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Abstract: Conventional approaches to robot navigation in unstructured environments rely on in-
formation acquired from the LiDAR mounted on the robot base to detect and avoid obstacles. This
approach fails to detect obstacles that are too small, or that are invisible because they are outside
the LiDAR’s field of view. A possible strategy is to integrate information from other sensors. In
this paper, we explore the possibility of using depth information from a movable RGB-D camera
mounted on the head of the robot, and investigate, in particular, active control strategies to effectively
scan the environment. Existing works combine RGBD-D and 2D LiDAR data passively by fusing
the current point-cloud from the RGB-D camera with the occupancy grid computed from the 2D
LiDAR data, while the robot follows a given path. In contrast, we propose an optimization strategy
that actively changes the position of the robot’s head, where the camera is mounted, at each point of
the given navigation path; thus, we can fully exploit the RGB-D camera to detect, and hence avoid,
obstacles undetected by the 2D LiDAR, such as overhanging obstacles or obstacles in blind spots. We
validate our approach in both simulation environments to gather statistically significant data and
real environments to show the applicability of our method to real robots. The platform used is the
humanoid robot R1.

Keywords: obstacle detection; active environment exploration; optimal gaze direction; navigation

1. Introduction

Obstacle avoidance in unknown and dynamic environments remains a fundamental
challenge in robots’ autonomous navigation [1]. To detect obstacles, the robot must rely
on its perception system. The most used sensors used in autonomous navigation are 2D
LiDAR and RGB-D cameras. 2D LiDAR sensors provide accurate measurements of the
robot’s distance to walls and other obstacles. However, they usually have a limited field
of view (FOV) due to occlusions with other robot parts (i.e., the wheels); in addition, they
can detect only obstacles at a certain, fixed, height. Consider the example in Figure 1
where a 2D LiDAR is mounted on a robot’s base. The robot is unable, using the 2D LiDAR
only, to detect and hence avoid the table in front of it. RGB-D cameras provide rough
measurements of 3D surfaces but with lower accuracy than the LiDAR and with a limited
field of view, which proved to increase latency in obstacle detection [2]. On the other
hand, if the RGB-D camera is actuated—as is the case for the humanoid robot used in
this paper—it is possible to actively control it to efficiently scan the environment to detect
obstacles before they collide with the robot.

In this paper, we propose fusing 2D LiDAR and RGB-D data employing an off-the-
shelf path planner for the robot’s base (where the 2D LiDAR is mounted) combined with
an optimized motion planner for the head (where the RGB-D camera is mounted).
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Figure 1. Example: an obstacle that is not detected by a 2D LiDAR on the robot base.

Existing works address this problem from a local path planning perspective. A safe
trajectory planning strategy is proposed by the authors of [3]; in [4], the authors present a
velocity obstacle approach considering sensing limitations, and [5] implements a relaxed
constraint MPC framework that allows safe navigation of quad-rotors with body-mounted
narrow field-of-view (FOV) sensors.

In contrast, our contribution exploits the capabilities of a humanoid robot to move
the RGB-D camera, typically mounted on the robot’s head. We propose an optimized
strategy that starts from potential obstacles and the planned trajectory to extract salient
points and perform optimal observations in the environment to improve obstacle detection
and consequently navigation performance.

The main drawback of classical LiDAR and RGB-D camera fusion approaches is
the small FOV of the camera sensors that makes, under certain conditions, obstacles
undetectable as demonstrated in [6]. Differently from [3–5], which solve this problem
by changing the local navigation behavior, we propose a method that does not require
modifications in the way the local path is computed.

To summarize, the contribution of the paper is thus twofold:

• We propose a method for an efficient active exploration of the environment to over-
come the limitations of sensors with small FOV;

• We propose a method which is independent of the navigation stack used; it is thus
possible to use our approach with different path planning algorithms, even in combi-
nation with [3–5] that perform local navigation with partial information.

Our approach has been tested both in simulations and in the real world. The platform
used is the humanoid robot R1, a unicycle robot that from the waist up is built to resemble a
human. The head, arms, hands and torso are actuated for a total of 26 degrees of freedom.
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2. Related Work

The field of robotics navigation is quite broad and includes a large number of different
approaches to the problem [1,7] and the use of different sensors technologies (Table 1)
in [6,8]. However, navigation can be classified into two types: global navigation and
local navigation. Global navigation often requires prior knowledge of the environment
including the position of the obstacles. Some of the methods are based on Roadmaps such
as [9]; others solve the problem assigning a value to each region and calculate the path
with a minimum cost such as Dijkstra algorithm and A∗. Other methods are based on cell
decomposition, artificial potential fields, visibility graph, cell grids, to mention just a few
(see [1] for a review). In local navigation, the robot relies on data coming from various
sensors, and a new path is generated in response to changes in the environment. The most
used approaches are RRT∗, vector field histogram, particle swarm optimization (see [10]
for a review). A relatively new approach to solve this category of problems leverages
neural networks; examples are the biologically inspired neural network approach [11] or a
pattern recognition method with a back propagation learning algorithm for mobile robot
navigation, based on computer vision [12].

