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Abstract: The Remaining useful life (RUL) prediction is of great concern for the reliability and safety
of lithium-ion batteries in electric vehicles (EVs), but the prediction precision is still unsatisfactory
due to the unreliable measurement and fluctuation of data. Aiming to solve these issues, an adaptive
sliding window-based gated recurrent unit neural network (GRU NN) is constructed in this paper
to achieve the precise RUL prediction of LIBs with the soft sensing method. To evaluate the battery
degradation performance, an indirect health indicator (HI), i.e., the constant current duration (CCD),
is firstly extracted from charge voltage data, providing a reliable soft measurement of battery capacity.
Then, a GRU NN with an adaptive sliding window is designed to learn the long-term dependencies
and simultaneously fit the local regenerations and fluctuations. Employing the inherent memory
units and gate mechanism of a GRU, the designed model can learn the long-term dependencies of
HIs to the utmost with low computation cost. Furthermore, since the length of the sliding window
updates timely according to the variation of HIs, the model can also capture the local tendency of HIs
and address the influence of local regeneration. The effectiveness and advantages of the integrated
prediction methodology are validated via experiments and comparison, and a more precise RUL
prediction result is provided as well.

Keywords: lithium-ion batteries (LIBs); remaining useful life (RUL); soft sensing; gated recurrent
unit neural network (GRU NN)

1. Introduction

As the main energy component, lithium-ion batteries (LIBs) play an important role in
the development of hybrid and electric vehicles (EVs) and other electronic industry, owing
to the advantages of high energy density, low-emission, lightweight, etc. [1]. However,
the maximum available capacity gradually fades with the repeated charge and discharge,
leading to the end of the battery life. It will cause waste if the battery is replaced too early,
while safety accidents may occur when it is replaced too late [2,3]. The health monitoring
and prognostics for LIBs can make great contributions to improve the safety and reliability
of EVs and provide early warning for battery replacement [4]. One of the most important
issues in the condition monitoring and prognostics of LIBs is the prediction of remaining
useful life (RUL) via degradation modeling and online inference.

Typically, the methods for an RUL prediction mainly include model-based methods
and data-driven methods. The model-based methods, particularly the Kalman filter (KF),
the particle filter (PF) and some stochastic models, have been recognized to contribute the
state of charge (SOC) and state of health (SOH) estimation of batteries in recent years [5–8].
However, for LIBs, the sensitivity of a stochastic model when facing the complicated
degradation mechanisms causes a decrease in the model robustness. By contrast, the
data-driven methods can learn the battery degradation trends from battery monitoring
data directly, whereby it circumvents the analysis of electrochemical reaction and failure
mechanism. Hence, these kinds of technologies have attracted great interest recently among
researchers [9].
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The accuracy of data-driven RUL prediction methods relies heavily on a health indica-
tor (HI), which usually refers to the indicator that can significantly reflect the degradation
behaviors of LIBs. The traditional His [10–12], e.g., capacity or impedance, are difficult to
measure in real applications due to the expensive instruments and complex operations. To
address these issues, in [13–15], discharge voltage data are employed to derive indirect
His to characterize the battery degradation. However, when applying the above His in
practice, the high sensitivity of discharge profiles to dynamic operation conditions may
cause big prediction errors [7]. Comparatively, the charge process is more stable and can
provide a more reliable HI, such as the sampling points of terminal voltage used in [16].
Nevertheless, the reliability of the abovementioned indirect HI is still not assessed, and the
local fluctuations in the measuring data are not considered.

