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Abstract: Although the stick-slip principle has been widely employed for designing piezoelectric
actuators, there still exits an intrinsic drawback, i.e., the backward motion, which significantly affects
its output performances and applications. By analyzing the generation mechanism of backward
motion in stick-slip piezoelectric actuators, the elliptical trajectory was employed to design a novel
stepping piezoelectric actuator free of backward motion. Accordingly, a prototype of piezoelectric
actuator was designed, which utilized a flexure hinge mechanism and two vertically arranged
piezoelectric stacks to generate the required elliptical trajectory. The compliance matrix method was
used to theoretically analyze the flexure hinge mechanism. The theoretical and measured elliptical
trajectories under various phase differences were compared, and the phase difference of 45◦ was
selected accordingly. Under a critical relative gap, output performances of the actuator working
under the elliptical trajectory were characterized, and then compared with that obtained under the
normal stick-slip driving principle. Experimental results indicated that forward and reverse stepping
displacement with completely suppressed backward motion could be achieved when employing
the elliptical trajectory, verifying its feasibility. This study provides a new strategy for designing
a stepping piezoelectric actuator free of backward motion.

Keywords: piezoelectric actuator; stick-slip principle; backward motion; elliptical trajectory; compli-
ance matrix method

1. Introduction

Precision positioning has very wide applications and demands in precision instru-
ments, precision/ultra-precision manufacturing, and assembly. Taking advantage of high
bandwidth, fast response, theoretically infinite resolution, compact size, and anti-magnetic
interference, piezoelectric materials have been generally employed for precision position-
ing. As the output displacement and force of single layer of piezoelectric materials are
very small, piezoelectric stacks (PESs) with multi-layers of piezoelectric materials are a
commonly used type, which could output displacement in several or tens of micrometers
and force in hundreds or thousands of newtons, determined by the size of PES. Due to
the enhanced output ability, PESs have been extensively employed for sample positioning
in atomic force microscopes (AFM) [1,2], generation of complex tool trajectory in fast
tool servo (FTS) [3,4], positioning of diamond indenter in in situ nanomechanical testing
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inside scanning electron microscopes (SEM) [5–7], micro/nano-manipulation inside SEM,
mini tensile machine [8,9] or under optical microscopes [10,11], and actuators for microp-
umps [12,13]. For these applications, the output displacement of single PES or by simple
structure amplification using lever or bridge-type compliant mechanism, is applicable.

However, for some specific applications, for example, sample positioning during
in situ nanomechanical testing inside SEM [6,14,15], or sample movement for realizing
in situ scratch testing [14,16], or sample positioning during micro/nano-manipulation,
the large working stroke in millimeter and even centimeter scale is required. By simple
structure amplification, the output displacement of single PES could not satisfy this re-
quirement. To solve this problem, some innovative driving principles by accumulating
stepping displacement have been proposed [17–19], for example, the ultrasonic princi-
ple [20,21], the inchworm principle [22,23], the stick-slip principle [24–27], and the parasitic
motion principle [28,29]. Due to its uncomplicated structure and control, the stick-slip
principle has been extensively utilized for designing linear and rotary piezoelectric ac-
tuators [24,25,30,31]. However, in their output displacement, the backward motion is
commonly observed [24,25,31,32], which means that the output displacement first reaches
the maximum and then generated backward motion with a certain distance. The generation
of backward motion affects the output performances of stick-slip piezoelectric actuators
from the following three aspects: (1) reduceing the driving efficiency, (2) making the sub-
sequent precision control more difficult, and (3) resulting in wear and heat generation
during repeated forward and reverse relative movement. Similar backward motion also
appears in the actuators designed by the parasitic motion principle [28,29,33–35]. However,
backward motion would not occur in inchworm principle actuators, in theory, due to the
clamping process; the structure and control of this kind of actuator is too complex, and this
hinders its practical application [17,22]. Therefore, new driving principles or methods for
suppressing the backward motion should be further explored.

In this study, a stepping piezoelectric actuator free of backward motion was devel-
oped accordingly. This paper is divided into five sections. In Section 2, by analyzing
the generation mechanism of backward motion in stick-slip piezoelectric actuators, the
elliptical trajectory was employed to design a novel stepping piezoelectric actuator free
of backward motion. Meanwhile, an actuator prototype was proposed and evaluated to
verify the feasibility. Section 3 performed a detailed theoretical analysis of the flexure hinge
mechanism, which was the core structure of the prototype. Subsequently, the mathematical
function for calculating the single-step displacement of the slider was derived. In Section 4,
the effect of the phase difference of the elliptical trajectory on the output characteristics was
studied, and the phase difference was finally determined to be 45◦. In Section 5, by testing
output performances of the prototype and comparing with that obtained when working
under the normal stick-slip driving principle, it was confirmed that the proposed actuator
could output the stepping displacement with completely suppressed backward motion.
Section 6 summarized the main conclusions.

