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Abstract: Many industrial processes include MIMO (multiple-input, multiple-output) systems that
are difficult to control by standard commercial controllers. This paper describes a MIMO case of a
class of SISO-APC (single-input, single-output adaptive predictive controller) based upon an ARX
(autoregressive with exogenous variable) model. This class of SISO-APC based on ARX models
has been successfully and extensively used in many industrial applications. This approach aims
to minimize the barriers between the theory of predictive adaptive control and its application in
the industrial environment. The proposed MIMO-APC (MIMO adaptive predictive controller)
performance is validated with two simulated processes: a quadrotor drone and the quadruple tank
process. In the first experiment the proposed MIMO APC shows ISE-IAE-ITAE performance indices
improvements of up to 25%, 25.4% and 38.9%, respectively. For the quadruple tank process the water
levels in the lower tanks follow closely the set points, with the exception of a 13% overshoot in tank 1
for the minimum phase behavior response. The controller responses show significant performance
improvements when compared with previously published MIMO control strategies.

Keywords: adaptive predictive control; ARX; MIMO systems control; time-variant systems control

1. Introduction

The industrial process control sector has undergone a significant change in recent
years with the incorporation of more complex, faster and multivariable processes. It is
necessary to incorporate advanced control techniques that allow these processes to be
controlled. Advanced process controls, now, are not only based on mathematical modeling
and optimization objectives; it is important that new control systems should consider the
interactions between hardware, software and mathematical modeling. One of several
advanced control techniques is predictive control.

Model predictive control is becoming one of the most popular advanced control
technique and has been use for more than four decades. This control strategy is based on
numerical optimization [1]. This strategy considers the future values of a variable based
on existing information on the process and the use of the explicit form of a mathematical
model of the process’ internal dynamics, which is used to predict the evolution of the
controlled variables over a prediction’s time horizon defined by the user. Thus it is possible
to calculate the future manipulated variables to ensure that, in this horizon, the controlled
variables converge to their reference values. If the predictive model is able to predict
the behavior of the system, the variable under control will match the desired variable [2].
Predictive control can be used to control processes with relatively simple dynamics, as well
as complex processes having long delay times, having non-minimum phase response or
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even having open-loop instabilities. For those applications, a well implemented predictive
control technique can provide a high degree of robustness [3].

The unsuspected perturbations present in the industrial application field may be
strong enough to alter the process nature; in this case, a mathematical model may not be
able to accurately represent the process dynamic. By including an adaptation mechanism
in the predictive controller, the APC can adjust the parameters of the predictive model
and minimize the impact of the process dynamics related to the unknown disturbances in
and time-varying nature of industrial processes. This approach has been implemented and
documented in different application fields, such as automobile suspesion systems, oil field,
aerospace and others [4–11].

The adaptive predictive control strategy offers an effective way to tackle the adaptation
problems in multivariable control systems by including an estimated process model in
the computation of control actions. The process model estimation is achieved through
the incorporation of an identification mechanism on the adaptive control strategy. In this
work, multivariable recursive least square (MRLS) is used as an adaptive mechanism tool.
This paper considers linear difference equation models, an important class of stochastic
models for describing dynamic behavior, which has received a great deal of attention
and includes stationary models. One can find different structures of this kind of model
in the literature, such as ARX/CAR models. On the other hand, a class of models for
nonstationary dynamic behaviors are known as ARIMAX/CARIMA models. This work
presents an extension to the (ARX) MIMO case of the previous (ARX) SISO predictive
controller proposed in [5]. This SISO controller, based on the ARX model, is successfully
and extensively used in many industrial applications [5,7–11]. Additionally, this SISO
algorithm has been implemented and tested in embedded systems, showing improvements
in terms of execution time compared with other MPC strategies found in the literature [12].

Although the APC algorithm has been successfully applied in the industry, to date its
practical implementation has been mostly limited to the SISO case due to the fact that it can
replace actual PID control loops. As such, industrial processes often present interactions
between the input and output variables. The input–outputs interaction makes the design of
the control strategy even more complex, due to the fact one several outputs can be affected
by the change in one input; this interaction is also knows as a “coupled” system [13]. The
presence of this coupling typically limits the performance of the control tools developed for
SISO processes, because these controllers do not take this coupling into account. Therefore,
the need for a performance improvement in the field of MIMO processes control has
motivated the research of control techniques specifically developed for multivariable
processes including linear and nonlinear systems, different control approaches like fuzzy
controllers, neural network strategies, MPC and adaptive predictive controllers [14–18].

The structure of the paper is the following: Section 2 shows the general control scheme
and the formulation, synthesis and recursive algorithm of the proposed MIMO-APC strat-
egy. Section 3 briefly describes the adaptation mechanism. In Section 4, the proposed
MIMO-APC is validated by implementing the proposed controller in two simulated pro-
cesses. Finally, Section 5 presents the conclusions gathered and suggestions for further
research.

