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Abstract: Recently, virtual coupling has aroused increasing interest in regard to achieving flexible
and on-demand train operations. However, one of the main challenges in increasing the throughput
of a train network is to couple trains quickly at junctions. Pre-programmed train operation strategies
cause trains to decelerate or stop at junctions. Such strategies can reduce the coupling efficiency
or even cause trains to fail to reach coupled status. To fill this critical gap, this paper proposes a
cooperative game model to represent train coupling at junctions and adopts the Shapley theorem to
solve the formulated game. Due to the discrete and high-dimensional characteristics of the model,
the optimal solution method is non-convex and is difficult to solve in a reasonable amount of time. To
find optimal operation strategies for large-scale models in a reasonable amount of time, we propose
an improved particle swarm optimization algorithm by introducing self-adaptive parameters and
a mutation method. This paper compares the strategy for train coupling at junctions generated by
the proposed method with two naive strategies and unimproved particle swarm optimization. The
results show that the operation time was reduced by using the proposed cooperative game-based
optimization approach.

Keywords: virtual coupling; cooperative game theory; Shapley value; improved PSO

1. Introduction

Increasing the transport flexibility and sustainability of railways has become a crucial
demand. This requires shortening the inter-train tracking intervals and a reduction in
delays on congested railways. Improvements of the existing train control system and the
exploration of next-generation railway control systems are currently attracting attention [1].
As reported in [2,3], the headways of trains at junctions are extended by their absolute
braking distances. The capacity benefit in high-speed or complicated railways is limited
by the conventional moving-block system. Thus, a further concept of virtual coupling is
arousing interest.

Virtual coupling is a novel train control concept that combines individual trains into
virtually coupled train sets or train convoys. It aims at running trains closer together and
increasing the capacity of the railway without adding more rail lines [4,5]. Virtual coupling
separates trains with a safety margin from the head of the following train to the rear of the
preceding train, even when the preceding train executes an emergency braking operation.
The transport capacity can be dynamically adjusted through train coupling and decoupling
on the run. This results in no wasted transport capacity and an increase in flexibility. Since
trains are coupled with short safety margins, frequent train-to-train communication is
required to guarantee real-time information sharing between trains.

To foster research and innovation, the European Shift2Rail Joint Undertaking has
devoted many techniques to the next-generation railway control system and proposed
the concept “virtual coupling“ [5,6]. Felez et al. [7] indicated the advantages of virtual
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coupling over moving blocks. Goverde et al. [4] focused on the development direction and
implementation details of virtual coupling. Tilo presented that switch control for virtual
coupling railways is a special challenge in [8].

To shorten the dwell times of trains, Su et al. used integrating timetables and a regula-
tion approach to optimize the efficiency of subway line [9,10]. One of the main challenges
in virtual coupling is to couple trains quickly and efficiently at merging junctions [11].
It is urgent to improve the efficiency of the whole travel process. When multiple trains
approach a merging junction at the same time, they are prevented from slowing down
and/or waiting at the junction until the requested route is fully cleared by previous trains.
Train route control is realized by switch control. To guarantee that trains pass switches
correctly and safely, switch movements and lock times are set with different speed limits in
the normal position and the reverse position.

At junctions, the headways of trains are extended by their absolute braking distances.
Trains must reserve large buffer times before switches, resulting in negative effects on the
overall travel time. Train operation strategies along continuous routes are discrete. Discrete
optimization problem has the non-convex property. Thus, the derivative method cannot
solve this problem. In fact, it is difficult to find optimal strategies in a reasonable amount
of time. Different control strategies and different initial states remarkably influence the
overall coupling efficiency, which makes train coupling a complex process.

To adapt actual control conditions, variable parameters and optimal control strategies
are necessary to realize dynamic and efficient control. Braune et al. designed a novel
variable engine valve actuator to meet the requirements of high dynamic and low power
consumption [12]. Train control is complex, it requires dynamic analyses and adjust-
ment [13]. When merging at junctions, train statuses can be different. Trains must reach a
coupled state within the specified distance. The operation strategies for every train concern
the entire coupling process. Thus, traditional fixed operation strategies cannot fit the actual
situation well. Static pre-programmed strategies may fail to reach the coupled state given a
certain initial train speed or line distance.

Game theory is an economical approach for solving multi-participant decision-making
problems. It considers both the predicted and actual behaviors of each participant [14].
Game theory includes non-cooperative and cooperative approaches. The former pursues
individual profits, while the latter achieves superior total profit through coalition-based
cooperation [15]. Cooperative game theory is successfully used in the control of automated
vehicles to make decisions and select appropriate improvement strategies [16].

Yang et al. [15] proposed a non-signalized intersection driving model using coopera-
tive game theory and the Shapley allocation method. Liu et al. [17] proposed a spacing
allocation method for vehicular platoons using cooperative game theory and the Shapley
values to allocate the spacings fairly. With the gradual deepening of virtual coupling
research, it is feasible to regard autonomous trains in a convoy as rational participants.
Therefore, game theory will become a practicable method to determine optimal opera-
tion strategies.