2. Suppressing Principle by Employing the Elliptical Trajectory

Prior to giving the driving principle by employing the elliptical trajectory, the normal
stick-slip principle will be briefly introduced, firstly for comparison, and for introducing
the original idea. As shown in Figure 1, a common composition of stick-slip piezoelectric
actuators mainly includes the piezoelectric stack (PES), flexure hinge mechanism, and a
slider. The PES provides the original displacement output when a driving voltage is applied.
The output displacement is further tuned by the flexure hinge mechanism, including its
magnitude and direction, and then applied to the slider. When a driving voltage with the
sawtooth shape is employed, the slider will move step by step.
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Figure 1. Schematic diagrams illustrating the normal stick-slip principle: (a) the initial contact be-
tween the flexure hinge mechanism and the slider, (b) the “stick” stage, (c) the “slip” stage, and (d) 
the stepping displacement. 

The driving processes for normal stick-slip actuators mainly include two stages, i.e., 
the “stick” and “slip” stages, as illustrated in Figure 1b,c, respectively. Figure 1a shows 
the initial contact between the output end of the flexure hinge mechanism and the slider. 
When gradually increasing the driving voltage, the PES will elongate and push the flexure 
hinge mechanism to deform. As there is an angle θ between the displacement output axis 
and the movement axis of slider, the output end of flexure hinge mechanism will act on 
the slider, generating the normal force FSF and subsequently the friction force fSF. When 
the friction force fSF is over the friction force between the slider and the base, the flexure 
hinge mechanism will stick the slider to realize movement until reaching the maximum 
driving voltage of PES. The corresponding displacement of slider is Lforward, as shown in 

Figure 1. Schematic diagrams illustrating the normal stick-slip principle: (a) the initial contact
between the flexure hinge mechanism and the slider, (b) the “stick” stage, (c) the “slip” stage, and
(d) the stepping displacement.

The driving processes for normal stick-slip actuators mainly include two stages, i.e.,
the “stick” and “slip” stages, as illustrated in Figure 1b,c, respectively. Figure 1a shows
the initial contact between the output end of the flexure hinge mechanism and the slider.
When gradually increasing the driving voltage, the PES will elongate and push the flexure
hinge mechanism to deform. As there is an angle θ between the displacement output axis
and the movement axis of slider, the output end of flexure hinge mechanism will act on
the slider, generating the normal force FSF and subsequently the friction force f SF. When
the friction force f SF is over the friction force between the slider and the base, the flexure
hinge mechanism will stick the slider to realize movement until reaching the maximum
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driving voltage of PES. The corresponding displacement of slider is Lforward, as shown
in Figure 1d, and this process is the so-called “stick” stage. Then, quickly decreasing the
driving voltage from the maximum to zero, the deformation of flexure hinge mechanism
will recover quickly and the slider will ideally keep no motion due to the inertial force.
Therefore, relative motion appears between the flexure hinge mechanism and the slider,
and this process is the so-called “slip” stage. However, in practice, due to the non-ideal
sawtooth waveform, as well as the role of reverse friction force f SB, the slider will generate
a reverse motion, i.e., the commonly observed backward motion Lbackward as illustrated
in Figure 1d. Repeat the “stick” and “slip” processes, the slider will move step by step
to achieve a long working stroke. However, the appearance of backward motion reduces
the one-step displacement (i.e., the driving efficiency) and also increases the difficulty in
subsequent control. Hence, the suppression and even avoidance of the backward motion is
urgently required.

From the above analysis, it is noted that the generation of backward motion is mainly
due to the fact that when the driving voltage is fast decreasing, the flexure hinge mechanism
recovers to its original status by following the same trajectory of slow extension, which
makes inevitable contact with the slider. Accordingly, to suppress the backward motion,
the basic idea here is to plan a new trajectory for the recovery of flexure hinge mechanism,
which can remove this kind of contact that leads to the backward motion. To realize this
idea, we turn to the elliptical trajectory and, correspondingly, the principle of suppressing
the backward motion, illustrated in Figure 2.
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Figure 2. Schematic diagram illustrating the suppressing principle by employing the elliptical tra-
jectory: (a) the contact driving process, (b) the relationship between the position of output end of 
flexure hinge mechanism and the friction force, and (c) the stepping displacement. 

The core of avoiding the backward motion by utilizing the elliptical trajectory is that 
the output end of the flexure hinge mechanism will periodically contact with the slider 
during the driving process, and the normal stick-slip driving mode is transformed into 
the elliptically intermittent driving mode. Figure 2a illustrates the contact driving process 
between the output end of flexure hinge mechanism and the slider. As the elliptical tra-
jectory has an overlapping portion with one side of the slider, when the output end of the 
flexure hinge mechanism reaches the point A, it starts to contact the slider, thereby gen-
erating the normal force FE and friction force ƒE acting on the slider. When the friction 
force ƒE exceeds the friction force between the slider and the base, the flexure hinge mech-
anism will stick the slider to realize movement until it moves to the disengagement point 
B. This contact driving process is very similar to the “stick” stage in the normal stick-slip 
driving process described above. However, when analyzing the motion conditions during 
this process, it is worth nothing that the friction force fE is not always increasing, as during 
the “stick” stage in the normal stick-slip driving process. As illustrated in Figure 2b, the 
friction force ƒE will increase first and then decrease, and this process can be divided into 
two parts by point C (i.e., the point where the frictional force ƒE is the largest). From point 

Figure 2. Schematic diagram illustrating the suppressing principle by employing the elliptical
trajectory: (a) the contact driving process, (b) the relationship between the position of output end of
flexure hinge mechanism and the friction force, and (c) the stepping displacement.