2. Predictive Control for MIMO-ARX Process
2.1. General Control Strategy

Adaptive predictive control was first introduced as a new solution in the context of
adaptive control [6]. The adaptive predictive control consist of a driver block, a predictive
model and an adaptation mechanism. Figure 1 shows a global scheme of the APC strategy.
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Figure 1. Global scheme of the Adaptive Predictive Control strategy [12].

The Driver Block (DB) calculates the trajectory that guides the controlled variables to
their references in an optimal way, based on the driver block equation [5,19]. The Predictive
Model (PM) computes the control signals at every instant k; its objective is to lead the
process output to meet the desired trajectory estimated by the DB. The predictive model
will estimate the process output to calculate the prediction error every instant k using the
estimated ARX model parameters at the instant k and the applied control signal u(k− 1).
The ARX equation described in the predictive model is, at the beginning, an approximation
model based on the process knowledge; this equation will be adjusted by the Adaptation
Mechanism (AM), which will adjust the predictive model’s parameters based on prediction
error until this tends asymptotically towards zero [20]; simultaneously, the current value of
the values under control will feedback to the DB through the AM.

2.2. Representation of a MIMO-ARX Process

In MIMO systems, having more than one variable to be controlled has causal rela-
tionships with more than one variable to be manipulated, unlike SISO systems, wherein
the input–output causal relationship is straightforward. The performance of the MIMO
control system depends not only on the applied control strategy, but also upon a mathe-
matical model that includes the interconnection between the variables of a coupled system.
Based on the SISO-ARX model with wide application in real time control systems, this
paper considers a multivariable, with autoregressive and exogenous variables, MIMO-ARX
predictive model.

A MIMO process with a number of controlled variables r and a number of control
signals s is considered. The set of input and output variables can be represented in a vector
form as y ∈ Rr and u ∈ Rs respectively.

The output vector y is defined as follows:

y(k) =
n

∑
i=1

Aiy(k− i) +
m

∑
i=1

Biu(k− i) (1)

Ai =


a11

i a12
i . . . a1r

i
a21

i a22
i . . . a2r

i
...

...
. . .

...
ar1

i ar2
i . . . arr

i

 (2)

Bi =


b11

i b12
i . . . b1s

i
b21

i b22
i . . . b2s

i
...

...
. . .

...
br1

i br2
i . . . brs

i

 (3)

where Ai ∈ Rr×r and Bi ∈ Rr×s, n and m respectively represent the real order of the
autorregresive and exogenous variables of the MIMO process.
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2.3. Multivariable Predictive Control Strategy

In order to obtain a prediction model, a prediction horizon Np ≥ 1 is used. Thus, if
the model (1) is extended to a prediction horizon j = 1, 2, . . . , Np, a prediction model is
obtained as follows:

ŷ(k + j|k) =
n̂

∑
i=1

Âiŷ(k− i + j|k) +
m̂

∑
i=1

B̂iû(k− i + j|k) (4)

where n̂ and m̂ represent the estimated order of the autorregresive and exogenous variables
of the MIMO ARX Model, Â and B̂ are the estimated parameters of the MIMO model and
the input–output vectors û− ŷ contain real and estimated values.

It is possible to rewrite (4) in order to split the terms of Â′s and B̂′s associated with
the terms y and u in the future and past, respectively.

ŷ(k + j) =
j−1

∑
i=1

Âiŷ(k− i + j) +
n̂

∑
i=j

Âiy(k− i + j)+

j−1

∑
i=1

B̂iû(k− i + j) +
m̂

∑
i=j

B̂iu(k− i + j)

(5)

To conduct a prediction, Equation (5) at instant k will be extended j time steps as
follows:

ŷ(k + 1) =Â1y(k) + Â2y(k− 1) + · · ·+ Ân̂y(k− n̂ + 1)+

B̂1u(k) + B̂2u(k− 1) + · · ·+ B̂m̂u(k− m̂ + 1)

Now define ŷ(k + 1) as

ŷ(k + 1) =
n̂

∑
i=1

E(1)
i y(k− i + 1) +

m̂

∑
i=1

G(1)
i u(k− i + 1) (6)

where Âi = E(1)
i and B̂i = G(1)

i .

Then, ŷ(k + 2) is obtained as follows:

ŷ(k + 2) =Â1ŷ(k + 1) +
n̂

∑
i=2

Âiy(k− i + 2)+

B̂1û(k + 1) +
m̂

∑
i=2

B̂iu(k− i + 2)

(7)

Substituting Equations (6) in (7) obtains:

ŷ(k + 2) =Â1

[
n̂

∑
i=1

E(1)
i y(k− i + 1)

]
+

Â1

[
m̂

∑
i=1

G(1)
i u(k− i + 1)

]
+

n̂

∑
i=2

Âiy(k− i + 2) + B̂1û(k + 1)+

m̂

∑
i=2

B̂iu(k− i + 2)

(8)
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Associating terms in the function of y(k− i + 1) and u(k− i + 1), we get:

ŷ(k + 2) =
n̂

∑
i=1

(
Â1E(1)

i + Âi+1

)
y(k− i + 1)+

m̂

∑
i=1

(
Â1G(1)

i + B̂i+1

)
u(k− i + 1)+

B̂1û(k + 1)

(9)

where Âi = 0 for i > n̂ and B̂i = 0 for i > m̂.
As in (6), Equation (9) can be expressed in terms of E and G:

ŷ(k + 2) =
n̂

∑
i=1

E(2)
i y(k− i + 1)+

m̂

∑
i=1

G(2)
i u(k− i + 1)+

G(1)
1 û(k + 1)

(10)

Equation (10) shows that the future terms have disappeared; in this case, the output at
instant j = 2 depends only on past terms.