To solve the virtual coupling-based optimization problem at merging junctions, this
paper proposes a novel cooperative game-based method for the coupling process. Train
control is realized by discrete control command, which is reflected in different acceleration.
To optimize the entire coupling process, the proposed model generates control strategies for
trains. The strategy is composed of acceleration in every discrete segment point. Decision-
making and the overall and allocation costs of the formed alliance are considered in a
cooperative game. The objective of the model is to realize a quick formation and increase
the synchronous moving speed of the convoy. It orients the entire train operation control
to the coupling process at junctions. The Shapley value is used to allocate the cost of a
train coalition.

The cooperative game model can generate different optimal strategies for participants
according to specific scenes. Compared to the continuous problem, the train operation
strategies in this model are discrete, which is reflected in the dimensionality of the opti-
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mization problem. The computational complexity scales exponentially with the problem
size. It is difficult for a cooperative game model to solve large-scale problems within a
reasonable time frame in practice [18].

In recent years, many studies have attempted to combine complicated optimization
problems with cooperative game models. Vehicle platooning control is closely connected
with game theory. Bui et al. [19] proposed a cooperative game theoretic approach and
a distributed merging and splitting algorithm to improve traffic flows in large networks.
Meng et al. [20] proposed a multi-colony collaborative ant optimization algorithm based
on a cooperative game mechanism and applied it to robot path planning.

Liu et al. [21] proposed an intelligent train control method based on the DQN algo-
rithm. Ding et al. [22] aimed at the reconfiguration problem of a distribution network,
proposed a multi-objective model based on cooperative game theory, and applied the
firefly algorithm to determine the final reconfiguration scheme. The above research shows
that characterizing multi-vehicle collaborative control relationships through cooperation
and competition has broad prospects. Since its introduction in 1995 [23], particle swarm
optimization (PSO) has been successfully used in many optimization problems.

Yet, the basic PSO algorithm has several shortcomings. Two of the major failure modes
are stagnation and convergence to local optima [24]. Many studies (such as [25,26]) have
been carried out to relieve and solve this problem. To achieve better performance, PSO
is combined with other intelligent algorithms, such as differential evolution [27,28], ant
colony optimization [29–31], and genetic algorithms [32–34].

Adaptive methods are also used for refining the coefficient values of PSO [35–37].
There are several challenges faced by the basic PSO algorithm when fitting a cooperative
model. The discrete control characteristic is reflected in the particle dimension. Operating
conditions are reflected in the constraints of the fitness function in PSO.

Thus, to apply a game model in general scenarios, we introduce an improved particle
swarm optimization (PSO) approach to solve the strategy decision problem of the game
model. To improve the efficiency of solving a cooperative model with large dimensions
and complicated constraints, we modify the conventional PSO algorithm in the following
aspects. A search speed limit factor and a speed bound are used to prevent solution
explosion and limit the maximum and minimum particle movement speeds. Adaptive
penalty functions are used to effectively measure the degrees of constraint violations. A
no-update method is used to prevent particles from exceeding the search boundary. The
mutation algorithm mentioned in [38] is also used in the improved PSO approach. This
helps PSO to enhance population diversity and avoid the local optima problem.

The aim of this work is to propose a novel solution in the field of railways for virtual
coupling trains at junctions. The method can realize a quick formation and increase the
synchronous moving speed of the convoy and, thus, improve the efficiency of virtual
coupling. The cooperative game theorem is used to abstract the coupling process into a
concrete model, and the improved PSO is used to find the optimal operation strategies for
every train.

The contributions of this paper are as follows. A novel optimization approach for
virtual coupling, which aims to improve the coupling efficiency of trains at junctions
on the run, is proposed. A game theory-based model is built to represent the strategy
decision-making behavior of each train. An improved PSO algorithm is developed to
enable the game model to solve larger-scale problems. The proposed approach is applied
to a typical coupling scenario. Contrast tests are carried out to compare the proposed
optimization approach with two naive control strategies and the unimproved PSO ap-
proach. The results show that the coupling efficiency is improved with the proposed
optimal operation strategies.

The rest of the paper is organized as follows. Section 2 presents the problem of
merging at junctions, builds a dynamic model for virtual coupling, and discretizes the
model. Section 3 builds a cooperative model and defines several of its important elements.
Section 4 proposes the improved PSO approach and explains the detailed algorithm.
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Section 5 shows the simulation scenario and the comparative results of several operation
methods. Section 7 concludes the paper.

2. Problem Statement

A coupling process before arriving at a station and the resulting coupled state are
shown in Figure 1. In this process, automated control trains are regarded as agents of the
system that influence the behavior of the group [17]. This section presents the two main
states of virtual coupling: the coupling state and the coupled state.