The core of avoiding the backward motion by utilizing the elliptical trajectory is
that the output end of the flexure hinge mechanism will periodically contact with the
slider during the driving process, and the normal stick-slip driving mode is transformed
into the elliptically intermittent driving mode. Figure 2a illustrates the contact driving
process between the output end of flexure hinge mechanism and the slider. As the elliptical
trajectory has an overlapping portion with one side of the slider, when the output end of
the flexure hinge mechanism reaches the point A, it starts to contact the slider, thereby
generating the normal force FE and friction force f E acting on the slider. When the friction
force f E exceeds the friction force between the slider and the base, the flexure hinge
mechanism will stick the slider to realize movement until it moves to the disengagement
point B. This contact driving process is very similar to the “stick” stage in the normal stick-
slip driving process described above. However, when analyzing the motion conditions
during this process, it is worth nothing that the friction force f E is not always increasing,
as during the “stick” stage in the normal stick-slip driving process. As illustrated in
Figure 2b, the friction force f E will increase first and then decrease, and this process can
be divided into two parts by point C (i.e., the point where the frictional force f E is the
largest). From point A to point C, the output end of the flexure hinge mechanism draws
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closer to the slider, and thus the normal force FE and friction force f E increases. This part is
almost the same as the “stick” stage in the normal stick-slip driving process, resulting in
a forward displacement Lforward1. From point C to point B, the output end of the flexure
hinge mechanism pulls away from the slider, and thus the normal force FE and friction
force f E decrease. This part has the same role with the “slip” stage in the normal stick-slip
driving process that makes the flexure hinge mechanism recover to its original status, but
the big difference is the motion trajectory. For the normal stick-slip principle, the flexure
hinge mechanism recovers by following the same trajectory of slow extension, resulting
in the backward motion. However, as shown in Figure 2, when employing the elliptical
trajectory, the flexure hinge mechanism recovers by following the other side of the elliptical
trajectory, i.e., from point C to point B, which is the mirror image of that from point A
to point C. Therefore, the backward motion appearing in the normal stick-slip principle
will transform into a second forward displacement Lforward2. After that, the output end
of flexure hinge mechanism moves from point B to point A, and prepares for the next
driving cycle. Correspondingly, the one-step displacement is Lforward1 + Lforward2. Repeat
the above driving processes, and the slider could realize the stepping displacement without
backward motion in theory, as illustrated in Figure 2c.

To verify the feasibility of the elliptical trajectory on suppressing the backward motion,
a prototype of piezoelectric actuator is designed. Figure 3a presents the three-dimensional
(3D) structure of the actuator, which mainly consists of a flexure hinge mechanism, a
slider, two piezoelectric stacks (PES1 and PES2), a translation stage, and a base. The
translation stage is used for tuning the initial gap between the output end of the flexure
hinge mechanism and the slider. The whole structure of the actuator, as well as the flexure
hinge mechanism is designed symmetrically. The PES1 and PES2 (5 mm × 5 mm × 20 mm,
AE0505D16DF, TOKIN, Japan) are preloaded and installed inside the flexure hinge mecha-
nism, and they work as the driving source. The output displacements of PESs are transmit-
ted and synthesized by the flexure hinge mechanism, whose detailed structure is presented
in Figure 3b. To obtain a good elastic deformation performance, the flexure hinge mecha-
nism is fabricated by aluminum alloy AL7075. To ensure the motion accuracy and reduce
the stress concentration, the circular flexure hinges are employed as shown in Figure 3b.
The core of the flexure hinge mechanism are two groups of dual right circular flexure hinge
mechanism (DRCFH), which cause high stiffness and a compact structure. The symmetrical
structure of the flexure hinge mechanism ensures that the bidirectional driving perfor-
mances are consistent and the kinematics are simple. When two harmonic signals with a
specific phase difference are applied to these two PESs, respectively, the resultant output
displacement at the output end of the flexure hinge mechanism will follow an elliptical
trajectory, which will be further discussed in Section 4.
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Figure 3. (a) Three-dimensional (3D) structure of the designed piezoelectric actuator working by
employing the elliptical trajectory, and (b) structure of the flexure hinge mechanism for generating
the elliptical trajectory.
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3. Theoretical Analysis of Flexure Hinge Mechanism

As the flexure hinge mechanism is responsible for the transmission and synthesis of
the output displacement of the PESs, its compliance will directly determine the output
characteristics of the actuator. Therefore, the compliance matrix method is employed to
theoretically analyze the compliance of the flexure hinge mechanism, including the output
compliance, input compliance and the magnification ratio of the DRCFH. Furthermore, by
introducing the stiffness of the PES, the output range of the flexure hinge mechanism and
the single-step displacement of the slider, with different initial gaps under a certain driving
voltage and phase difference, were further deduced.