Now, from Equation (5), a horizon j = 3 is used:

ŷ(k + 3) =
2

∑
i=1

Âiŷ(k− i + 3) +
n̂

∑
i=3

Âiy(k− i + 3)+

2

∑
i=1

B̂iû(k− i + 3)+

m̂

∑
i=3

B̂iu(k− i + 3)

(11)

Substituting (6) and (10) in (11)

ŷ(k + 3) =Â1

[
n̂

∑
i=1

E(2)
i y(k− i + 1)

]
+

Â1

[
m̂

∑
i=1

G(2)
i u(k− i + 1)

]
+

Â1G(1)
1 û(k + 1)+

A2

[
n̂

∑
i=1

E(1)
i y(k− i + 1)

]
+

A2

[
m̂

∑
i=1

G(1)
i u(k− i + 1)

]
+

n̂

∑
i=3

Âiy(k− i + 3) +
2

∑
i=1

B̂iû(k− i + 3)+

m̂

∑
i=3

B̂iu(k− i + 3)

(12)

Associating terms of ŷ(k− i + 1) and û(k− i + 1):
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ŷ(k + 3) =
n̂

∑
i=1

(
Â1E(2)

i + Â2E(1)
i + Âi+2

)
y(k− i + 1)+

m̂

∑
i=1

(
Â1G(2)

i + Â2G(1)
i + B̂i+2

)
u(k− i + 1)+(

Â1G(1)
1 + B̂2

)
û(k + 1) + B̂1û(k + 2)

(13)

where, again Âi = 0 for i > n̂ and B̂i = 0 for i > m̂.
Therefore, Equation (13) is rewritten as follows:

ŷ(k + 3) =
n̂

∑
i=1

[
2

∑
h=1

[
ÂhE(3−h)

i

]
+ Âi+2

]
y(k− i + 1)+

m̂

∑
i=1

[
2

∑
h=1

[
ÂhG3−h

i

]
+ B̂i+2

]
u(k− i + 1)+

2

∑
i=1

G(i)
1 û(k + 3− i)

(14)

As in (6) and (10) the prediction equation for ŷ(k + 3) is:

ŷ(k + 3) =
n̂

∑
i=1

E(3)
i y(k− i + 1)+

m̂

∑
i=1

G(3)
i u(k− i + 1)+

2

∑
i=1

G(i)
1 û(k + 3− i)

(15)

In general, the prediction equation for any horizon j can be expressed as follows:

ŷ(k + j) =
n̂

∑
i=1

[
j−1

∑
h=1

[
ÂhE(j−h)

i

]
+ Âj+i−1

]
y(k− i + 1)+

m̂

∑
i=1

[
j−1

∑
h=1

[
ÂhGj−h

i

]
+ B̂j+i−1

]
u(k− i + 1)+

j−1

∑
i=1

G(i)
1 û(k + j− i)

(16)

as in previous developments, Equation (16) can be rewritten as

ŷ(k + j) =
n̂

∑
i=1

E(j)
i y(k− i + 1)+

m̂

∑
i=1

G(j)
i u(k− i + 1)+

j−1

∑
i=1

G(i)
1 û(k + j− i)

(17)

In (17) the second summation contains û(k), for practical purposes, this term is sepa-
rated:



Actuators 2022, 11, 21 7 of 19

ŷ(k + j) =
n̂

∑
i=1

E(j)
i y(k− i + 1)+

m̂

∑
i=2

G(j)
i u(k− i + 1)+

G(j)
1 û(k)+

j−1

∑
i=1

G(i)
1 û(k + j− i)

(18)

Reordering the terms of G(i)
1 associated with the control actions in the present and

future, Equation (18) is expressed as:

ŷ(k + j) =
n̂

∑
i=1

E(j)
i y(k− i + 1)+

m̂

∑
i=2

G(j)
i u(k− i + 1)+

j

∑
i=1

G(i)
1 û(k + j− i)

(19)

Equation (19) shows the predicted output at instant k + j based on the process param-
eters, inputs and outputs at every instant k. The recursiveness of the parameters matrices
are defined as follow:

E(j)
i =

j−1

∑
h=1

[
ÂpE(j−h)

i

]
+ Âi+j−1 (20)

G(j)
i =

j−1

∑
h=1

[
ÂpG(j−h)

i

]
+ B̂i+j−1 (21)

under the following initial conditions:

E1
i =Âi i = {1, 2, . . . , n̂} (22)