AB Platform

A

B

SmSc

VB1

Planned position F

VA1

VB2 VA2

Segment G Distance (m)

Speed (m/s)

Segment H

VC

Figure 1. Coupling and coupled states of train A and train B.

2.1. Coupling State

The requirements and conditions of virtual coupling are checked momentarily. When
trains satisfy the coupling conditions, neighboring trains begin to adjust their speeds and
distances to reach the final coupled state. In segment G of Figure 1, train A and train B
merge at a junction and couple to a convoy. These two trains are coupled at the planned
position F.

Their initial speeds are VA1 and VB1, respectively. VA2 and VB2 are their speeds at the
end of the coupling process. VA2 and VB2 are equal to the synchronous coupling speed VC.
The running distances of train A and train B are SA and SB, respectively. Their running
speeds are VA and VB, respectively. Sc is the initial coordinate distance in the coupling
process. The distance between train A and train B is Sc + Sm. At the end of the coupling
process, the distance between trains decreases to Sm.

The safety margin Sm depends on the train speeds, the velocity error Vδ, the vehicle-
vehicle communication time T1, the data processing time T2, and the length of the prede-
cessor Lk. The calculation of Sm is executed as follows:

Sm = ((VB + Vδ)− (VA −Vδ))× (T1 + T2)− Lk (1)

2.2. Coupled State

In the coupled state, successive trains run synchronously. Cooperative train operation
is equivalent to the automatic train operation (ATO) strategy of existing train control
systems. It is used to guarantee the stability of the platoon.

Segment H in Figure 1 shows the coupled running statuses of two trains. The trains
are in a relatively stable state. The following train maintains the minimum safety distance
to the preceding train and conducts cooperative control with it. In the coupled state, the
speeds of train A and train B are approximately the same. Sth is the permissible distance
error with respect to Sm, and Vth is the permissible distance error with respect to the
coupled speed VA or VB. The running distance and speed satisfy the following constraints:

SA − SB − Sm ∈ [−Sth, Sth] (2)

VA −VB ∈ [−Vth, Vth] (3)
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Virtual coupling-based train protection is closely related to cooperative train operation;
however, they are two completely different train operation control concepts. Virtual
coupling protection uses the relative braking distance to space trains in a coupled convoy.
Cooperative train operation controls trains in a convoy and guarantees the stability of
the convoy.

In a convoy, the tracking interval between two neighboring trains is computed accord-
ing to the relative braking distance. This distance depends on the following factors [4]:

• the braking characteristic of the following train;
• the braking characteristic of the preceding train;
• the absolute accelerations, speeds and distances of the two neighboring trains; and
• the relative accelerations, speeds and distances of the two neighboring trains.

Let RBD be the relative braking distance, BD f be the braking distance of the following
train, and BDp be the braking distance of the preceding train. The RBD of the trains is
as follows:

RBD = Sm, BD f ≤ BDp (4)

RBD = BD f − BDp + Sm, BD f > BDp (5)

If the braking distance of the following train is shorter than or equal to the preceding
train’s braking distance, RBD takes the minimum value in (4). Otherwise, RBD takes
the value in (5). RBD in (4) means that if two coupled trains have the same braking
characteristics, the braking distance is the same. Thus, the spacing distance between them
can be reduced to the minimum safety distance Sm.

2.3. Dynamic Model

The dynamic train model that we utilize is based on longitudinal train dynamics
(LTD) [7]. Trains are regarded as mass points in this model, as mentioned in [39,40]. A
dynamic model is introduced to describe the dynamic behavior of virtual coupling trains,
which can be described as follows:

ẋ = ft(x, u) (6)

where x represents the state of the train, ft denotes the mapping relationship presents in
(9) to (12); x = [s, v, a]T ; the variables s (m), v (m/s), and a (m/s2) represent the position,
speed, and acceleration of the train, respectively; and u is the driving or braking force. Let
T be the traction force, Fds be the service braking force, and Fbr be the braking resistance
due to pneumatic braking [7]. When the train is running with traction, u can be calculated
by (7); otherwise, when the train is braking, u can be calculated by (8):

u = T, train is running with traction. (7)

u = Fds − Fbr, train is braking. (8)

Let M(kg) be the mass of the train, R(v, φ, c)(N) be the resultant resistance (which
depends on the speed v, gradient φ, and radius of curvature c), F(N) be the resultant
tractive or braking force, and τ be the inertial lag of longitudinal dynamics. Equation (6)
can be calculated in detail as follows:

ṡ = v (9)

v̇ = a (10)

M · a = u− R(v, φ, c) (11)

ȧ =
u− F
τ ×M

(12)

The acceleration a satisfies the following constraint:
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a ∈ [−ab, ad] (13)

where ab is the maximum braking deceleration and ad is the maximum driving acceleration.
To apply these dynamics in the remainder of this paper, we discretize them with the state
updating Equations (14) and (15).

x[η + 1] = f (x[η], u[η]) (14)

f (x[η], u[η]) = f (x[η]) + ∆t× ft(x[η], u[η]) (15)

where η(s) is the time instant and ∆t(s) is the sample time.