3.1. Compliance Analysis
3.1.1. Compliance Matrix Method

The compliance matrix method mainly includes two steps: (1) calculate the compli-
ance matrix of each single flexure hinge and (2) combine them into a global compliance
matrix according to the connection relationship of the flexure hinges after coordinate
transformation.

Figure 4 shows the schematic diagram of the right circular flexure hinge, which is
the main structure of the flexure hinge mechanism shown in Figure 3a. Koseki et al.
summarized the compliance matrix of this kind of flexure hinges [36]. When the input
force Fi =

[
fx, fy, fz, mx, my, mz

]T is acted on the point Oi, in the local coordinate system

Oi-xyz, the output displacement δi =
[
δx, δy, δz, θx, θy, θz

]T can be obtained as

δi =



∂δx
∂ fx

0 0 0 0 0

0 ∂δy
∂ fy

0 0 0 ∂δy
∂mz

0 0 ∂δz
∂ fz

0 ∂δz
∂my

0

0 0 0 ∂θx
∂mx

0 0

0 0 ∂θy
∂ fz

0 ∂θy
∂my

0

0 ∂θz
∂ fy

0 0 0 ∂θz
∂mz


Fi = CiFi (1)

where Ci is the compliance matrix of a single right circular flexure hinge expressed in its
local coordinate Oi-xyz when force Fi is acted on point Oi.
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Figure 4. Schematic diagram of the right circular flexure hinge.

No matter how complicated the flexure hinge mechanism is, it is always composed
of finite number of basic hinges connected in series or in parallel. Yao et al. gave the
rules of combining compliance matrix into a global compliance matrix and the coordinate
transformation matrix for the series and parallel structures [37].

Figure 5 illustrates the series and parallel structures commonly used in the designed
flexure hinge mechanism. As shown in Figure 5a, in a flexure hinge mechanisms in
series, when the force FO2 is applied on the coordinate system O2-xyz and the output
displacement δO1 is obtained in the coordinate system O1-xyz, the compliance CO1O2 of the
series structure can be expressed as

CO1O2 =
∂δO1

∂FO2
=

m

∑
i=1

T1
i Ci

(
T2

i

)T
(2)
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where m is the number of the flexure hinges between the fixed end and the acting point of
the force FO2; T j

i (j = 1, 2) represents the transformation matrix of local coordinate Oi-xyz
with respect to the coordinate Oj-xyz, and it can be given as

T j
i =

[
Rj

i S(rj
i)Rj

i
0 Rj

i

]
(3)

where Rj
i is the rotation matrix which depends on the angle of the coordinate Oi-xyz with

respect to the Oj-xyz, and S(rj
i) is the translation matrix, which depends on the position

vector rj
i of the coordinate Oi-xyz with respect to the Oj-xyz. When rj

i =
[
rx, ry, rz

]T, S(rj
i)

can be derived as

S(rj
i) =

 0 −rz ry
rz 0 −rx
−ry rx 0

 (4)
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For a typical parallel structure as illustrated in Figure 5b, four leaf spring flexure
hinges are connected with each other in a parallel form. When the force F is acted on the
coordinate system O-xyz and the output displacement is obtained at the same position, the
compliance COO of the parallel structure can be calculated by

COO = K−1
OO =

(
4

∑
i=1

(
TO

i Ci

(
TO

i

)T
)−1

)−1

(5)

where KOO is the stiffness matrix of the parallel structure.

3.1.2. Compliance of the DRCFH

The DRCFH structure is an important part of the flexure hinge mechanism of the
designed actuator shown in Figure 3b. Figure 6a illustrates the separated DRCFH structure.
It is similar to the typical parallel mechanism illustrated in Figure 5, and four flexible
components consisting of two right circular flexure hinges in series are adopted to substitute
for the leaf spring flexure hinges in Figure 5. Due to the symmetric structure of the DRCFH,
only the compliance of the left half is calculated, and the right half can be obtained by
rotating the left half with an angle of π around point A.
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As shown in Figure 6b, the left half can be further divided into a lower part and
an upper part, which are connected in parallel. According to Equations (2) and (5), the
compliance of left half Cleft

AA can be calculated as

Cll
AA = TA

1 C1

(
T1

A
)T

+ TA
2 C2

(
T2

A
)T

(6)

Clu
AA = TA

3 C3

(
T3

A
)T

+ TA
4 C4

(
T4

A
)T

(7)

Cleft
AA =

((
Cll

AA

)−1
+
(

Clu
AA

)−1
)−1

(8)

where Cll
AA and Clu

AA denote the compliance of the lower and upper parts of the left half
of the DRCFH, respectively. Ci (i = 1, 2, 3, 4) is the compliance of the right circular flexure
hinge in the local coordinate system, which can be obtained according to Equation (1).
Ti

A (i = 1, 2, 3, 4) is the transformation matrix from each local coordinate system Oi-xyz to
the coordinate system A-xyz.