Researchers are facing progressively more challenging environments with consid-
erable sources of uncertainty; this has led to extensive use of more advanced obstacle
detection techniques. 2D LiDAR sensors can be considered the backbone of robotics navi-
gation. However, the use of pure 2D LiDAR for obstacle detection is insufficient to ensure
safety in difficult environments [13]. Due to its predefined, constant, scanning height and
angle, LiDAR cannot detect low objects and overhanging obstacles [14]. Obstacle detection
is thus moving toward more complex strategies for identification: fusion of data from RGB
or RGB-D cameras and LiDAR data is a popular technique.

Existing works [15] integrate LiDAR with RGB camera data and employ the YOLO
(Ref. [16]) algorithm to obtain the relevant parameters from the color image. Sensor fusion
is then performed to improve the accuracy of the target detection. Ref. [14] proposes a
method for the detection of overhanging obstacles in the trajectory of autonomous ground
vehicle by exploiting a simple 2D LiDAR and a monocular camera. Ref. [17] describes
an approach to estimate the position of targets based on fusion of RGB-D camera and 2D
LiDAR sensor measurements. Other authors [18,19] demonstrate instead the effectiveness
of an RGB-D camera for obstacle avoidance tasks. In particular, [19] presents a system for
2D navigation using RGB-D sensors from which we take inspiration for the Depth Image
to Laser Scan module (IV.A). Fusion of LiDAR and an RGB-D sensor is thus proven to
be an effective and cost effective strategy to enable navigation in complex environments.
However, portable RGB and RGB-D cameras impose certain limitations due to their FOVs.

Sensors that are most frequently used (i.e., [17–19]) are the Intel RealSense [20] and
the Kinect [21], both characterized by a limited depth range and field of view. Thus, in
addition to the local path planning algorithm strategies listed in [7,10], there is also a new
category that is gaining momentum in local navigation and it is associated with the field
of collision avoidance with limited field of view sensing [3–5]. These methods, however,
directly try to solve the problem at the level of path planning, without extending the space
observed by the sensors.

An example that shows how optimizing the gaze direction of sensors can improve
a visual navigation task is proposed in [22]. The work presents a case study for an active
sensing problem that directs the gaze of a mobile robot with three machine vision cameras.
The robot has to select the direction of gaze of its vision system while following a given
sequence of landmarks. The task is to maximize information about the position of the
landmarks. Additionally, the work of [23] studies an active sensing problem where a
robot must decide in which direction to focus the attention of its actuated vision system to
maximize information about landmarks while moving along a fixed trajectory.

These works differ from ours since they use a priori information of each landmark
position; this can be helpful when maximizing information in specific and known points of
the environment. However, during navigation, the robot does not follow a fixed trajectory
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and obstacles can be found in any point of the map. Our approach seeks to address the
root of the problem by implementing a novel strategy to perform optimal observations in a
partially known environment by exploiting information coming from a 2D LiDAR and the
humanoid robot’s ability to actively scan the environment with the head.

3. Methodology

In this work, we use the humanoid robot R1 (Figure 1) equipped with 2D LiDAR
sensors mounted on the base and an RGB-D camera mounted on an actuated head.

As illustrated in Figure 2, the proposed navigation stack consists of the following
components: the Depth image to laser scan, Laser scan fusion, the Isaac Navigation module
(from NVIDIA [24]) which performs localization and obstacle avoidance, Saliency points
detection, and Head orientation optimization.

Figure 2. Flow diagram of the proposed system.

The Depth image to laser scan module flattens the 3D point-cloud from the RGB-D
camera into a 2D representation of the world which is similar to 2D LiDAR scans but with
a complementary perception of real obstacles occupancy in the 3D world.

The Laser scan fusion module merges these synthetic laser readings with the real LiDAR
data. The resulting output is then fed to the Isaac Navigation module to perform trajectory
generation and obstacle avoidance.

The Saliency points detection module uses the planned robot trajectory and LiDAR scans
to create a dynamic probabilistic map of potential poorly detected obstacles that require a
better observation with the RGB-D camera. From this map, the most relevant points are
extracted (obstacle candidates) and, along with the planned trajectory, are then fed to the
optimization module (i.e., the Head orientation optimization). The latter calculates, at each
time step, the optimal direction in which the robot has to look with the RGB-D camera; the
optimization accounts for the future trajectory, the computed obstacle candidates points,
head speed and joint limits of the robot.