E(j)
i =Or×r m̂ > n̂ (23)

G1
i =B̂i i = {1, 2, . . . , m̂} (24)

G(j)
i =Or×s n̂ > m̂ (25)

2.4. Control Law

Based on the MIMO predictive control law (26) :

ŷ(k + Np|k) = ŷd(k + Np|k) (26)

Assuming that the value of the control signals of the system remains constant over the
entire prediction horizon (û(k|k) = û(k + 1|k) = · · · = û(k + Np − 1|k)) and considering
the predictive control law (26), Equation (19) leads to the control law expression as follows:

ŷd(k + Np) =
n̂

∑
i=1

E
(Np)
i y(k− i + 1)+

m̂

∑
i=2

G
(Np)
i u(k− i + 1)+

H(Np)û(k|k)

(27)
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where H(Np) = ∑
Np
i=1 G(i)

1 .
From (27) the vector containing the control signals û(k|k) for the entire prediction

horizon Np at time k is:

û(k|k) =
(

H(Np)
)−1[

yd(k + Np|k)−
n̂

∑
i=1

E
(Np)
i y(k− i + 1)−

m̂

∑
i=2

G
(Np)
i u(k− i + 1)

] (28)

The simplicity of the calculation of this control law and its easy implementation on
different hardware/software platforms makes this approach attractive for real industrial
applications.

2.5. Desired Trajectory for the Multivariable Predictive Control

The control law (28) is used to implement the new proposed multivariable predictive
control. Since the desired output trajectories are independent, it is not necessary to apply
a multivariable recursion algorithm to calculate them. The desired trajectory for each
controlled variable is generated using the recursive SISO algorithm, described in [20] as
follows:

yj
d(k + Np|k) =

p

∑
i=1

ϕ
(Np)
i y(k + 1− i)+

q

∑
i=2

δ
(Np)
i ysp(k + 1− i) + µ(Np)ysp(k)

(29)

where

ϕ
(j)
i = ϕ

(j−1)
1 αi + ϕ

j−1
i+1 (30)

δ
(j)
i = ϕ

(j−1)
1 βi + δ

j−1
i+1 (31)

µ(j) = δ
(Np)
1 + δ

(Np−1)
1 + · · ·+ δ

(1)
1 (32)

∀i ∈ {1, 2, . . . , p}, ∀j ∈ {2, 3, . . . , Np}.
The coefficients α and β are the coefficients of the driver block, the selection of these

parameters is thoroughly discussed in [5]. Note that if the same dynamic behavior for each
output is considered, the same coefficients are used. If different dynamics are necessary,
then the desired coefficients must be defined for each output independently.

Having generated the desired trajectory for each of the controlled variables, the vector
containing those variables for each instant k is defined as:

yd(k + Np|k) =


y1

d(k + Np|k)
y2

d(k + Np|k)
...

yr
d(k + Np|k)

 (33)

Up to this point we have presented the extension of the recursive algorithm for a
multivariable APC strategy. As mentioned earlier in this section, the main advantage of the
proposed algorithm is that it is based on a multivariable system with a coupling between
all input and output variables of the system. Systems based upon output decoupling
algorithms are shown in [3], from which we can assert that the proposed case is special.
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3. Adaptation Mechanism Based on the Least Squares Algorithm

The method of least squares identification is a strategy for identifying dynamical
systems by which an ideal model with an ARX structure is adjusted from an initial estima-
tion; a recursive algorithm updates the model parameters when new data from the inputs
and outputs of the system are available, thus making the identification of a process over
time possible. This recursive property allows the least squares strategy to be used as the
adaptation mechanism in the proposed adaptive control strategy.

The multivariable recursive least Squares (MRLS) equations for identifying the param-
eters of a multivariable system with s number of inputs and r number of outputs can be
summarized as follows:

ek = yk −ΘT
k−1Ψk (34)

C =

[
1
a
+ ΨT

k
Pk−1

γ
Ψk

]
(35)

Lk =
1

γC
Pk−1Ψk (36)

Θ̂k =



ÂT
1

ÂT
2
...

ÂT
n̂

B̂T
1

B̂T
2
...

B̂T
m̂


= Θ̂k−1 + LkeT

k (37)

Pk =
1
γ

[
I −ΨT

k Lk

]
Pk−1 (38)

where at instant k;
ek ∈ Rr is the prediction error vector, yk ∈ Rr is the output vector, Ψk ∈ Rr·n̂+s·m̂

is themultivariable regressive input-output vector, Θ̂k ∈ R(r·n̂+s·m̂)×(max(r,s)) defines the
parameters matrix, Lk ∈ Rr·n̂+s·m̂ represents the gain vector, Pk ∈ R(r·n̂+s·m̂)×(r·n̂+s·m̂) is the
inverse covariance matrix and γ ∈ R is the forgetting factor.

As can be seen from the proposed algorithm for the adaptation mechanism, it is
necessary to initialize the covariance matrix, Pk, and the estimated parameters vector Θ̂k.
The covariance matrix, Pk, could be initialized with high values on the diagonal and the
vector, Θ̂k, with zeros.