Then, the compliance of the right half of the DRCFH can be obtained by rotating the
left half.

Cright
AA = TZ(π)Cleft

AATZ(π)
T (9)

where TZ(π) represents the transformation matrix that contains only π degrees of rotation,
and the rotation axis is z axis.

Finally, the compliance of the DRCFH can be deduced by connecting the left half and
the right half in parallel according to Equation (5), and it is

CAA =

((
Cleft

AA

)−1
+
(

Cright
AA

)−1
)−1

(10)

3.1.3. Output Compliance

Figure 7a calibrates the flexure hinge mechanism by marking the nodes of every hinge.
As illustrated in Figure 3b, the flexure hinge mechanism has a symmetrical structure, so
it can be disassembled into three parts as shown in Figure 7b to simplify the calculation.
Herein, the first part and the third part are both composed of the DRCFH and two flexure
hinges connected in series, and the second part can be regarded as a rigid platform due
to its high stiffness. Furthermore, the structure of the flexure hinges in the first part is
symmetrical with that in the third part, which means the output performance of the third
part can be obtained by the similar method. When an external force FA, coming from the
PES, acts on the coordinate system A-xyz of the first part while no force acts at the third part,
the output displacement δO in the coordinate system O-xyz can be obtained by calculating
the output compliance COA according to the compliance matrix method aforementioned.
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As it is difficult to directly calculate the output compliance at point O due to some
common mechanisms mentioned above, the displacement at point S and C is calculated
first. As shown in Figure 7b, the displacement at point C of the first part is attributed to
the combined action of external FA and internal force -f C, where f C is the interaction force
between the first and the second part. Accordingly, the compliance of the first part being
relevant to the two forces can be expressed as

δC = CCAFA − CCC fC (11)

where CCC is the compliance of the first part when the output displacement and force
are both in the C-xyz coordinate system, and CCA represents the compliance between the
output displacement in the coordinate system C-xyz and the force acting on the coordinate
system A-xyz. Both of them can be calculated according to Equation (2).

Meanwhile, the force acting on the third part is only -f S, so the displacement at point
S can be obtained easily as

δS = −CSS fS (12)

As mentioned above, the second part can be regarded as a rigid body without elastic
deformation, and this part is balanced with the action of f C and f S.

JO
C fC + JO

S fS = 0 (13)

where JO
i (i = S, C) is the deformation of transformation matrix, and its values are equal to(

TO
i
)−T.
As points S, C, and O are all on the same rigid body, the displacement relationship of

the three points can be obtained by transformation, and thus

δC =
(
TO

C
)−1

δO =
(

JO
C
)T

δO

δS =
(
TO

S
)−1

δO =
(

JO
S
)T

δO
(14)

Substituting Equations (11), (12), and (14) into Equation (13), the internal forces f C
and f S can be eliminated. Therefore, the following relationship could be obtained.(

JO
C C−1

CC

(
JO
C

)T
+ JO

S C−1
SS

(
JO
S

)T
)

δO = JO
C C−1

CCCCAFA (15)
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Hence, the output compliance COA can be given as

COA =
∂δO

∂FA
=

(
JO
C C−1

CC

(
JO
C

)T
+ JO

S C−1
SS

(
JO
S

)T
)−1

JO
C C−1

CCCCA (16)

According to the principle of symmetry, the output compliance COF of the flexure
hinge mechanism when piezoelectric force exerts in the vertical direction alone can be
obtained as

COF = TZ

(π
2

)
COATZ

(π
2

)T
(17)

As the piezoelectric stacks in two directions will work simultaneously during actual
work, the output compliance of the entire flexure hinge mechanism needs to integrate COA
and COF. Let the piezoelectric input force is FI = [fx, fy]T and the output displacement is
δO = [δOx, δOy]T, then the output compliance COI can be expressed as

COI =

 ∂δOx
∂ fx

∂δOx
∂ fy

∂δOy
∂ fx

∂δOy
∂ fy

 =

[
COA(1, 1) COF(1, 2)
COA(2, 1) COF(2, 2)

]
(18)

where COA(i,j) represents the element corresponding to the i-th row and j-th column of
the compliance matrix COA. Due to the symmetry, COF(2,2) and COA(1,1) are equal, and
COF(1,2) and COA(2,1) are also equal.