Furthermore, prediction modeling has always been the focus of attention on battery
RUL predictions. As matters stand, there are many data-driven approaches, with emphasis
on artificial intelligence being increasingly applied to RUL estimations, such as a relevance
vector machine (RVM) [13], a support vector machine (SVM) [17], an artificial neural
network (ANN) [18,19]. These methods have brought great progress to the field of state
prediction, but there are still some issues, including the complex model structure and
the low prediction accuracy [20]. Recently, deep learning with a better learning character
and stronger model adaptability has aroused the interest of researchers for improving the
prediction accuracy of the model [21]. One of the most influential methods is the recurrent
neural network (RNN) for dealing with the prediction of time series [22]. However, it lacks
the efficient mechanism for selecting key information and may suffer from a vanishing
gradient or an exploding gradient. Then, some of the improved RNNs, i.e., the long
short-term memory neural network (LSTM NN) [23], are widely proven to effectively
contribute the above problems thanks to the long-term dependencies learning capacity.
However, the computation cost of the training and prediction process of the LSTM NN is
still large, which limits its practical application. Currently, it is noted that a gated recurrent
unit neural network (GRU NN) [24] is proposed, which not only deal with the long-term
dependencies data, but also has the advantages of a lighter structure, fewer parameters and
a shorter training time. Thus, a GRU NN is more suitable for the online RUL prediction
of LIBs. However, when the aforementioned method is applied to the RUL prediction of
LIBs, the prediction result may be unreliable due to the existence of the local regeneration
phenomenon [7]. Local regeneration is a frequent phenomenon in the shelving phase of
battery operations, and it has been recognized in [25,26]. The regeneration phenomena can
result in the local fluctuations of battery monitoring data in reality. However, it is still a
challenging mission to design a precise battery RUL prognostics arithmetic using online
monitoring data in the presence of local regenerations and fluctuations.

Inspired by the above works, in this paper, we propose an RUL prediction method
combining deep learning and soft sensing. To avoid the measurement difficulties of
direct HIs in the online application, we firstly extract the constant current duration (CCD)
from the voltage and current data of the charge process as the HI to reflex the battery
degradation performance. Then, an adaptive sliding window-based GRU prediction model
is constructed to synchronously learn the long-term dependencies and capture the local
regenerations. Due to the advantages in learning long-term dependencies and capturing
the local regenerations and fluctuations, a more accurate prediction result can be expected.
The major contributions of this paper are listed as follows:

(1) Combining soft sensing with deep learning, a reliable RUL prediction model is
proposed, which can accomplish a satisfactory HI estimation and provide an accurate
RUL for LIBs in the routine environment.

(2) A unique indirect HI, i.e., the CCD extracted from the charge monitoring data, is
considered as the indirect HI without complicated measurements and time-consuming
calculations, providing a soft measurement of battery performance degradation.

(3) A GRU prediction network with an adaptive sliding window is utilized to estimate
the HI tendencies and determine the battery residual life. The designed GRU NN can
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not only learn the long-term dependencies but also fit the local regenerations and
fluctuations of the battery degeneration with low computation cost.

2. HI Extraction
2.1. Test Data

All the data for the analysis and tests in this manuscript are selected from the experi-
mental data of 18,650 sized LIBs provided by the NASA PCoE research center [27]. A set of
four LIBs (B5, B6, B7 and B18) cycles through three operation profiles (charge discharge
and impedance) under room temperature (24 ◦C). The parameter setups about ambient
temperature (AT), charge current (CC), discharge current (DC), end-of-discharge (EOC)
and end of life criteria (EOLC) for these batteries are presented in Table 1. Since the charge
process is more stable than the discharge process, the measured data during battery charge
are employed to analyze the battery degradation performance.

Table 1. Parameter setups of battery #5, #6, #7 and #18.

Battery AT (24 ◦C) CC (A) DC (A) EOC (V) EOLC (%)

B5 24 1.5 2 2.7 30
B6 24 1.5 2 2.5 30
B7 24 1.5 2 2.2 30
B18 24 1.5 2 2.5 30

The database used in this paper contains the charge information covering cycle 0 to
cycle 168 for B5–B7, and cycle 0 to cycle 132 for B18. Taking B5 as an example, Figure 1a,b
illustrates the varying charge current curves and voltage curves at charge cycle 1, 40, 70,
120 and 160, separately. Specifically, the battery charge profile is carried out in a constant
current (CC) and constant voltage (CV) mode, and the detail of the CC-CV charge curves
at cycle 40 is shown in Figure 2. As we see in Figure 2, the CC charge mode is firstly
implemented at the beginning of the charge process with a current of 1.5 A until the battery
voltage reaches 4.2 V. Then, the battery enters the CV charge mode until the current drops
to 20 mA. The work conditions and test modes of B6, B7 and B18 are the same as those
of B5.
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Figure 1. The charge voltage and current curves for different cycles: (a) The charge voltage curves,
(b) The charge current curves.
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Figure 2. The charge voltage and current curves at cycle 40.