Our aim is to find an optimal head trajectory that maximizes the knowledge of the
environment both by gathering data on poorly detected obstacles and expanding the area
observed by the sensors. The first important benefit of calculating the optimal trajectory
with this method is that we consider only uncertain points and not all the obstacles detected
in the environment, so the robot can concentrate the observations towards directions that
are more important. Moreover, the head trajectory is calculated over a specified period of
time and the optimization takes into account the future robot positions; in this way, we
maximize the number of observed salient points, not only by avoiding the observation of
the same points in consecutive frames but also by taking into account the robot dynamics
and thus feasible head trajectories. In fact, if the robot moves fast during navigation, the
head speed may not be enough to scan all the salient points in the environment. In this
case, our optimization brings two advantages. First, it allows us to generate a planned
head trajectory that maximizes the observed points accounting for the speed rotational
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limits of the head and prioritizing points that are closer to the robot and that are potentially
more dangerous. Second, the optimization also expands the area observed by the sensors,
because the trajectory is computed not only to observe the highest number of saliency
points but also to scan areas outside the FOV of the LiDAR by rotating the head far from
the robot centerline while keeping the salient point in the camera’s field of view.

3.1. Depth Image to 2D Laser Scan

The point-cloud is transformed from the camera frame reference system into the
robot’s base frame; the ground plane and ceiling plane are then detected and removed from
the point-cloud by applying a threshold with respect to the robot’s height. Additionally,
points outside the maximum (5 m) and minimum range (0.3 m) are excluded to avoid noisy
or false readings. The resultant point-cloud is then flattened along the vertical dimension;
points are then expressed in polar coordinates to obtain the representation of a typical laser
scan data type. To each angular coordinate (angular resolution is set to 0.5°, from 0° to 360°)
is associated the corresponding radial coordinate with the lowest value (i.e., the coordinate
of the closer point). The synthetic laser scan that is generated contains the projection on
the ground plane of 3D obstacles that are outside the field of view of the laser, such as
overhanging obstacles, e.g., tables or shelves.

3.2. Laser Scan Fusion

The laser scan fusion module merges the scans from the 2D LiDAR sensor with the
synthetic scan from the point-cloud and returns an augmented laser scan in the desired
reference frame. As we can see in Figure 3, the augmented laser scan is the result of the
union between the two input readings; for the same angular coordinate, the laser with the
smaller radial distance is taken as value. Figure 3 shows that the laser fusion extends the
actual FOV of the LiDAR, when the head of the robot is oriented towards the right or the
left (i.e., when the head angle is larger or smaller than ±|(LiDARFOV − RGBDFOV)/2|.

Figure 3. LiDAR and synthetic laser scan fusion. We can see how the LiDAR scan on the left is superimposed with the
synthetic laser obtained from depth to obtain the augmented laser scan on the right. Yellow colors represent missing data in
that direction; this happens when laser beams hit reflective surfaces or out of range surfaces.

3.3. Nvidia Isaac Navigation

The navigation system is based on the Nvidia Isaac Navigation stack gem [24]; it
integrates the functions of localization, global navigation and local trajectory planning.
Figure 4 is a schematic representation of the Isaac Navigation stack. In purple are high-
lighted the components of the stack; in green and blue are shown the input data necessary
for navigation; in red is the commanded output.

In the proposed approach the navigation system uses as input the robot’s odometry,
the real LiDAR scans and the augmented laser scans to compute the local trajectory,
the global path and the speed of the wheels. A particle filter provides localization in a
similar fashion to the Montecarlo localization algorithm [25], a global planner provides



Actuators 2021, 10, 205 6 of 20

the reference path according to the visibility graph algorithm [26]. To generate the local
trajectory a Linear Quadratic Regulator (LQR) planner is used, based on the model of a
differential drive robot.

The localization component uses the plain LiDAR scans (Figure 2). This is because the
map of the environment is built using this sensor, and, with respect to the depth camera,
the LiDAR is characterized by a better range and less noise. For mapping purposes, walls
and other fixed furniture are thus better represented in the 2D LiDAR scan rather than the
flattened scan from a RGB-D point-cloud. The augmented laser scan is instead used to
generate the local occupancy map from which the commanded trajectory is then calculated.
Thus, obstacle avoidance benefits from a more complete representation of the occupancy of
objects in the 3D world.

Figure 4. Flow diagram of the Isaac Navigation stack.