3.1.4. Input Compliance

The input compliance reflects the relationship between the input force of the flexure
mechanism coming from the PES and the displacement at the input end. When the vertical
piezoelectric stack works alone, the input displacement is affected by the compliance of the
first part and the third part, as shown in Figure 7b. The compliance of the flexure hinges
in these two parts can be divided into two groups connected in parallel. One group is
composed of a horizontal series chain (the first part in Figure 7b) and flexure hinges D and
E in series, and the other part is a DRCFH structure. Thus, when the vertical PES works
individually, the input compliance can be deduced as

C1
FF = TF

CCCC

(
TC

F
)T

+ TF
DCd

(
TD

F
)T

+ TF
E Ce

(
TE

F
)T

(19)

C2
FF = CAA (20)

CFF =

((
C1

FF

)−1
+
(

C2
FF

)−1
)−1

(21)

When the horizontal PES works individually, the input compliance CGG can be ex-
pressed as

CGG = TZ

(
−π

2

)
CFFTZ

(
−π

2

)T
(22)

Similarly, considering the two PESs work together, when the piezoelectric input force
is FI = [fx, fy]T and the output displacement is δI = [δIx, δIy]T, the output compliance CII can
be expressed as

CII =

 ∂δIx
∂ fx

∂δIx
∂ fy

∂δIy
∂ fx

∂δIy
∂ fy

 =

[
CGG(1, 1) CFF(1, 2)
CGG(2, 1) CFF(2, 2)

]
(23)

In fact, CFF(1,2) and CGG(2,1) have a difference of about two orders of magnitude
compared to CFF(2,2) and CGG(1,1), so the input compliance can be simplified to

CII =

[
CGG(1, 1) 0

0 CFF(2, 2)

]
(24)
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Heretofore, the input and output compliances of the flexure hinge mechanism have
been calculated. Based on these two parameters, the output range of the flexure hinge
mechanism can be further determined.

3.2. Output Range

The output range of the flexure hinge mechanism determines the range of a single-
step displacement of the actuator, which is one of the important output characteristics
of the actuator. It can be deduced by multiplying the input range and the structure
magnification ratio.

3.2.1. Magnification Ratio

From the above input and output compliances, the magnification ratio of the flexure
hinge mechanism could be easily obtained. Taking the horizontal input as an example, let
the input force equal FI, then the magnification ratio AO can be calculated as

AO =
δO

δI
=

COI(1, 1)FI

CII(1, 1)FI
=

COI(1, 1)
CII(1, 1)

(25)

3.2.2. Input Range

As the piezoelectric stack has a certain rigidity, and the deformation of the flexure
hinge mechanism will apply a certain resistant force on the piezoelectric stack during
operation, the elongation of the piezoelectric stack under the working state is less than that
without a load. Let the elongation of the piezoelectric stack under the working condition
equal L, and the elongation under no load is L0. Referring to the simplified method of
the piezoelectric stack proposed by Li et al. [38], Figure 8 shows different states of the
piezoelectric stack.
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As the piezoelectric stack and the flexure hinge mechanism can be regarded as a
parallel system, the elongation L under the working state of the piezoelectric stack can be
derived by

L =
kpL0 − f0

kp + kf
(26)

where kp is the stiffness of the piezoelectric stack; kf is the input stiffness of the flexure
hinge mechanism which is equal to the inverse component of the compliance matrix of the
flexure hinge mechanism along the piezoelectric input direction, i.e., kf = CII

−1(1,1); and
f 0 is the preload during installation.

When neglecting the hysteresis and nonlinearity of the piezoelectric stack, referring
to the model of Tian et al. [39], the relationship between the excitation voltage VPES of the
piezoelectric stack and its elongation L0 without load can be expressed as

L0 = nd33VPES = kVPES (27)

where n is the number of the layers of the piezoelectric ceramic in the PES, d33 is the
piezoelectric constant, and k is the equivalent proportional coefficient.
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3.2.3. Output Range

After the magnification ratio and output range are deduced, the output range R of the
flexure hinge mechanism along any direction of x and y is

R = AOL = AO
kpkVPES − f0

kp + kf
(28)

3.3. Single-Step Displacement of the Slider

The output range of the flexure hinge mechanism is not the final single-step displace-
ment of the slider, whereas it indirectly affects the output displacement of the slider by
affecting the size of the elliptical driving trajectory. Figure 9 exaggeratedly describes the
relationship between the output trajectory of the flexure hinge mechanism and the single-
step displacement of the slider, and the output trajectory is partitioned into two areas by
the line where the minor axis lies; s and l represent the single-step displacement and gap
between the slider and the flexure hinge, respectively. When the contact face of the flexure
hinge mechanism and the slider is in Area I, there will be no backward motion appearing
in the output displacement of the slider. On the the contrary, when the contact face is in
Area II, backward motion will appear in the output displacement of the slider due to the
properties of elliptical trajectory. Therefore, the initial gap should be larger than lmin, as
shown in Figure 9.
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Figure 9. Relationship between the output range of the flexure hinge mechanism and the single-step
displacement of the slider.