3. Cooperative Game Model Design

This paper mainly studies the coupling process of trains. Every autonomous train
gathers information from other trains or ground equipment through frequent communica-
tion. These trains can be regarded as agents; they can judge conditions and make decisions
throughout the whole process. The control behaviors influence each other in a system.
Therefore, it is rather difficult to analyze the interactions among agents in theory.

We use a cooperative game to model the confrontation and cooperation of agents in
virtual coupling control. Cost functions describe the tasks of all agents. The goal of solving
this model is to obtain a set of strategies, thereby, minimizing the entire cost (or maximizing
the entire payoff) of the game. This section introduces the cooperative game model, defines
the cost function of the game, and then uses the Shapley theorem to solve it.

3.1. Strategy Set

The running statuses of trains depend on the operation strategies in this model. Let
S be the strategy set of the cooperative model. Sk = [ak1, ak2, . . . , akj, . . .] denotes the
strategy set of train k, which can be described as a two-dimensional acceleration matrix:

Sk = [[a1(x1), a1(x2), . . . , a1(xj), . . . , a1(xl)]

[a2(x1), a2(x2), . . . , a2(xj), . . . , a2(xl)]

. . .

[ai(x1), ai(x2), . . . , ai(xj), . . . , ai(xl)]

. . .]

(16)

where aki = [ai(x1), ai(x2), . . . , ai(xj), . . . , ai(xl)] is the ith strategy for train k, which is
composed of acceleration at every segment point. ai(xj) represents the acceleration of
segment point j in aki. ai can be any value in [amin, amax], in which amin is the lower bound
of the acceleration and amax is the upper bound of the acceleration. The train state x can be
calculated using Equations (14) and (15).

In a game, n virtual coupling trains are participants, and train k has lk distance
segments. Thus, the strategy dimensionality of train i is lk. As the value of the acceler-
ation in each segment can be infinitely large, the strategy set of each participant can be
infinitely large.

The task of the cooperative game model is to match strategies from every train and
calculate the overall cost function fc. It is difficult to find the optimal solution of this
problem within a reasonable time frame. Therefore, a search algorithm is required for this
model. The improved PSO algorithm is discussed in the next section.

3.2. Cooperative Game Model and the Cost Functions

This study considers the selection of a control strategy for every train in the coupling
process as a cooperative game model. n coupling trains in a platoon correspond to n
participants in a game. The game can be described as < N, fc >. The participant set
N = {1, 2, 3, . . . , i, . . . , n}, i denotes participant i. The entire cost function of the coalition
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is fc. Let P be a coalition consisting of participants from the coalition. P ⊆ N is a subset
of N. The total cost of coalition P can be denoted as fc(P). Let i, j, k be trains i, j and
k, respectively.

The coalition can be expressed as ∅, {i|∀i ∈ N}, {i, j|∀i, j ∈ N, i 6= j}, {i, j, k|∀i, j, k ∈
N, i 6= j 6= k}, . . . , N = {1, 2, 3, . . . , n}We make the following assumptions and abstract
the coupling process into a cooperative game model.

• The cooperators in a coalition can benefit from the game only when the number of
participants is greater than 2; otherwise, the cost function is positive infinity. fc[∅] =
+∞, fc[{i}] = +∞.

• After passing the switches in the coupling process, the order in which the trains
are arranged is fixed. This means that a train in a convoy or platoon cannot skip
its predecessor. Thus, the coalition can only take in the form of a queue {1, 2},
{1, 2, 3}, . . . , {1, 2, 3, . . . , k, . . . , n− 1, n}. The cost functions of other coalition forms
are positive infinity.

• The cost functions of this problem consist of three parts: a formation time, a running
speed, and the summed extra interval distance to the predecessor in a coupled platoon.

The cost functions fc(P) are the main goals of each agent or the coalition. The compo-
sitions of fc(P) are as follows.

For a coupled platoon, let Dj,k be the distance between train j and train k. The distance
difference cost fcd(j, k) of the convoy is defined as follows:

fcd(j, k) = Dj,k − Sm (17)

Let vk be the running speed of train k, the speed cost fcv1(k) can be described as
follows:

fcv1(k) = vk − vδ (18)

Let ∆vj,k be the speed difference between train j and train k, the speed difference cost
fcv2(k) can be described as follows:

fcv2(j, k) = ∆vj,k + vδ (19)

Let tk be the running time of train k. For phase of trains before the switch, the time
cost function fct1(k) is as follows:

fct1(k) = t1k (20)

After passing the switch, the time cost function fct2(k) is as follows:

fct2(k) = t2k (21)

Function Γ1 transforms the distance to time:

Γ1( fcd(j, k)) =
fcd(j, k)

vk
(22)

Function Γ2 transforms train speed to time:

Γ2( fcv1(k)) =
2× Dbraking

fcv1(k)
(23)

where Dbraking denotes the required distance for braking. Let λ1, λ2, λ3, and λ4 be the
distribution weights of the distance cost, speed cost, speed difference cost, and time cost,
respectively. They determine the importance levels of these four goals.