3.4. RGB-D Camera Heading Direction

With respect to the LiDAR, the depth cameras usually have a smaller FOV. For example,
in the R1 robot used in this paper (Figure 3) the front LiDAR has a FOV of 80° while the
RGB-D camera has only a FOV of 70°. The augmented laser scan (that includes data
from the RGB-D sensor) consequently has blind spots that are not covered by camera
observations. The RGBD-D camera is mounted on the robot’s head, whose joint limits
are yaw: ±35° and pitch ±25°. The LiDAR sensor mounted on our robot has a 360◦ FOV.
However, due to the structure of the robot that has been built to resemble a humanoid
shape, all the sensors are integrated inside the robot chassis and, as that the LiDAR is
positioned inside the robot base, it has only an 80◦ FOV, since laser beams are blocked by
the robot’s structure. As can be seen in Figure 5, the camera can thus reach visual angles of
±65°, enough to cover and extend the LiDAR FOV. In order to provide meaningful laser
augmentation scans, however, it is important to understand in which direction the robot
should rotate its head. We propose three different strategies:

• Sweep: the robot simply moves its head towards the left and right according to the
joint limits and given a certain pre-defined maximum speed. This strategy is used as
baseline test to evaluate effective improvements achieved with the proposed methods;

• Trajectory: the robot anticipates the global trajectory (i.e., it looks at the intersec-
tion point between the global trajectory and a circle centered in the robot with a
±2 m radius);

• Optimized heading (our contribution): at each time step we calculate the optimal
head’s heading direction accounting for the future robot’s global trajectory, obstacle
candidates points, head turning speed and joints limits of the robot.

The latter strategy is the most advanced one and it requires both the detection of the
obstacle candidates points on the map and an optimization model to be solved.
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Figure 5. LiDAR and RGB-D vision range of R1.

3.5. Salient Point Detector

We define obstacle candidates as specific points on the map where the LiDAR has
detected partial readings that may hide poorly detected obstacles (e.g., the partial reading
from a thin leg of an office chair). These kinds of partial readings are often too weak to be
detected as real obstacles by the path planning algorithm. Obstacle candidates points are
thus characterized as follows:

• The corresponding LiDAR reading must be uncertain and weak;
• The detected point must be local and must not belong to the global map (i.e., it has to

be far from walls and other fixed obstacles).

As shown in Figure 6, the proposed obstacle candidate point detector system contains
several steps:

Distance map generation: Starting from the global map (in binary representation), we
compute the Euclidean distance transform of the image.

At each pixel of the image is assigned a value representative of the distance between
that pixel and the nearest nonzero pixel. The MATLAB function bwdist [27] is used for
this computation as it implements the fast algorithm [28] that is approximately four times
faster than simply obtaining the Euclidean distance transform from the square root of
each element.

Detection of uncertainty points not belonging to the global map: Since the global path
planner already takes into account the obstacles in the global occupancy gridmap, we are
only interested in looking at salient points that are not included in the global map but that
are only detected in real time. Local obstacles differ from the global map for two main
reasons. First, the local map is generated with real time LiDAR readings and thus takes into
account new or re-located obstacles in the environment. Second, the global map is often
edited in post-processing to correct possible mapping errors or to open missing passages
(e.g., a door that was closed during mapping).

Laser scans are superimposed to the generated distance map by applying the frame
transform between the robot’s base link and the map origin (provided by the localization
module). Then, for each scan ray we consider the corresponding value of the distance map,
converted into meters. Local laser points are then identified by selecting those readings
that have a distance greater than a minimum threshold, so to discard points that are already
part of the global map. Since we use the position of the robot to superimpose laser scans to
the map, we make the assumption that the robot is well localized into the map. In cases
of high localization uncertainty the threshold can be increased to compensate for false
positives. In our experiment, we used a threshold of 0.15 m as it was found to work well
in practice.
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Probabilistic map generation: Local laser scans are used to generate a dynamic prob-
abilistic map of possible poorly detected obstacles. Uncertainty of obstacles from laser
readings is based on the assumption that small obstacles or reflective surfaces are only
partially detected by the LiDAR and with a high level of noise that degrades the measure-
ment consistency in space and time. In order to detect inconsistencies in space and time,
laser readings are projected onto a probabilistic map that is generated adding a Gaussian
distribution of probability for each laser reading. The occupancy probability in the areas
surrounding local points is increased at each time step according to a symmetric 2D Gaus-
sian distribution, while it is reduced for all the other areas in the FOV of the LiDAR. At
each time step, the local laser readings are superimposed onto the probabilistic map and
the probability values for each cell corresponding to x and y values in the real world are
updated according to this equation:

∀ set o f x and y :