It is well known that the phase difference of the output displacement along the x and
y axis have an effect on the elliptical trajectory. When the phase of the output displacement
along the x axis is θ (θ∈(0, 2π)), and the phase difference is ϕ (ϕ∈(0, π/2)), the movements
of the composite elliptical trajectory along the x axis and the y axis can be derived as

x =
R
2
− R

2
cos θ (29)

y =
R
2
− R

2
cos(θ − ϕ) (30)

As shown in Figure 9, when the initial gap between the slider and the flexure hinge
mechanism is l, the contact starting point of the slider and the flexure hinge is point
M (xθ1, yθ1), the end point is point N (xθ2, yθ2), and the corresponding single-step displace-
ment of the slider is s. The analytical expression of line MN is y =

√
2l− x. By substituting
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Equations (29) and (30) into the analytical expression of line MN, the following equation
can be obtained:

cos
(

θ − ϕ

2

)
cos

ϕ

2
= 1−

√
2l

R
(31)

Let θ1 and θ2 be the two solutions of Equation (31), which represent the two values
of θ when the flexure hinge mechanism and the slider are at points M and N, respectively.
The analytical expression of the minimum value of the initial gap is lmin =

√
2R
2 , and the

maximum value lmax can be obtained by equalizing Equations (29) and (30); it can be
deduced as lmax =

√
2R
2
(
1 + cos ϕ

2
)
.

Then, the single-step displacement of the slider can be represented by the coordinates
of the points M and N.

s =
√

2(yθ2 − yθ1) =

√
2R
2

[cos(θ1 − ϕ)− cos(θ2 − ϕ)] =
√

2R sin
ϕ

2

∣∣∣sin
(

θ − ϕ

2

)∣∣∣ (32)

Observing Equation (32), the maximum single-step displacement of the slider can be
easily obtained.

smax =
√

2R sin
ϕ

2
(33)

According to Equations (28) and (33), it is easily noted that the maximum single-step
displacement smax of the slider has a linear function relationship with the driving voltage,
and a trigonometric function relationship with the phase difference.

Then, by combining Equations (31)–(33) the single-step displacement of the slider can
be derived as

s = smax

√√√√1− 1
cos2 ϕ

2

(√
2l

R
− 1

)2

(34)

In Equation (34) is not easy to visualize the relationship between all the variables.
As the phase difference is often set as a constant in the experiment, the relationship
curves between the single-step displacement of the slider s and the initial gap (step is
(lmax−lmin)/100) are drawn under different voltages and a constant phase difference of 45◦,
as shown in Figure 10.
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Figure 10. Curves between the single-step displacement of the slider and the gap obtained under
different voltages and a constant phase difference of 45◦.

From Figure 10, several characteristics can be observed. First of all, for each curve, as
the gap increases, the single-step displacement of the slider shows a descending trend, and
the descending speed becomes faster and faster. When the gap reaches a certain value, the
single-step displacement of the slider is zero. Secondly, for the same gap, the single-step
displacement of the slider increases as the voltage rises. Thirdly, as the voltage rises, the
minimum gap, the maximum gap, and the gap adjustment interval are all promoted, which
is consistent with the intuitive cognition.
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4. Generation of Elliptical Trajectory

To realize the principle as illustrated in Figure 2, the generation of an elliptical trajec-
tory is the critical step. In this paper, the flexure hinge mechanism combined with two PESs
is used for this purpose. As the output axes of two PESs are perpendicular to each other as
illustrated in Figure 3b. According to the elliptical equation, if two harmonic signals with
the same amplitude and frequency, but a specific phase difference, are applied to these two
PESs, respectively, the output end of the flexure hinge mechanism will in theory generate
an elliptical trajectory. In Figure 11, an example is given. When two sine-wave driving
voltages with a phase difference of 45◦ and the amplitude of 80 V, as plotted in Figure 11a,
are applied to two PESs, respectively, the output range R of the compliance mechanism
can be calculated first. Then, according to Equations (29) and (30), the motion trajectory
at the output end O is synthesized, which shows elliptical features with the major axis
and the minor axis being perpendicular and parallel to the axis of slider, respectively, as
illustrated in Figure 11b. Furthermore, if the amplitude and frequency of the two driving
voltages are fixed, the shape of the elliptical trajectory (the lengths of major axis and minor
axis) will be determined by the phase difference. According to the theoretical derivation in
the part 3, the theoretical motion elliptical trajectories of both output point O and point P
can be expediently deduced. For comparison with the following experiment results, the
theoretical elliptical trajectories at point P corresponding to the phase differences of 0◦, 15◦,
30◦, 45◦, 60◦, and 75◦are preferred in Figure 12a–f, respectively. As the phase difference
increases from 0◦ to 75◦, the length of major axis gradually decreases, and the length of
minor axis increases.