The cost function of trains can be divided into two phases. For phase of trains before
the switch, the cost function fc1 is as follows:
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fc1[∅] = +∞
fc1[{i}] = +∞
fc1[{i, j}] = λ4 · fct1(i) + λ4 · fct1(j)
fc1[{i, j, k}] = λ4 · fct1(i) + λ4 · fct1(j) + λ4 · fct1(k)
. . .
fc1[N] = λ4 ·∑n

k=1 fct(k)

(24)

Let Li,j be the distance between train i and train j, Lj,k be the distance between train j
and train k, Lk,k−1 be the distance between train k and train k− 1, and w = (1, 2, 3, . . . , n)
be the train sequence. The cost function fc2 of the phase of train beyond the switch is as
follows.

fc2[∅] = +∞
fc2[(i)] = +∞
fc2[(i, j)] = λ2 · Γ2( fcv1(i)) + λ2 · Γ2( fcv1(j)) + λ4 · fct2(i) + λ4 · fct2(j)

+λ1 · Γ1( fcd(i, j)) + λ3 · fcv2(i, j), Li,j > 0
fc2[(i, j, k)] = λ2 · Γ2( fcv1(i)) + λ2 · Γ2( fcv1(j)) + λ2 · Γ2( fcv1(k)) + λ4 · fct2(i)

+λ4 · fct2(j) + λ4 · fct2(k) + λ1 · Γ1( fcd(i, j)) + λ1 · Γ1( fcd(j, k))
+λ3 · fcv2(i, j) + λ3 · fcv2(j, k), Li,j > 0 and Lj,k > 0

. . .
fc2[w] = ∑n

k=1 λ2 · Γ2( fcv1(k)) + ∑n
k=1 λ4 · fct2(k) + ∑n−1

k=1 λ1 · Γ1( fcd(k, k + 1))
+∑n−1

k=1 λ3 · fcv2(k, k + 1), ∀k > 1, Lk,k−1 > 0

(25)

where Li,j > 0 denotes that train i is always the leading train. Let fc2 be +∞ when Li,j ≤ 0.
The values of λ1, λ2, λ3, and λ4 are considered as 1 in this paper, but they can be different
according to different requirements. For the phase of trains beyond the switch, the total
cost function is the sum of fc1 and fc2:

fc = fc1 + fc2 (26)

3.3. Solution of the Cooperative Game

Given sets P1 and P2, we denote P1\P2 to be set P1 minus set P2. The marginal cost
fm(P, k) = fm1(P, k) of the phase of trains before the switch is as follows.

fm1(P, k) = fc(P)− fc(P\{k}) (27)

According to (24), fm1(P, k) is as follows:

fm1(P, k) = λ4 · fct1(k) (28)

Given a sequence w, we define w|k to be the removing of an element k from w. The
margin cost fm(P, k) = fm2(P, k) of the phase of trains beyond the switch is as follows.

fm2(P, k) = fc(P)− fc(P|k) (29)

According to (25), fm2 is as follows:

fm2(P, k) = λ2 · Γ2( fcv1(k)) + λ4 · fct2(k) + λ1 · Γ1( fcd(k, k− 1)) + λ3 · fcv2(k, k− 1) (30)
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At the end of the coupling process, the marginal cost function is the sum of cost
functions in two phases:

fcm(P, k) = λ2 · Γ2( fcv1(k)) + λ4 · fct1(k) + λ4 · fct2(k)

+λ1 · Γ1( fcd(k, k− 1)) + λ3 · fcv2(k, k− 1)
(31)

The cost distribution scheme is the preparatory phase of cooperation. We use Shape-
ley values to distribute coalition costs. For participant i, the cost is apportioned by the
following equation:

Φk( fc) = ∑
P⊆N\k

ψ · fcm(P, k) (32)

ψ =
θ!(n− θ − 1)!

n!
(33)

where θ denotes the participants number in coalition P and ψ is the probability for θ to
form a specific coalition.

Let gr be the r constraint of the problem and m be the total number of constraints. The
solution of the cooperative game is to minimize the cost function fc(P), as shown in (34)
and (35):

min fc(P) (34)

s.t.gγ ≤ 0, γ = 1, 2, 3, . . . , m (35)

Formula (35) represents all constraints of the game model. The minimized cost func-
tion is the optimization of the final coupled convoy, which has smaller running intervals,
better synchronism and a faster speed than other platoons. The constraints of the model in
(35) are as follows:

ai(xj) ∈ [amin, amax] (36)

vi(xs) < vlsn or vi(xs) < vlsr (37)

v ∈ (0, vmax) (38)

∆tk,k−1(xs) ∈ (tls,+∞) (39)

The parameters are shown in Table 1.