Dist = min
xc ,yc

(
√
(x− xc)2 + (y− yc)2)

i f Dist ≤ maxDist :

prob(x, y, t) = prob(x, y, t− 1) + IR× ∆T × e
(x− xc)2 + (y− yc)2

2σ

else :

prob(x, y, t) = prob(x, y, t− 1)− DR× ∆T

(1)

prob(x, y, t) represents the value of the occupancy probability at time t for each point (x, y)
(expressed in meters) in the map. The Gaussian distribution is centered in the coordinates of
the local laser reading (xc, yc) and extends with a normalized σ2 = 0.5 over a circular area
of maxDist = 0.4 m. In our experiments, we used a time step of ∆T = 0.2 s, the probability
increase rate IR was set to 1.2 m s−1 at the center of the Gaussian distribution and the
probability decrease rate DR was set to 0.8 m s−1 for each point farther than maxDist
from the local point. By changing these parameters, the probabilistic map responsiveness
and sensitivity can be adjusted. These parameters were manually set and experimentally
validated. Notice that several of these parameters are independent of the environment
in which the robot operates and are general enough. In fact, simulation and real-world
experimental results are obtained with the same parameter values.

In this way, we include spatial and temporal inconsistencies of the laser in our model.
For example, a small obstacle that is not detected consistently in time will be marked on
the probabilistic map as areas where the obstacle position and dimensions are uncertain.

Obstacle candidates points computation: From the probabilistic map we can infer all
the local areas that have uncertainty or weak obstacles detection. These “candidate areas”
are characterized by probability values in the map that are between 0.1 and 0.85. High
probability values are not considered because we already know with high confidence that
an obstacle has been detected; the same reasoning is made for low probability values where
we know with high confidence that no obstacles are present. Candidate areas are then
inscribed into an ellipse that is synthetically described by four points corresponding to its
corners. These are the obstacle candidates points. Each obstacle candidate is associated
with a weight W that is computed from the probability of the point itself and its eight
adjacent pixels:

W ,
9

∑
i=1

1− |pi − 0.5|
9

(2)

This equation assigns the highest normalized weight to points that have the most
uncertain probability distribution (p = 0.5); where i is the index of the 10 pixels and pi is
the associated probability.
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Figure 6. Flowchart of the proposed obstacle candidate point detector.

This process is conceptually similar to subtracting the global costmap from the local
costmap generated by the navigation stack; there are, however, two big differences: (1) A
simple subtraction of the common global costmap and local costmap would not produce
the same result since we are building a probabilistic map with only the meaningful laser
readings as the ones related to nonrepresentative obstacles already detected in the global
costmap are discarded. (2) We consider only some points that are representative of an
uncertainty; the weight of these points is then calculated over its surroundings. This allows
a meaningful representation of the map with a small number of points that can thus enter
into the optimization without increasing the problem complexity too much.

3.6. Head Orientation Optimization

The objective of the optimization is to calculate the trajectory of the head that max-
imizes the sum of the weights of the relevant points (trajectory way-points and obstacle
candidates points) that enters into the camera’s FOV (Figure 7).

Figure 7. Schematic illustration of the optimization process in time.

We frame the problem as a Mixed Integer Linear Programming (MILP) problem, in
which the cost function is linear, the head position in time is described with a continuous
variable and we use an integer variable to describe the binary exclusion/inclusion of the
obstacle candidates and trajectory points in the FOV. The different components of the
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model are state variables, head joint constraint, head motion speed constraint, relevant
point in FOV constraint and the objective function. This problem is solved over T future
time steps. Formally,

x? = min
x

cTx

subject to Ax ≤ k

x , [h̄, b̄]

h̄ ∈ Rp, b̄ ∈ {0, 1}q

(3)

The components of x are the variables to be determined, h̄ is the subset of real variables
of dimension p, while b̄ is the subset of binary variables of dimension q. Matrix A and
vector k linearly describe the constraints in Equations (4)–(6) and C1–4. Vector cT contains
the polynomial coefficients of Equation (7).

State variables: At each time step t the state vector x is composed by one value ht in
R that represents the head direction in degrees and by a number Nt of binary variables
bi,t representing the i relevant point at time t . Nt is the total number of relevant points
detected at the time instant t.

x , [ht, · · · , hT , b1,t, · · · , bNt ,t, · · · , b1,T , · · · , bNT ,T ]

Head joint constraint: At each time step t the head position ht is bounded between
the maximum and minimum values of head rotation, hmin and hmax limits depends from
the physical characteristics of the robot:

hmin ≤ ht ≤ hmax (4)

Head motion speed constraint: At each time step t the variation in the head position
can not exceed the maximum rotational speed ḣmax:

| ht − ht−1 |
∆T

≤ ḣmax (5)