2.2. HI Extraction

An effective HI that can reflex the real battery degeneration characteristics is important
for the RUL prediction of LIBs. The traditional His, e.g., capacity or impedance, are difficult
to measure due to the fact that they generally need expensive instruments and complex
operations and cannot be used in online real-time prognosis. Hence, the soft sensing
method is becoming the mainstream for the data-driven prediction method. As stated
in [28], the soft sensing model takes easily measurable variables and difficult-to-measure
variables as the input and output, to estimate the variables that cannot be detected due
to the limitations of the sensors. In this section, we aim to construct an easily measurable
indirect HI to reflect battery capacity degradation, which is unavailable in the online
application.

As known, the performance of LIBs gradually degrades with the increase in the charge
number, and this degradation can be observed in geometrical shapes of current and voltage
curves at different cycles, as seen in Figure 1. By analyzing these curves, the time length
of the CC charge mode gradually shortens, and the growth of the voltage becomes faster
and faster with the growth of the cycle number. Namely, there exists a certain correlation
between the charge current duration and battery performance. To describe the battery
degradation processes, the CCD is selected in this paper as the HI to reflect the battery
degradation performance. The CCD is the duration of the CC charge mode, as defined in
Figure 2. It is a direct indicator of the battery capacity variation and reflexes the battery
polarization to a certain extent.

The vector of the CCD along charge cycle can be expressed as follows:

CCD = [t1, t2, · · · , ti, · · · , tN ]
T (1)

where CCD is the vector of the observed values of the CCD, N indicates the number of
battery cycles and ti represents the end time of the CC charge process for cycle i, which is
also the start time of the CV charge process. Generally, as in Figures 1 and 2, the end time of
the CC charge process can be considered as the time when the battery voltage reaches 4.2 V.

3. Algorithm Description

Using the extracted CCD as the HI, an adaptive sliding window-based GRU prediction
network is constructed in this section to estimate the HI degradation and predict the RUL
of the LIB. The structure of the prediction model is illustrated in Figure 3. As presented, an
adaptive sliding window is designed to dynamically select the input data for training and
forecasting. Then, a GRU NN is constructed with the purpose of estimating the decline of
CCD online using the trained model parameters and forecasting inputs. At last, the RUL of
the LIB can be determined from the predicted CCD values.
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3.1. GRU Prediction with Adaptive Sliding Window

As an improved recurrent neural network, a GRU is designed to solve the gradients’
exploding and vanishing problem by virtue of the peculiar memory unit and gate mecha-
nism. Additionally, meanwhile, compared with the traditional LSTM, less training data
and time are required to promote the convergence of the model with the streamlined gates.
By combining with the GRU cells, an adapted window updating mechanism is designed to
contribute the GRU NN construction to conduct the CCD estimation and RUL prediction.

The graphical description of the proposed adaptive sliding window-based GRU
prediction structure is revealed in Figure 4. The amount of CCD data fed into the GRU
model in each iteration is updated as the window length changes. Significantly, the number
of GRU cells, i.e., the hidden size of the GRU NN, is dynamically consistent with the length
of the sliding window. The generation process of learning data for the GRU model using
the adaptive sliding window is given as follows:

(1) The sliding mode of the window is set as one-step ahead, i.e., the number of the new
data in the window adds only one for each step. Let the current point be P, and the
next point be P + 1; the value of the CCD at P + 1 needs to be predicted.
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We use the priori data captured in the current sliding window to predict the CCD
value at P + 1, and the length of this sliding window is LP+1, which can be updated by
using the following formula [29]:

LP+1 = Lmin + (Lmax − Lmin) exp(β)