Table 1. List of parameters in constraints.

Parameter Meaning Value

ai(xj) acceleration of train i in segment j [amin, amax] (m/s2)
amin lower bound of acceleration −1.2 (m/s2)
amax upper bound of acceleration 1 (m/s2)

xs segment number of the switch position 1

vlsn
limit speed of the switch in the

normal position 15 (m/s)

vlsr
limit speed of the switch in the

reverse position 10 (m/s)

v train speed (0, vmax) (m/s)
vmax limit speed of the whole segment G 20 (m/s)
tls minimum transfer time of the switch 10 (s)

∆tk,k−1(xs)
time difference between train k and train

k− 1 when passing switch (tls,+∞) (s)

4. The Improved Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) is widely used for practical optimization problems.
In our cooperative game model, the scale is large, the constraints are complicated, and
the basic PSO algorithm performs poorly on this problem. To solve the above issues, this
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paper improves upon the basic PSO algorithm and fits it to the model. The objective of this
algorithm is to minimize the cost function of the coalition, which is described in (34).

The improved PSO algorithm aims to minimize the objective function fc(P). Taking the
constraints into consideration, we transform this problem into an unconstrained problem.
Let φ(P) be the penalty function and f itness(P) be the fitness function of the algorithm,
which can be described as follows:

f itness(P) = fc(P) + φ(P) (40)

The penalty function consists of the constraints in (35). An adaptive penalty function
is designed to prevent the penalty function from being too large or too small:

φ(P) = ε(β)×
m

∑
γ=1

max(gγ, 0) (41)

The penalty coefficient ε is defined as follows:

ε(β) = 10α(1−β) (42)

where β is the ratio of the number of feasible solutions to the number of total solutions in
an iteration and α is an adjustable parameter. The penalty is adaptive according to the ratio
of feasible solutions. Thus, the constrained problem becomes an unconstrained problem.

In this model, the particle dimension is vast, and bound constraints are imposed on
every dimension of each particle. The conventional PSO algorithm easily falls into local
optima under these conditions. In addition, the efficiency of the algorithm is confined. To
address these deficiencies, we improve the algorithm in the following ways. To prevent
solution explosion caused by a search speed that is too fast, we add a speed limit factor
ζ ∈ [0, 1] to the iterative formula:

Vq+1
p = ζ(ωVq

p + c1rq
p1(Pq

p − Xq
p) + c2rq

p2(Pq
g − Xq

p)) (43)

Xq+1
p = Xq

p + Vq+1
i (44)

The meanings of the variables in the above two equations are explained in Table 2.

Table 2. Parameter settings in the iterative formula.

Variable Names Meanings

q Iteration times
p Number of particles
V Search speed
w Inertia weight
c1 Cognitive constant
c2 Social constant

r1, r2 Normally distributed random numbers
Pp Optimal particle fitness
Pg Global optimal fitness
X Particle positions

To increase the search efficiency of the algorithm, we add a search speed constraint
Vmax to reduce the possibility of a particle being out of range. The value range of V is
as follows:

V ∈ [−Vmax, Vmax] (45)

We add judgment to the search process. If the particle exceeds the basic position
constraint, we use the last position to replace the current position. The basic PSO algorithm
usually cannot strike a balance between its global searching ability and local search ability.
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To overcome this shortcoming, this paper uses the self-adapting inertia weight ω proposed
in [38]:

ω = ωmax − I ∗ ωmax −ωmin
Imax

(46)

where wmax is the maximum inertia weight, wmin is the minimum inertia weight, I is the
current number of iterations, and Imax is the maximum number of iterations.

In the iterative process, if a particle is in the current best position, other particles
draw close to it quickly. If it is a local optima, the particle swarm no longer searches in
the solution space. Thus, the algorithm falls into this local optima. According to (43) and
(44), the next position of the particle swarm depends on the original search speed, the
optimal particle fitness, and the global optimal fitness. The search speed can be changed if
we change the global optimal fitness through a mutation algorithm; therefore, the search
direction of the particle swarm changes. It is possible for the algorithm to find new optimal
particle fitness and global optimal fitness values.

This paper uses the mutation algorithm mentioned in [38]. Let fi be the fitness of
particle i and fave be the average fitness of the particle swarm; the group fitness variance
σ2 describes the aggregation degree of the particle swarm, as follows:

σ2 =
n

∑
i=1

(
fi − favg

f
)2 (47)

where f is the normalized calibration factor, which can be calculated as follows:

f =

{
max{| fi − favg|}, max{| fi − favg|} > 1

1, others
(48)

The group fitness variance σ2 represents the aggregation degree of the particle swarm.
The smaller it is, the more the swarm is aggregated. Otherwise, the swarm is more dispersed.