Relevant point in FOV constraint: A relevant point i at time t with a relative heading
θi,t calculated with respect to the robot is in the FOV of the camera only when:

ht −
f ov
2
≤ θi,t ≤ ht +

f ov
2

where f ov is the FOV of the RGB-D camera, equal to 70° in our case. However, this is not
simultaneously possible for all the points i, but by using the binary variable b1,t we can
rewrite the constraint as:

ht < +
f ov
2

+ θi,t + (1− bi,t) ·M

ht > −
f ov
2

+ θi,t + (1− bi,t) ·M
(6)

where M is any number larger than hmax + f ov + 2π. If M is large enough and the binary
variable is set to 0 the constraints in Equation (6) are always true for any values of ht and θi,t.
With this formulation, bi,t = 1 for all the points that are inside the camera’s FOV and bi,t = 0
for all the others. This constraint reformulation is necessary to represent the nonlinear
constraint of inclusion/exclusion, a similar formulation and proposed modifications of this
approach can be found in [29].

Objective function: The objective function is expressed as follows:

fmin , −(
T

∑
t

Nt

∑
i

bi,t
wi,t

t2 · di,t
+

T

∑
t
|ht| · rt) (7)
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where wi,t is the weight of the point i at time t, di,t is the distance between the point i
and the robot at time t and rt is the weight given to the head motion with respect to its
rest position 0. Nt is the total number of relevant points detected at the time instant t
and T is the total number of time steps taken into consideration. The first addendum
of Equation (7) represents the contribution of those points detected by the camera since
bi,t = 1 only in that case; the contribution is reduced linearly with the distance of the point
from the robot, i.e., closer points are more important) and in a quadratic proportion with
respect to time (i.e., less importance is given to points that will be detected by the camera
more frequently in the future). The second part of Equation (7) accounts for the head
motion with respect to its rest position. This is because when the head is rotated over a
certain degree the camera is directed towards points that are outside the LiDAR FOV. The
value of rt is, however, small to keep this contribution secondary. The maximization of the
absolute value is linearized with the addition of four constraints, a binary (i.e., bt) and a
continuous (i.e., ĥt) slack variable:

ht + M · bt ≥ ĥt (C1)

−ht + M · (1− bt) ≥ ĥt (C2)

ht ≤ ĥt (C3)

−ht ≤ ĥt (C4)

fmin = −(
T

∑
t

Nt

∑
i

bi,t
wi,t

t2 · di,t
+

T

∑
t

ĥt · rt) (Equation (7))

To solve the MILP problem we used the open-source GLPK library [30].

4. Evaluation

In this section, we evaluate the proposed method on a humanoid robot (i.e., R1,
Figure 1) both in a simulation (with R1 simulated in Gazebo) and in the real world. The
robot (schematized in Figure 5) is equipped with a front LiDAR (FOV of 80°), a back
LiDAR (rpLidar A2M6 with a FOV of 120°) and an Intel Real-sense D415 RGB-D camera
(FOV of 70°). The RGB-D camera is mounted on the R1 head whose joint limits are yaw:
±35° and pitch ±25°. LiDAR scans are parallel to the floor with an height of 0.20 m
and the robot moves at a maximum speed of 0.25 m s−1. The choice to equip our robot
with a simple 2D rpLidar A2M6 is twofold: it allows—in contrast to 3D LiDARS—us to
save money and space. The size of the sensor is of particular importance in the case of
anthropomorphic robots, as it allows the LiDAR be hidden internally in the robot’s chassis.
It is worth considering that readings similar to 3D LiDARs can also be obtained with cheap
solutions, for example, by rotating a 2D sensor on its pitch axis in order to reconstruct a
3D image of the surrounding as is carried out for example in [31]. The problem in this
case is that obtaining the 3D scan takes a non-negligible amount of time and it requires
additional hardware. In addition, implementing a LiDAR rotation system for a robot
would require effort and redesign, with consequent higher cost and space requirements.
Another limitation is due to the environment scan rate which is strongly reduced as the
time for a complete scan is inversely proportional to the number of segments in which we
divide the (vertical) rotation angle of the sensor. This may decrease performances when the
same sensor is used both for obstacle avoidance and localization because a fast scan rate in
the horizontal direction is required for a proper localization. In any case, we decided to
compare the use of similar hardware against our method.

The method proposed in this paper was experimentally validated both in simulations
and in the real world with challenging conditions, i.e., by including a set of obstacles that
are rarely properly detected by the LiDAR either because they are too small or outside the
field of view. Both the situations are addressed by the proposed method. This is because in
the first case we consider these obstacles as salient points, whereas in the second case the
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head trajectory resulting from the optimization will direct the camera towards points that
are outside the FOV of the LiDAR.

