth threat source under
the pth iterative computation, q is the number of Gaussian function.

σ2i,j,p,q
The variance of Gaussian function 2 of the ith UAV in the jth threat source under
the pth iterative computation, q is the number of Gaussian function.

ρi,j,p,q
The correlation coefficient of bi-GMM of the ith UAV in the jth threat source
under the pth iterative computation, q is the number of Gaussian function.

Pi,j,p,TT
The threat degree of transmission tower of the ith UAV in the jth threat source
under the pth iterative computation.

ωj,p,q
The weight of Gaussian function, j is the number of threat source, p is number of
iteration times, q is the number of Gaussian function.

Pi,p,TT
The integrated transmission tower threat degree of the ith UAV in the pth threat
source.

M2 The total number of transmission tower in the investigated area.
θi,j,p Please see the definition in Figure 5.
Ai,j,pOi,j,p,m Please see the definition in Figure 5.
Ci,j,pOi,j,p,m Please see the definition in Figure 5.
Bi,j,pOi,j,p,t Please see the definition in Figure 5.
Oi,j,p,tOi,j,p,m Please see the definition in Figure 5.
Ei,j,pFi,j,p Please see the definition in Figure 5.
Gi,j,p Hi,j,p Please see the definition in Figure 5.
Ci,j,pDi,j,p Please see the definition in Figure 5.

Pi,j,p,UT
The threat degree of upland of the ith UAV in the jth threat source under the pth

iterative computation.

Pi,p,UT
The integrated threat degree of upland of the ith UAV under the pth iterative
computation.

Ci,p,Total The total cost and revenue of the ith UAV in the pth iterative computation.

Ci,p,MP
The mission point cost function of the ith UAV under the pth iterative
computation.

Ci,p,RP
The recovery point cost function of the ith UAV under the pth iterative
computation.

δD
MP The weight of distance factor of mission point.

δO
MP The weight of oil consumption factor of mission point.

δWR
MP The weight of weather threat factor of mission point.

δTT
MP The weight of transmission tower threat factor of mission point.

δUT
MP The weight of upland threat factor of mission point.

K The total number of mission point.
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δD
RP The weight of distance factor of recovery point.

δO
RP The weight of oil consumption factor of recovery point.

δWR
RP The weight of weather threat factor of recovery point.

δTT
RP The weight of transmission tower threat factor of recovery point.

δUT
RP The weight of upland threat factor of recovery point.

Pi,p,D(k)
The distance cost value of mission point k of the ith UAV under the pth iterative
computation.

Pi,p,O(k)
The oil consumption cost value of mission point k of the ith UAV under the pth

iterative computation.

Pi,p,WR(k)
The weather cost value of mission point k of the ith UAV under the pth iterative
computation.

Pi,p,TT(k)
The transmission tower cost value of mission point k of the ith UAV under the
pth iterative computation.

Pi,p,UT(k)
The upland cost value of mission point k of the ith UAV under the pth iterative
computation.

Pi,p,D(c)
The distance cost value of recovery point c of the ith UAV under the pth iterative
computation.

Pi,p,O(c)
The oil consumption cost value of recovery point c of the ith UAV under the pth

iterative computation.

Pi,p,WR(c)
The weather cost value of recovery point c of the ith UAV under the pth iterative
computation.

Pi,p,TT(c)
The transmission tower cost value of recovery point c of the ith UAV under the
pth iterative computation.

Pi,p,UT(c)
The upland cost value of recovery point c of the ith UAV under the pth iterative
computation.

rp The amount of drug delivery UAV under the pth iterative computation.
sp The amount of image collection UAV under the pth iterative computation.
tp The amount of communication relay UAV under the pth iterative computation.
α The rate of successful drug delivery of drug delivery UAV.
β The improvement probability of drug delivery caused by image collection UAV.

γ
The decreasing probability of threat source caused by communication relay
UAV.

R(k) The revenue of the kth mission point.
ω1 The weight of Gaussian function 1.
ω2 The weight of Gaussian function 2.
I The total amount of UAV.
fp_AGA The fitness function of AGA under the p_AGAth iteration.
T2p_AGA The AGA application of Equation (15).
Pp_AGA,S The selection probability of AGA under the p_AGAth iteration.
N_AGA The maximum population amount of AGA.
Pp_AGA,C The cross probability of AGA under the p_AGAth iteration.
ap_AGA A control parameter of AGA fitness function under the p_AGAth iteration.
bp_AGA A control parameter of AGA fitness function under the p_AGAth iteration.
cp_AGA A control parameter of AGA fitness function under the p_AGAth iteration.
dp_AGA A control parameter of AGA fitness function under the p_AGAth iteration.
Pp_AGA,C_max The maximum of cross probability of AGA under the p_AGAth iteration.
fp_AGA,max The maximum of fitness function of AGA under the p_AGAth iteration.
fp_AGA,mean The mean of fitness function of AGA under the p_AGAth iteration.
Pp_AGA,M The mutation probability of AGA under the p_AGAth iteration.
Pp_AGA,M,max The maximum of mutation probability of AGA under the p_AGAth iteration.
KAGA The adjustment parameter of fitness function of AGA.
hi The iteration times-related variable of AGA algorithm.
T2max

p_AGA The maximum of cost-revenue function under the p_AGAth iteration.
p_AGAmax The maximum iteration number of AGA.
xij The coordinate of flight path.
xmin

j The minimum value of xij.
xmax

j The maximum value of xij.
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NP The total amount of bee of ABC algorithm.
D The parameter dimension of ABC algorithm.
fp_IABC The fitness function of IABC algorithm.
T1p_IABC The cost-revenue function of IABC algorithm under p_IABCth iteration.
xbest,j The jth dimension component of global optimal solution of current population.
ε(p_IABC) The balanced searching factor 1 of IABC algorithm.
δ(p_IABC) The balanced searching factor 2 of IABC algorithm.
p_IABC The current iteration number of IABC algorithm.
p_IABCmax The maximum iteration number of IABC algorithm.
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