If the swarm gathers too early, the algorithm stagnates in a local optima solution. This
causes the algorithm to exhibit low efficiency or even fail. Within the maximum number of
iterations, the global optimal fitness mutates as a mutation probability Pm to increase the
population diversity.

Pm =

{
k, σ2 < σ2

d and f (Pg) > fd

0, others
(49)

where k is a random value in [0.1, 0.3]; σ2
d is related to the actual conditions and is much

lower than the maximum value of σ2. fd can be set to a small value; thus, the optimal
fitness moves to this value.

The mutation of Pg adopts the stochastic disturbance approach. Let Pgk be the kth
dimension of Pg and ηg be a random number obeying a Gaussian [0, 1] distribution; the
mutated Pgk is as follows:

Pgk = Pgk · (1 + 0.5 ∗ ηg) (50)

The improved PSO algorithm can adaptively adjust the parameters according to the
solution conditions. The algorithm is shown in Algorithm 1.
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Algorithm 1: Improved PSO Algorithm
Input: objective function, constraints
Output: the optimal solution X

1 k = 0;
2 X = Init_Swarm() ; // Particle swarm initialization
3 p f it = g f it = min(fitness(X)) ; // Globally optimal particle
4 pbest = gbest = best(X) ; // Optimal particle and global solution
5 while iteration < max_iteration do
6 XLast = X ; // Save the last particle swarm position
7 g f it_Last = g f it ; // Save the last optimal particle
8 tmp_p f it = fitness(X)
9 if tmp_p f it <p f it then

10 p f it = tmp_p f it ; // Update the optimal particle
11 pbest = X ; // Update the optimal particle position
12 if p f it <g f it then
13 g f it = p f it ; // Update the global optimal
14 gbest = pbest ; // Update the global optimal position
15 end
16 end
17 if g f it!= g f it_Last then
18 iteration = iteration + 1 ; // The next iteration must decrease g f it
19 end
20 r1, r2 = random(0,1)
21 Use (43) to update the particle swarm search speed V
22 V[V >Vmax] = Vmax;
23 V[V <−Vmax] = −Vmax ; // Control the searching speed
24 Use (44) to update the particle swarm position X
25 if X > Xmax then
26 X = XLast ; // Do not update to an infeasible X
27 else
28 N f += 1 ; // Number of feasible Xs
29 β = Nv/iteration ; // Update β
30 Use (40)–(42) to update the f itness() function
31 end
32 Use (46) to update ω
33 Use (47)–(50) to update the probability of mutation Pm
34 Update g f it with the probability Pm;
35 end

5. Simulation
5.1. Simulation Environment

The virtual coupling process is simulated in this section, where trains start running
from different tracks to verify the effect of the proposed approach. Three coupling ap-
proaches are compared, including the game-based approach and two naive approaches,
where naive strategy 1 lets the trains closest to the switch pass it first and then has the
trains keep moving according to limit speed of the switch, and naive strategy 2 lets the
fastest trains pass the switch first and then has the trains keep moving according to the
limit speed of the switch. Let the train with faster speed pass the switch at first.

To validate the efficiency differences between these several approaches, we simulate a
representative scenario in Figure 2. Train 1, train 2, and train 3 are three coupling trains
from three tracks their initial speeds are v1, v2, and v3, respectively. S1, S2, and S3 are
the distances to switch 1 or switch 2 from the three trains, respectively. S4 is the distance
between switch 1 and switch 2. S5 is the distance from switch 2 to the planned coupled
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position. The trains form platoons and synchronously arrive at the platform. Different
initial conditions are set and compared.

S1

S2

Train1, v1

Train2, v2
S5

Platform

Train3, v3
S3

Coupled point

Switch 1

Switch 2S4

Figure 2. “Coupled point” to “Coupling point” Simulink scenario.

5.2. Simulink Results

Three scenarios, which have different initial distances and speeds, are set as shown in
Table 3.

Table 3. The distances and speeds of three scenarios.

Scenarios S1 (m) S2 (m) S3 (m) S4 (m) S5 (m) v1 (m/s) v2 (m/s) v3 (m/s)

1 400 200 160 200 200 20 15 15
2 600 400 200 200 200 10 20 10
3 400 200 200 200 200 5 5 10

The simulation of naive strategy 1 in scenario 1 is shown in Figure 3, in which (a)
shows speed–time curves and (b) shows distance–time curves of three trains. The expected
sequence is train 3, train 2, and train 1. In this scenario, train 3 with a short distance passes
switch 1 and switch 2 first, train 2 waits at the switches until train 3 passes, and train 1
waits at the switches until train 2 passes. The results show that the initial train reaches
the expected planned coupled position, while the following train does not reach switch 2.
Finally, the trains fail to reach the coupled state at the expected position.