Simulated and real-world scenarios have been devised to better distinguish the per-
formance achieved by two baseline methods and the strategy proposed in this paper
(Section 3.4). In addition, in the simulated scenario, we also tested the hypothetical use of
a 3D LiDAR reconstructed from a 2D rotating sensor; the simulated sensor has the same
FOV of the 2D laser constrained to 80° by the occlusion of the robot geometry but it can
now produce 3D occupancy maps of the environment.

4.1. Tests in Simulation

As can be seen in Figure 8, the simulated world represents a real environment and it
is characterized by common indoors obstacles that are often not detected by a 2D LiDAR.
Examples are small tables and chairs legs, metal objects, reflective surfaces and semi-
transparent objects. To demonstrate its real effectiveness, the optimized observations is
compared against two simpler methods sweep and trajectory described above.

Figure 8. Simulated environment in Gazebo.
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We use Gazebo [32] to simulate the R1 robot and the environment that contains
furniture (taken from [33]). We evaluated the three different strategies over a dataset of
50 navigation tests each. For each navigation test (see Figure 9 as reference), the robot was
initialized at the point called “start” and was commanded to reach the goal position “end”.
In addition, we recorded all points in which the robot touched an obstacle or got stuck.

In Figure 9, we plot a representative trajectory followed by the robot during the
navigation and we report failure points with crosses (aggregating data from all method-
ologies), marking with capital letters all the areas in the map in which failure occurred.
Comparing this map with the Gazebo world in Figure 8, it is evident how these zones are
in correspondence with the obstacles that are the most difficult to detect.

Figure 10 synthetically represents the performances of the proposed method compared
to the other strategies. Figure 10a indicates the number, expressed as percentage over
the total simulations, of navigation tests in which the robot reached (or passed through)
a determined failure area. Figure 10b reports instead the failure rate for each individual
area. We can see that when following the proposed approach the robot performed better
obstacle avoidance and it reached the final goal (area J) significantly more frequently (55%
and 30%) than the two considered baselines (sweep and trajectory).

When using the 3D LiDAR, instead, we can see that the robot performed similarly to
the sweep strategy. This is coherent with the fact that the sweep strategy aims at increasing
the small FOV of the RGBD camera while the simulated 3D LiDAR has a slightly bigger
FOV with respect to the fixed camera (80° vs. 80°).

We also evaluated the speed of the navigation, with respect to the optimal global
trajectory generated by the Isaac global planner. To this aim, for each trial, we recorded the
time required by the robot to reach a given point along the optimal trajectory. The results
are plotted in Figure 11, in which for different percentages of progress along the x axis,
we report a series of box-plots that represents the time stamp distribution at which the
robot reached the related progress. Box-plots were built only using time stamps relative
to navigation tests in which the robot had effectively reached the associated progress and
no penalties were introduced in case the robot failed to reach a determined progress. The
average value of the box-plots was calculated excluding outliers, identified as a value that
was more than 1.5 times the interquartile range away from the top or bottom of the box.
These outliers (in red) represent “delay points”, in which the robot got stuck for several
seconds before resuming the navigation. These points leave a tail of lagging time measures
along the whole path. This effect can be clearly seen in Figure 11b, where delay points
originate at specific points of the trajectory and maintain a constant offset from the mean
value. The average time to reach a determined point in the trajectory is thus similar for the
two approaches since in case of a correct navigation the differences in the trajectories are
minimal and they do not bring substantial time savings. The main difference, however,
is in the number of outliers, i.e., the distribution of the delay points in terms of quantity,
dispersion, and absolute values. Figure 11 and Table 1 show that our method performed
better in all the three metrics. From Table 1, in particular, we notice that the proposed
method had a smaller number of delay points; these values were generated when the
robot got stuck during the navigation for a certain period of time. The average value
of the outliers is an indicator of this time period. As reported in Table 1, the proposed
methodologies significantly reduced the number of delay points and the average delay
that each point introduced in the trajectory.

Table 1. Outliers number and average.

Approach Delay Points # Delay Points Avg (s)

Sweep 348 295.6
Trajectory 281 283.4
Optimization 130 253.2
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Figure 9. Gazebo map with desired path and main navigation failure zones. The coloured boxes,
named with letters from A to I, represent the main navigation failure areas in which the robot typically
got stuck hitting an obstacle, while the + sign inside a box means that the robot stopped in that area
(aggregated data are reported). The green path is representative of the trajectory followed by the
robot during the navigation.
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Figure 10. (a) represents the percentage of simulations in which the robot reached a determined
area. (b) represents the failure rate per area. Percentage in (a) is calculated over the total simulations.
Percentage in (b) is calculated for an area over the total trial runs in which the robot reached the
previous area.
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Figure 11. Time stamps values in function of progress percentage along the optimal trajectory.
(a) shows performances of our Trajectory method while in in (b) are presented the result for our
Optimization method. Box-plot is represented in blue and outliers (delay points) in red. Plot for
sweep method not reported since it is similar to trajectory.
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4.2. Test in Real World

To further validate our approach, we performed experiments on the R1 robot navigat-
ing in a common office environment characterized by a mix of obstacles that are difficult
to be detected by the LiDAR alone (e.g., office chairs, walking or standing people, over-
hanging obstacles). The map of the environment and the location of the obstacles are
represented in Figure 12.