In order to optimize the adaptation mechanism, a forgotten factor 0.98 ≥ γ < 0.995 is
considered. Additionally, a reset strategy for the covariance matrix is applied when the
estimation error between the estimated outputs and measured outputs exceeds a defined
limit value. This restart is translated as a diagonal matrix with high values in the covariance
matrix and has the effect of increasing the speed of adaptation.

The computation of the driver block, the prediction model and the adaptive mecha-
nism can be summarized in the algorithm shown in Algorithm 1.
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Algorithm 1: MIMO-APC algorithm
1. Initialization
1.1. Define the sampling time T
1.2. Set the initial adaptive model (Â′s, B̂′s)
1.3. Define the PDT parameters (α, β)
1.4. Define the prediction horizon Np
2. Driver Block
2.1. Update ysp(k) and measure y(k)
2.2. Compute φ, δ and µ
2.3. Compute the DDT at Np prediction horizon
3. Control Law
3.1. Compute E′s, G′s and H coefficients
3.2. Compute of u(k)
3.3. Apply the control vector u(k)
4. Adaptation Mechanism
4.1. Compute Ψk
4.2. Compute the estimation error ek
4.3. Compute Θ̂k
4.4. Compute Pk
4.5. Update the predictive model parameters (Â, B̂)
4.6. Repeat from 1.3

4. Results and Discussion

In the following section the results of two cases of study wherein the APC was
implemented are shown. The simulation and some performance indexes under different
conditions are documented, as well.

4.1. Quadrotor Flight Control

Interest in unmanned aerial vehicles (UAVs), also call drones, has grown over the last
decade. The reason can be associated to many factors, but most important among them
is reaching places out of the visual line of sight with a certain level of autonomy. It is
increasingly common to see UAVs applications in the fields of agriculture, military, 2D and
3D mapping, logistics, medical, surveillance and many others.

A quadrotor drone is an small aircraft that has four rotors with rotating blades that
enables the UAV to take off and tilt forward for propulsion while in flight. The flight
movement and speed can be changed by varying the speeds of each independent blade,
giving the drone six degrees of freedom (DoF).

The Drone parameters and details used in this experiment are well-described in [21].
Nevertheless, a brief description is presented in this section in order to clarify the predictive
model used in the proposed MIMO-APC strategy.

4.1.1. Quadrotor Dynamics

For this simulation we considered the same simulation parameters as reported in [22].
The four degrees of freedom of the simulated drone provide attitude and position. Move-
ments are thus achieved:

• Pitch: By rotational movement along the transverse axis y, translational movement on
x axis is made.

• Roll: By rotational movement along longitudinal axis x, translational movement on y
axis is made.

• Yaw: Rotational movement along the z axis.
• Throttle: Translational movement on the z axis.

The control parameters’ range of [−1, 1] represents the min and max movement
percentage value and this is given to the internal control. Additionally, φ represents the
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roll angle in radians, θ the pitch angle in radians, ż the vertical speeds in m/s and ψ̇ the
angular speeds in m/s.

For this simulation the quadrotor model is considered a linear time-invariant system,
as described in [22] a sampling time of 66 ms and transfer functions equations are defined
by Equations (39)–(42).

Hx(q−1) =
x(q−1)

ux(q−1)
=

0.01477q−1 + 0.01446q−2

1− 1.939q−1 + 0.9391q−2 (39)

Hy(q−1) =
y(q−1)

uy(q−1)
=

0.01477q−1 + 0.01446q−2

1− 1.939q−1 + 0.9391q−2 (40)

Hz(q−1) =
z(q−1)

ż(q−1)
=

0.00621q−1 + 0.005644q−2

1− 1.751q−1 + 0.7505q−2 (41)

Hyaw(q−1) =
ψ(q−1)

ψ̇(q−1)
=

0.1137q−1 + 0.05722q−2

1− 1.119q−1 + 0.119q−2 (42)

Unlike the strategy reported in [21], here, the MIMO-APC is used to control the whole
quadrotor behavior, instead of using a SISO controller for each DoF of the drone. Thus,
MIMO-ARX model of the quadrotor is given by Equation (43).

Ŷ(k) = Â1Ŷ(k− 1) + Â2Ŷ(k− 2) + B̂1U(k− 1) + B̂2U(k− 2) (43)

where

Â1 =


1.9390 0 0 0

0 1.9390 0 0
0 0 1.7510 0
0 0 0 1.1190

, (44)

Â2 =


−0.9391 0 0 0

0 −0.9391 0 0
0 0 −0.7505 0
0 0 0 −0.1190

, (45)

B̂1 =


0.0148 0 0 0

0 0.0148 0 0
0 0 0.0062 0
0 0 0 0.1137

, (46)

B̂2 =


0.0145 0 0 0

0 0.0145 0 0
0 0 0.0056 0
0 0 0 0.0572

 (47)

The model described by Equation (43) has been selected as the drone time-invariant
model, for this reason, the analysis of the adaptation mechanism performance is not
considered in this experiment case.