β = −( ‖∆CCDP+1‖
∆CCD0

+ |∆RP+1|
∆R0

)
0.5 (2)

where ‖∆CCDP+1‖ = ‖CCDP −CCDP+1‖ indicates the Euclidean vector of the norm
of the difference between CCDP and CCDP+1, with CCDP = [tP−LP , · · · , tP−1] and
CCDP+1 = [tP−LP+1, · · · tP]. ∆CCD0 is the mean value of ‖∆CCD‖. |∆RP+1| indicates
the absolute value of the difference between the RP+1 and RP, which are the variances
of CCDi and CCDi−1 respectively, and ∆R0 denotes the mean value of |∆Ri|. Lmax and
Lmin are hyper-parameters for the proposed sliding window, which are determined by trial
and error.

(2) In the online training stage, through selecting the initial window length and per-
forming the one-step-ahead prediction, the CCD data for training are expanded into
two-dimensional space to explore the structure and parameters of the GRU NN. For
each sequence, its length varies with the adaptive mechanism (Equation (2)). With
the trained model, the designed GRU NN can predict the CCD of the next cycle one
by one. As seen in Figure 4, the GRU NN is composed of the basic GRU cell with a
reset gate (r) and an update gate (z). The information propagating in GRU cells can
be controlled by the gate mechanism.

Given that the input at the current time is tP and tP+1 is the CCD value at the next
time, it is P + 1 that needs to be predicted. hP indicates the hidden state of GRU cells at P,
which is also the output of the cell. The reset gate (r) aims to control the data information
from the new input information and output information yielded by previous cells. The
update gate is employed to maintain the helpful historical information. The reset gate and
update gate at time P + 1 are, respectively, calculated using the following formulas:

rP+1 = σ(WrhP + UrtP + br) (3)

zP+1 = σ(WzhP + UztP + bz) (4)

where σ is the logistic sigmoid function, W and U represent the layer weights and b
indicates the biases.

The output of the reset gate is employed to generate the candidate state h̃P+1 using a
tanh function for updating the cell state. Then, the output of this cell hP+1 can be calculated
using h̃P+1 and the output of the update gate, zP+1. The transformation process of the cell
states is presented in the following form:

h̃P+1 = tanh(Wh̃(rP+1 � hP) + Uh̃tP + bh̃) (5)

hP+1 = (1− zP+1)� hP + (h̃P+1 � zP+1) (6)

where � means the element-wise product, W and U represent the layer weights and b
indicates the biases.

The RUL prediction model is constructed by connecting the above GRU cells. When
the predicted CCD is lower than the failure threshold, a failure occurs, and the RUL can be
calculated.

3.2. RUL Prediction

An LIB is deemed to fail when the HI reaches its pre-specified failure threshold.
Additionally, the length of available service cycles from the current cycle to the end-of-life
cycle are referred to as the RUL. In this paper, the end-of-life cycle is the cycle number
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when the CCD decreases below its failure threshold, and the current cycle is the prediction
start cycle.

The high correlation between the capacity and the extracted HI is demonstrated in the
subsequent Section 4.1, then the failure threshold of the normalized CCD (tnor_th) can be
expressed as follows [13]:

tnor_th =
Capth − Capmin

Capmax − Capmin
(7)

where Capth indicates the failure threshold on battery capacity, which is usually set to
70–80% of its nominal value [10], and Capmax and Capmin are the maximum and minimum
of capacity. For convenience, the normalized CCD and its failure threshold are employed
in the following experiment and analysis.

The RUL can be calculated using the following [16]:

NRUL = NEOL − NECL (8)

where NRUL is the number of residual cycles, i.e., the RUL. NEOL indicates the cycle
number when the value of CCDs degrades below tnor_th, and NECL represents the prediction
starting cycle.

4. Results and Discussion

To verify the validity of the RUL prognostic model proposed in this manuscript,
several experiments and comparisons are performed here. Additionally, the degradation
data of cells B5, B6, B7 and B18 introduced in Section 2.1 are selected for prediction and
analysis experiments in this chapter.

4.1. Correlation Analysis and Life Threshold Calculation

According to the analyses in Section 2.2, the proposed HIs, i.e., the CCDs, are extracted
from the charge current and voltage monitoring data of each battery.