The simulation of naive strategy 2 in scenario 1 is shown in Figure 4, in which (a)
shows speed–time curves and (b) shows distance–time curves of three trains. The expected
sequence is train 1, train 3, and train 2. In this scenario, train 1 with a faster speed passes
switch 2 first; train 2 and train 3 have the same speed, and the train closer to the switch
has priority. Train 2 wait at the switches until train 3 passes. The result is similar to that
of naive strategy 1 in scenario 1. Finally, the trains fail to reach the coupled state at the
expected position.

The simulation of the unimproved PSO strategy in scenario 2 is shown in Figure 5,
in which (a) shows operation strategies and (b) shows speed–time curves of three trains.
Only one of the running results is shown. In the actual experiment, the unimproved PSO
algorithm may fall into local optima or stagnate in an infeasible solution and cause the
algorithm to fail. Finally, the trains fail to reach the coupled state at the expected position.

The simulation of the improved PSO strategies in scenarios 1, 2, and 3 are shown in
Figures 6–8, in which (a) shows the operation strategies and (b) shows speed–time curves
of three trains. In scenario 1, the coupling time is 57.8 s, the coupled speed is 15.6 m/s, and
the cost function value is 180.1. In scenario 2, the coupling time is 77.5 s, the coupled speed
is 14.7 s, and the cost function value is 230.5. In scenario 3, the coupling time is 68.2 s, the
coupled speed is 15.7 m/s, and the cost function value is 211.1.

According to different initial states, the algorithm generates corresponding operation
strategies for every train. The platoon formed by the improved PSO algorithm has a faster
coupling speed and a shorter stabilization time than the unimproved PSO algorithm. By
using a cooperative game model and the improved PSO algorithm, the trains couple at the
expected position quickly. Furthermore, the coupling speed is relatively fast.
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Figure 3. Trains operation curves of naive strategy 1 in scenario 1.
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Figure 4. Trains operation curves of naive strategy 2 in scenario 1.
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Figure 5. Unimproved PSO strategies and operation curves in scenario 2.
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Figure 6. Improved PSO strategies and operation curves in scenario 1.
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Figure 7. Improved PSO strategies and operation curves in scenario 2.
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Figure 8. Improved PSO strategies and operation curves in scenario 3.
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6. Discussions

We compare train operation results with trains using different operation strategies in
different scenarios. The results of the simulation show that the proposed train operation
strategy generation method was effective to couple train at junctions in the planned dis-
tance. Compared with the proposed optimization method, the two naive pre-programmed
operation strategies lack flexibility. Trains have to wait before the switch according to the
naive strategy. This will cause extra times for operations of virtual coupled trains. In fact,
in most cases, trains are not able to be coupled at the planned coupled position with the
naive strategy.

Compared with the proposed optimization method, the unimproved PSO easily
falls into local optima and results in the failure of the algorithm. Trains have very small
probabilities of being coupled at the planned position. It is difficult for the algorithm to
find an optimal solution and guarantee the final coupled state.

Thus, the improved PSO is necessary to solve the cooperative game-based model and
generate optimal operation strategies. The proposed method aims to guarantee the final
coupled status of trains. In addition, this method maximizes the coupled speed of the
convoy and minimizes the coupling time of the overall process.

7. Conclusions and Future Works

In this paper, we addressed the problem of optimal operation control strategies
for virtual coupling trains at junctions. First, we formulated a cooperative game-based
model for the coupling process as an optimal problem. Then, the cost function was
formulated. The game was solved by minimizing the cost function of the coalition. Finally,
we designed an improved PSO to find the optimal solution of the model and generate
strategies for trains.

The proposed method was validated through simulation and then compared with two
pre-programmed train operation strategies and the unimproved PSO strategies generating
method. The proposed method can generate different operation strategies for every train
according to specific conditions. Compared with the two naive strategies, the proposed
method reached coupled status in the planned position. It is almost impossible for the
naive strategies to reach the coupled status within such a short distance. Compared with
the unimproved PSO strategies generating method, the proposed method can better adapt
the cooperative game model and obtain an optimal solution. Nevertheless, the unimproved
PSO strategy demonstrated great contingency and easy convergence to local optima. This
can cause extra waiting time or even failure of the coupling process.

Furthermore, the proposed method demonstrated shorter coupling times. Compared
with naive strategy 1, naive strategy 2, and the unimproved PSO strategy, it decreased
train operation time by 41.7%, 22.10%, and 54.85%, respectively. The proposed method
also had a faster coupled speed. Compared with naive strategy 1, naive strategy 2, and
the unimproved PSO strategy, it increased train operation speed by 4.2%, 6.3%, and
63.08%, respectively.

Future research should attempt to extend the virtual coupling optimization to a multi-
object problem. Energy conservation and comfort should be considered for better passenger
experience and environmental protection.
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