4.1.2. Simulation Results

The first test consists of a tracking experiment of four points in a 3D space. In this way,
the drone will simulate free flight-path control. This test is used to evaluate the performance
of the proposed MIMO-APC, described in Section 3. The result obtained from this test
for a prediction horizon Np = 4 is shown in Figure 2. This result indicates that a better
reference tracking can be achieved using the MIMO-APC controller proposed in this paper
in comparison with the multiple SISO controller implemented in [22].
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Figure 2. Three-dimensional simulation of a flight path response.

Now, in order to have a better comparison of both controllers, the performance of
all degrees of freedom are analyzed separately. Figure 2 shows the performance of the
proposed MIMO-APC controller according to translational movement changes in the x,
y and z axes. Notable improvements were achieved using the proposed MIMO-APC.
Figures 3 and 4 show a reduction of the settling time for the translation movement in axes
x and y respectively, and the saturation time has decreased in comparison with the results
presented in [21,22]. Figure 5 shows the performance of the elevation controller (z) where a
reduction of the settling from 4 to 2 s and the saturation time for the control action can be
observed. In both cases, a desired behavior without overshoot is presented.

Figure 3. Result of proposed MIMO-APC controller in axis x.

The performance of the APC is compared with the controllers reported in [21,22]
using the same performance indexes as ISE, IAE and ITAE. Table 1 illustrates the X and Y
performance comparisons for the path-following task. The drone´s performance shows
improvements of 25%, 25.4% and 38.9% in X for the ISE, IAE and ITAE indices respectively,
while improvements of 31.7%, 38.4% and 39% are shown in Y for the ISE, IAE and ITAE
indices, respectively, in comparison with the reported PD controller. The proposed MIMO-
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APC, applied to the quadrotor drone, shows a remarkable reduction in the error of the path-
following flight behavior, in comparison with the result reported with the decentralized
MPC controllers presented in [21].

Figure 4. Result of proposed MIMO-APC controller in axis y.

Figure 5. Result of proposed MIMO-APC controller in axis z.

Table 1. Performance index for path-following strategies.

CONTROLLER ISE 4 IAE 4 ITAE 4
PD X 118.12 0 159.99 0 1862.70 0

EPSAC X 100.81 * 134.20 16.1 1279.60 31.3
MIMO-APC X 25 88.53 25.4 119.33 1138.00 38.9

PD Y 87.28 0 164.65 0 2360.50 0
EPSAC Y 68.89 21 131.68 20 1990.90 15.6

MIMO-APC Y 59.60 31.7 101.32 38.4 1438.70 39
4 are improvements shown in percentages with respect to the PD..X or PD..Y case. (*) here the EPSAC controller
did not improve the performance index criteria.
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4.2. Quadruple-Tank Process Control

In this example the adaptive predictive controller is used to control the quadruple
tank process. This process is considered a multivariable and coupled system that consists
of four interconnected tanks that can configured to show the effect of multivariable zero
(minimum and non minimum phase) and nonlinear behavior [17,23,24]. Figure 6 shows a
schematic diagram of the plant.

Figure 6. The quadruple tank process.

The regulation problem in this system focuses on the lower tanks, A2 and B2, that
are directly filled by two pumps, BP and AP, and indirectly by Tank A1 and tank B1,
respectively. Pump BP supplies with fluid tanks A2 and B1 using a three-way valve, while
pump AP supplies B2 and A1. On each tank (A1, A2, B1 and B2) a flow meter, regulated
by a pneumatic valve and level sensors, have been included. The three-way valves are
manually emulated; the positions of these two valves determine the non-minimum and
minimum phase behaviors for the linear system, due to the location of the zero in the
transfer function matrix.

The control inputs u1, u2 are the (0–10 V) simulated signal voltages applied to the two
pumps. The simulated control outputs y1, y2 are (0–10 V) signal voltages representing the
levels in the lower tanks.

4.2.1. Linear Model

Consider the following state space model of the quadruple tank process described
in [17]:

ẋ = Ax + Bu

y = Cx
(48)
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where

A =


− 1

T1
0 A3

A1T3
0

0 − 1
T2

0 A4
A2T4

0 0 − 1
T3

0
0 0 0 − 1

T4

, (49)

B =


γ1k1
A1

0

0 γ2k2
A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

, (50)

C =

[
kc 0 0 0
0 kc 0 0

]
, (51)

D = 0. (52)

u =

[
4u1
4u2

]
, (53)

x =


4h1
4h2
4h3
4h4

, (54)

y =

[
4y1
4y2

]
(55)

and

Ti =
Ai
ai

√
2h0

i
g

(56)

The transfer function matrix from u to y is given by

G(s) =

 γ1c1
1+sT1

(1−γ2)c1
(1+sT1)(1+sT3)

(1−γ1)c2
(1+sT2)(1+sT4)

γ2c2
1+sT2

 (57)

where c1 = T1k1kc
A1

and c2 = T2k2kc
A2

In the system, the manual position adjustment of the valve determines the minimum
phase or non-minimum phase behavior of the system. These valve adjustments can be
written with respect to flow ratios γ1 and γ2, as shown in Table 2.