To assess the consistency between the extracted CCD and the capacity, the spearman
correlation analysis and significant test are performed for batteries B5–B7 and B18. The
spearman correlation ranges from 0 to 1, in which the value of 1 indicates a strong corre-
lation, while 0 denotes a low correlation. Next, to obtain the statistical significance, the
significant test on the spearman rank correlation coefficient is performed. The level of
statistical significance expressed as H with H ∈ [0, 1]. A small H leads to a strong possibil-
ity of rejecting the null hypothesis, which indicates a significant correlation between the
extracted HI and capacity. The detail can refer to [30]. The obtained results are presented in
Table 2. As can be seen, the correlation coefficients between the capacity and the extracted
CCD for all the considered batteries are close to 1. These indicate that a significant linear
correlation between the CCD and the capacity of LIBs exists. Hence, the extracted HI can
prominently reflect the degradation performance of LIBs as an alternative to capacity.

Table 2. The correlation analysis and the failure thresholds calculation.

Battery Spearman Rank Correlation (r) H Actual Life (Cycles) Capth tnor_th

B5 0.990 **a 0 124 1.4 0.198
B6 0.992 ** 0 101 1.4 0.279
B7 0.989 ** 0 158 1.42 0.040
B18 0.962 ** 0 93 1.4 0.115

a** expresses that it is a significant correlation when the confidence level (bilateral) is 0.01.

Next, the failure threshold of normalized CCDs can be calculated according to the
threshold transforming of the normalized capacity in Equation (7). The corresponding
failure thresholds for four batteries are also listed in Table 2.
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4.2. Performance Assessment

In this manuscript, two evaluating standards are adopted to evaluate the prediction
performance of the proposed model, which are listed as the coefficient of determination
(R-square), and the Absolute Error (AE).

Here, the expression of R-square is as follows:

R− square = 1− ∑n
i=1 (y− ŷ)2

∑n
i=1 (y− y)2 (9)

where y represents the mean value of y.
As to the evaluation standard AE, it is calculated by the following:

AE =
∣∣R− R̂

∣∣ (10)

where R and R̂ denote the real RUL and the predicted one of LIBs, respectively.

4.3. Prediction Results Analysis

This paper develops an adaptive sliding window-based GRU (ASWGRU) NN for the
RUL prediction of LIBs to improve the prediction precision and robustness. This algorithm
is implemented by implanting an adaptive sliding window into the GRU arithmetic. In
which, the inputs of the GRU are replaced with rebuilt data by the designed adaptive
sliding window. With the long-term learning performance of the GRU and the transient
state capturing capacity of an adaptive sliding window, this method can not only predict the
global degradation trends of CCD, but also estimate the local regenerations. The window
parameters Lmax and Lmin are set to 5 and 25, respectively. In the experiment, we found
that the GRU with more than two hidden layers tends to overfit the training set; therefore,
the number of GRU layers is set to 1. The hidden size of the GRU is updated by the ASW.
Additionally, the resilient mean square backpropagation method is employed for adaptively
optimizing the weights and biases in the GRU model. The other hyper-parameters of the
neural network are selected with the manual search method.

First, an RUL prediction with start points 61, 71, 81 and 91 is conducted for B5, B6,
B7 and B18. The prediction results can be seen in Figure 5. As seen, despite the fact the
transient state estimation performance for the CCD reduces as the training data decrease,
the designed prediction algorithm can still provide a satisfactory RUL prediction for all
the batteries. In the sequel, the R-square between the estimated CCD and the actual value
and the AE of the predicted RUL for four batteries are collected in Tables 3–6. In which,
all the R-square values of the B5–B7 batteries are close to 1, which demonstrates that the
CCDs estimated using the present method are consistent with their real values, implicating
a high prediction precision. For B18, the local fluctuations in the battery data are more
frequent and the RUL prediction precision descends by comparison with the prediction
result of B5 and B7.

Table 3. The obtained results with different prediction start points for B5.