To test our method in real world we compared it against three different strategies: no
head motion , sweep, and trajectory. For each of these cases, we commanded the robot
to move from position A to position B along the forward and backward paths described
in Figure 12 for 10 times. Similarly to the tests in the simulation, the navigation was
interrupted each time the robot collided against an obstacle, and a failure was recorded.
However, after each collision, the navigation was resumed to avoid a complete restart.
The robot was then moved to a new safe position nearby the failure point and allowed to
continue along its path. This simplified procedure allowed us to avoid time consuming
manual interventions to reset the robot and bring it back to the home position, without
affecting the experimental validation.

Among the different tests, the obstacles were kept in the same position. Figure 12 rep-
resents the obstacle distribution; obstacles numbered from 2 to 5 were only partially visible
from the laser while obstacles 6 and 7 constituted a person that crosses the robot’s path.

Results of tests in the real world are summarized in Table 2 row All represents the
percentage of navigation failures, for each methodology. Since the robot resumed naviga-
tion after a collision, the percentage of total failures was not calculated over the number of
tests per methodology (10) but was calculated over the total possible collision points which
corresponds to the number of tests multiplied by the total obstacles encountered during
the forward and backward paths (16), for a total of 160 possible collision points. As we can
see in Table 2, our method performs better with respect to the other strategies.

Table 2. Percentage of failures (robot crashes or gets stuck) per methodology and obstacles type.

Obstacle Type Fixed Sweep Trajectory Optimization

All 19.4% 15.7% 8.8% 6.3%
Side 9.4% 6.9% 4.4% 2.1%
On-trajectory 10.0% 8.8% 4.4% 4.2%

Figure 12. Scheduled path in real world and placement of obstacles.
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Rows Side and On-trajectory of Table 2 represent instead the percentage of total failures
segmented into two main categories: side obstacles and on-trajectory/corner obstacles. As
can be seen in Figure 12, we identified side obstacles (1, 2, 3, 5, 6) as the ones that were
at the sides of the desired trajectory and that needed minor corrections to be avoided;
trajectory obstacles (4, 7, 8) are the obstacles that partially blocked the passage.

Table 2 suggests that the trajectory approach improves detection of obstacles that are
directly placed along the robot trajectory or at the corner before a curve. However, the
detection of side obstacles is poor, especially if these obstacles do not directly lie on the
planned trajectory. Our approach, on the other hand, not only reduced the total number of
failures but it also enabled the detection of obstacles outside the area of interest that was
strictly close to the trajectory.

A possible limit of this approach can be the presence of wide overhanging obstacles in
the environment. For example, if the table in Figure 1 is very long, no salient points will
be detected between the legs of the table. However, this happens only when the table is
approached frontally and thus the distance of the two legs with respect to the robot point
of view is maximum. In this case the robot will perceive two salient point on the left and
on the right without any information in the middle but in agreement with the cost function
optimized by our method, the head trajectory should pass from one point to the other and
thus will also scan the portion of table in the middle of the legs. However, this behavior
is not guaranteed in cases where the robot moves very fast, and the head will not have
sufficient time to sweep the area between the legs of the table. It is worth noting that given
the speed of the camera (the head of the robot is much lighter than the robot body); this is
a quite unlikely case.

5. Conclusions

In this work, we have developed a method to actively detect obstacles with robots
that are equipped with LiDARs with limited FOV and movable depth cameras. Using a
humanoid robot, we exploited the additional degree of freedom of the head to probe the
space of a partially determined environment in an efficient way. The proposed method
optimizes the head trajectory movements in order to make observations with the attached
RGB-D camera, the head movements determine the areas that are scanned by the camera
and thus the obstacles that are detected. LiDAR data are not only fused with point-cloud
data but are also used to gather preliminary information from the environment to be
used in the head trajectory generation. Our methodology is validated experimentally
in challenging conditions in simulation and with the real robot. This work opens up
various directions of research, including the integration of additional methods for detecting
obstacles using depth and RGB data, and a recovery systems to resume navigation when
the robot gets stuck.
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