Table 2. Location of zeros on the linearized system as a function of the flow ratios γ1 and γ2.

z1 z2 System Behavior

1 < γ1 + γ2 ≤ 2 negative negative minimum phase
γ1 + γ2 = 1 zero negative boundary

0 < γ1 + γ2 ≤ 1 positive negative non-minimum phase

The quadruple tank has approximately the physical constants shown in Table 3.
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Table 3. Parameter values for the quadruple tank simulation.

Parameter Units Value

Ai cm2 4.9
ai cm2 0.03
ki V/cm 1.6
kc V/cm 0.5
g cm/s2 981

The following parameters have been used for all experiments: n̂ = m̂ = 2, s = r = 2.
The driver block for both outputs is represented by q first-order equation with a τ = 3.

4.2.2. Experiment Result

The first part of the experiment consists of adjusting the flow valves so that the system
behavior is its minimum phase. In this case, the value of γ1 has been changed from 0.7
to 0.6, in online mode (30 s). Based on this change, it is necessary to update the model
parameters with the adaptive mechanism and to adjust the MIMO-APC settings. Figures 7
and 8 show the performance of the MIMO-APC for the system operating in both minimum
and non-minimum phases. Figure 7 shows that the level controllers closely follow the
set points with the exception of a 13% overshoot in the tank A2 response, while Figure 8
illustrates very close set-point tracking throughout the experiment.
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Figure 7. MIMO-APC performance in minimum phase behavior

The adaptation mechanism starts adjusting parameters after a change in the setpoint.
As in [23], in the non-minimum phase behavior, the value of γ1 +γ2 < 1. In this experiment,
the cases of γ1 = 0.5 and γ1 = 0.4 are considered. In Figure 8 the behavior of the controller
is shown when it is operating in the non-minimum phase. In both experiment cases, a
forgetting factor = 1 in the adaptation mechanism and a prediction horizon Np = 4 in the
MIMO-APC strategy are considered.
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Figure 8. MIMO-APC control in non-minimum phase behavior.

Once the predictive model is adjusted, the effect of the adaptation mechanism is based
upon RLS and the performance of the MIMO-APC, in both the minimum or non-minimum
phase experiment cases, can be observed.

5. Conclusions and Future Work

This paper showed a formulation of a novel MIMO-APC approach for MIMO-ARX
models. The development focused on an APC strategy applied to multivariable processes
based on a MIMO-ARX model as a predictive model without restrictions in the number
of inputs/outputs, of the system order or prediction horizon. The application of the
obtained MIMO-APC algorithm in two benchmark application examples was presented,
showing important improvements of as much as 39% in the quadrotor drone experiment
case and excellent set-point tracking behavior in the quadruple-tank experiment case, both
in comparison with the control strategies previously reported in the literature.

There are two aspects from which our future work will be considered. One is that,
during the calculation of the desired control path, in the driver block Yd(k) will be formu-
lated considering the actuator’s constraints; this helps to reduce or eliminate the saturation
of the control action of the APC. Second, our objective is to achieve the application of an
embedded APC controller and/or implement this APC in programmable logic controllers.
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MRAC model reference adaptive controller
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DB driver block
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MPC model predictive control
PM predictive model
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1. Domański, P.D. Performance Assessment of Predictive Control—A Survey. Algorithms 2020, 13, 97. http://doi.org/10.3390/a13040097.
2. Mayne, D.Q. Model Predictive Control: Recents developments and future promise. Automatica 2014, 50, 2976–2986
3. Cui, H.; Pang, Z.; Pang, Z. Generalized Predictive Control Based on Input Design. In Proceedings of the 7th World Congress on

Intelligent Control and Automation, Chongqing, Chian, 25–27 June 2014; pp. 5594–5599
4. Piñón, A.; Favela-Contreras, A.; Félix-Herrán, L.C.; Beltran-Carbajal, F.; Lozoya, C. An ARX Model-Based Predictive

Control of a Semi-Active Vehicle Suspension to Improve Passenger Comfort and Road-Holding. Actuators 2021, 10, 47.
https://doi.org/10.3390/act10030047.

5. Raimondi, A.; Favela-Contreras, A.; Beltrán-Carbajal, F.; Piñón-Rubio, A.; De La Peña-Elizondo, J.L. Design of an adaptive
Predictive Control Strategy for Crude Oil Atmospheric Distillation Process. Control. Eng. Pract. 2015, 34, 39–48.

6. Martín-Sánchez, J.M.; Lemos, J.M.; Rodellar, J.; Survey of industrial optimized adaptive control. Int. J. Adapt. Control. Signal
Process. 2012, 26, 881–918.

7. Nevado, A.; Martín, L.; Sanz, J.; Alcalde, R.; Slaven, K. Temperature optimization of a naphtha splitter unit. Adv. Electr. Comput.
Eng. 2008, 8, 7–16.