Battery Methods Starting
Point R-Square Real RUL Predicted

RUL RUL AE

B5

ASWGRU

61 0.755 64 59 5

71 0.945 54 51 3

81 0.944 44 40 4

91 0.929 34 29 5

GRU
81

0.971
44

31 13

LSTM 0.967 31 13

NARX 0.085 — —
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Table 4. The obtained results with different prediction start points for B6.

Battery Methods Starting Point R-Square Real RUL Predicted RUL RUL AE

B6

ASWGRU

61 0.914 41 31 10

71 0.914 31 20 11

81 0.890 21 10 11

91 0.852 11 11 0

GRU

81

0.923

21

12 9

LSTM 0.925 24 3

NARX −0.797 57 36

Table 5. The obtained results with different prediction start points for B7.

Battery Methods Starting Point R-Square Real RUL Predicted RUL RUL AE

B7

ASWGRU

61 0.960 98 100 2

71 0.966 88 91 3

81 0.944 78 71 7

91 0.928 68 69 1

GRU

81

0.961

78

73 5

LSTM 0.959 75 3

NARX −1.303 — —
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Further, we compare the results at the 81st prediction start point with some commonly
used time series neuro network models including the GRU without an ASW [24], the
standard LSTM [31] and the Nonlinear Auto-Regressive Network (NARX) [32]. The LSTM
is one of the advanced RNN algorithms with a more complicated gate mechanism in its
memory cells to learn the long-term dependent sequences. For comparison purposes, the
parameters of the LSTM are chosen as the same as the ASWGRU and GRU. The NARX is
the nonlinear extension of the linear auto-regressive with exogenous input (ARX) model,
where the current output is described with a nonlinear functional expansion of lagged
input and output signals, plus additive noise. The NARX model is often employed for
time-series modeling. For the parameters of NARX, please refer to reference [33].

Figure 6 illustrates the RUL prediction results. It is evident that more accurate results
can be yielded by employing the proposed ASWGRU models, which can better fit local
recovery dynamics and precisely estimate the final failure point for the four batteries
considered. In contrast, the other three non-windows approach only obtain a steady
decline prediction for the overall trends and failed to estimate the local regeneration due to
the lack of a capturing mechanism for the local dynamics. Moreover, the NARX performs
the worst performance among all these methods, which cannot achieve an effective RUL
prediction at the 81st prediction start point because of lacking the long-term memory
capacity. Furthermore, compared with the traditional GRU, some better prediction results
can be obtained by using LSTM. However, at the same time, the LSTM needs more training
iterations, which is not conducive to practical applications. The similar conclusions can
be drawn from the R-square between the estimated CCD and actual value and the AE
of the predicted RUL for the four batteries collected in Tables 3–6, where “-” denotes
that the estimated value does not reach its failure threshold. As shown in Tables 3–6,
using the proposed arithmetic, the RUL of all the batteries can be accurately forecasted,
with all the AE holding at the reasonable ranges, which verifies the effectiveness of the
proposed method.
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Table 6. The obtained results with different prediction start points for B18.

Battery Methods Starting Point R-Square Real RUL Predicted RUL RUL AE

B18

ASWGRU

61 0.414 33 24 9

71 0.375 23 30 7

81 0.245 13 20 7

91 0.203 3 11 8

GRU

81

0.019

13

5 8

LSTM 0.295 18 5

NARX −0.575 — —

5. Conclusions

In this paper, we present a novel RUL prediction framework by incorporating the deep
learning and soft sensing method, where the CCD is extracted from the monitoring data of
the charge process to reflex the battery degradation performance and an adaptive sliding
window based GRU NN is constructed to simultaneously learn the long-term dependencies
and fit the local fluctuations of the battery degeneration with a low computation cost. The
precise prediction result is verified via some meaningful comparison experiments using the
test data from the NASA PCoE research center. In reality, the high frequency measurement
noise and the characteristic variation of the loads are still the main challenges for battery
RUL predictions. In the future, we will further validate the effectiveness and superiority
of the designed prediction method using more practical measurement data and improve
the performance of prediction arithmetic for dealing with the high frequency noises and
load fluctuations.
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