8. Aguilar, J.V.; Langarita, P.; Linares, I.; Rodellar, J. Automatic Control of Flows and Levels in an Irrigation Canal. IEEE Trans. Ind.
Appl. 2009, 45, 2198–2208.

9. Estrada, R.; Favela, A.; Nevado, A.; Raimondi, A.; Gracia, E. Control of five sulphur recovery units at PEMEX Cadereyta refinery.
In Proceedings of the Third IEEE Seminar for Advanced Industrial Control Applications (SAICA 2009), Madrid, Spain, 7–16
November 2009; pp. 79–88.

10. Nevado, A.; Martín-Sánchez, J.M.; Requena, R. ADEX control of steam temperature in a combined cycle. In Proceedings of the
2010 IEEE International Energy Conference, Manama, Bahrain, 18–22 December 2010; pp. 137–142.

11. Raimondi, A.; Favela-Contreras, A.; Estrada, R.; Nevado, A.; Gracia, E. Adaptive predictive control of the sulfur recovery process
at Pemex Cadereyta refinery. Adapt. Control. Signal Process. 2012, 6, 961–975.

12. De La Cruz-Malagón, I.; Favela-Contreras, A.; Ávila, A. Performance-Improved Implementation of the SISO Adaptive Predictive
Control Algorithm for Embedded Systems. IEEE Trans. Ind. Electron. 2019, 67, 8054–8063. https://doi.org/10.1109/TIE.2019.2939973.

13. Naik, R.H.; Kumar, D.A.; Sujatha, P. Independent controller design for MIMO processes based on extended simplified decoupler
and equivalent transfer function. Ain Shams Eng. J. 2020, 2, 11. https://doi.org/10.1016/j.asej.2017.10.011

14. Kalat, A.A. A robust direct adaptive fuzzy control for a class of uncertain nonlinear MIMO systems. Soft Comput. 2019, 23,
9747–9759. https://doi.org/10.1007/s00500-018-3543-9.



Actuators 2022, 11, 21 19 of 19

15. Wang, C.; Gao, J.; Liang, M.; Chai, Y. Design of Adaptive Fuzzy Controllers for a Class of Fractional Order Nonlinear MIMO
Systems With Input Saturation. IEEE Access 2020, 8, 104590–104602. https://doi.org/10.1109/ACCESS.2020.2998681.

16. Dutta, L.; Das, D.K. An adaptive feedback linearized model predictive controller design for a nonlinear multi-input multi-output
system. Int. J. Adapt. Control Signal Process 2021, 35, 991–1016. https://doi.org/10.1002/acs.3239

17. Saibabu, P.C.; Sai, H.; Yadav, S.; Srinivasan, C.R. Synthesis of model predictive controller for an identified model of MIMO process.
Indones. J. Electr. Eng. Comput. Sci. 2020, 17, 950–956. https://doi.org/10.11591/ijeecs.v17.i2.pp941-949

18. Uçak, K. A Novel Model Predictive Runge-Kutta Neural Network Controller for Nonlinear MIMO Systems. Neural Process. Lett.
2020, 51, 1789–1833. https://doi.org/10.1007/s11063-019-10167-w.

19. Estrada, R.; Favela, A.; Raimondi, A.; Nevado, A.; Requena, R.; Beltrán-Carbajal, F. Stable Predictive Control Horizons. Int. J.
Control. 2012, 85, 361–372.

20. Martín-Sánchez, J.M.; Rodellar, J. Adaptive Predictive Expert Control: Methodology, Design and Application; UNED: Madrid, Spain,
2005.

21. Hernandez, A.; Murcia, H.; Copot, C.; Keyser, R.D. Model predictive path-following control of an A.R. drone quadrotor. In
Proceedings of the Memorias del XVI Congreso Latinoamericano de Control Automatico, Quintana Roo, Mexico, 14–17 Octpber
2014.

22. Hernandez, A.; Cosmin, C.; Vlas, T.; Nascu, I. Identification and Path Following Control of an AR.Drone Quadrotor. In
Proceedings of the 17th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 17–19
October 2014.

23. Johansson, K.H. The quadruple tank process: A multivariable laboratory process with an adjustable zero. IEEE Trans. Control.
Syst. Technol. 2000, 8, 456–465.

24. García-Gabín, W.; Camacho, E.F. Application of multivariable GPC to a four tank process with unestable transmission zeros. In
Proceedings of the International Conference on Control Applications, Glasgow, UK, 18–20 September 2002; pp. 645–650.


	Introduction
	Predictive Control for MIMO-ARX Process
	General Control Strategy
	Representation of a MIMO-ARX Process
	Multivariable Predictive Control Strategy
	Control Law
	Desired Trajectory for the Multivariable Predictive Control

	Adaptation Mechanism Based on the Least Squares Algorithm
	Results and Discussion
	Quadrotor Flight Control
	Quadrotor Dynamics
	Simulation Results

	Quadruple-Tank Process Control
	Linear Model
	Experiment Result


	Conclusions and Future Work
	References