To obtain the real motion trajectory of the output end of the flexure hinge mechanism,
an experimental system, as shown in Figure 13a, was established. It mainly includes the
prototype of piezoelectric actuator, the voltage amplifier (E01.A3, Harbin Core Tomorrow
Science and Technology Co., Ltd., Harbin, China), the industrial control computer, two laser
displacement sensors (LK-H020, Keyence Corporation, Osaka, Japan), and the vibration
isolation platform. The driving voltage waves were programmed by the LabVIEW software,
and sent to the analog output card (PCI NI6722, National Instruments Corporation, Austin,
TX, USA). The generated driving signals were further amplified by the voltage amplifier,
and then applied to these two PESs. The resultant displacements at the output end of the
flexure hinge mechanism along the major and minor axes of elliptical trajectories were
measured synchronously by two laser displacement sensors, respectively, as illustrated in
Figure 13b,c. A test block pasted with the silicon wafer is placed at point P to reflect the
laser beam from the laser sensor, in turn, to realize the measurement of displacement, as
shown in Figure 13c.
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Figure 12. Theoretical motion trajectories of point P corresponding to different phase differences: 
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Figure 12. Theoretical motion trajectories of point P corresponding to different phase differences:
(a) 0◦, (b) 15◦, (c) 30◦, (d) 45◦, (e) 60◦, and (f) 75◦.
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Using the above experimental system, to test the elliptical trajectory, two sine-wave
driving voltages with the amplitude of 80 V, frequency of 20 Hz and various phase dif-
ferences (0◦, 15◦, 30◦, 45◦, 60◦, and 75◦) were applied to these two PESs. For comparison,
the measured displacements (along the major and minor axes of elliptical trajectories)
were converted into the displacements along the PES1 direction and the PES2 direction,
which are the same as the coordinate system of the theoretical calculation above. Then, the
measured motion trajectories after transformation and the theoretical motion trajectories
are simultaneously presented in Figure 14.
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Figure 14. Comparison of the measured and theoretical motion trajectories of the output end of the
flexure hinge mechanism under different phase differences: (a) 0◦, (b) 15◦, (c) 30◦, (d) 45◦, (e) 60◦,
and (f) 75◦.

In Figure 14, the measured motion trajectories under various phase differences show
similar features to those obtained by the theoretical analysis. When the phase difference
is 0◦, the resultant motion is an approximate straight line; when increasing the phase
difference, the real motion trajectory shows features of elliptical trajectory, and the length
of major axis first increases and then decreases. However, some differences still exist when
compared with the theoretical elliptical trajectories. The measured length of major axis is
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less than that predicted by theoretical analysis. Corresponding to the driving voltage of
80 V, the theoretical displacement of PESs is 6.57 µm, however, the measured displacement
at the output end is about 6 µm. Thus, the length of the major axis is shortened. From the
perspective of theoretical calculation, the preload f 0 during installation in Equation (28) is
unmeasurable, which may be the main reason for the great difference. Furthermore, with
consideration of the limitations of the experimental device, it may also be caused by the
inevitable offset between the actual measurement position and the theoretical circle center,
caused by the volume of the test cube that cannot be ignored. Another difference is that the
measured motion trajectories show some distortion, which could be the result of coupled
motion existing between two output axes of PESs. In other words, when PES1 outputs
displacement, it will also lead to displacement output along the axis of PES2. This kind of
coupled motion would intrinsically exist if the elliptical trajectory were generated by two
vertically arranged PESs and a symmetrical flexure hinge mechanism.

Although the real motion trajectories are a little different from the theoretical tra-
jectories, the approximate elliptical trajectories have been achieved under some phase
differences, for example, 15◦, 30◦, 45◦, and 60◦. As the emphasis of this study is on
suppressing the backward motion which appears in the normal stick-slip principle by
employing the elliptical trajectory, the coupled motion between two axes of PESs will not
be discussed in detail here, and in the future, a specific flexure hinge mechanism will be
further developed to reduce the coupled phenomenon.

Next, a suitable phase difference will be selected for the following experiments, and
the selection criteria is related with the lengths of the major axis and minor axis of the
elliptical trajectory. If the major axis is too short, the gap adjustment interval (GDI) will be
shortened, increasing the difficulty in position adjustment. If the minor axis is too short,
the maximum single-step displacement (MSD) of the slider will decrease, which weakens
the driving ability.

The relationship between the MSD and the phase difference has been established in
Equation (33). Here, the GDI should also be quantified. The value range of the gap l has
been given above, so let the GDI be lint, which can be expressed as

lint = lmax − lmin =

√
2

2
R cos

ϕ

2
(35)

When only considering the influence of the phase difference and fixing the voltage to
80 V, the relationship between the MSD (GDI) and the phase difference changing from 0 to
π/2 (step value π/36) can be obtained, as illustrated in Figure 15.

Actuators 2021, 10, x FOR PEER REVIEW 18 of 23 
 

 

the maximum single-step displacement (MSD) of the slider will decrease, which weakens 
the driving ability. 

The relationship between the MSD and the phase difference has been established in 
Equation (33). Here, the GDI should also be quantified. The value range of the gap l has 
been given above, so let the GDI be lint, which can be expressed as 

int max min
2 cos

2 2
l l l R ϕ= − =  (35) 

When only considering the influence of the phase difference and fixing the voltage 
to 80 V, the relationship between the MSD (GDI) and the phase difference changing from 
0 to π/2 (step value π/36) can be obtained, as illustrated in Figure 15. 

V
al

ue
 (μ

m
)

Phase difference 
π/8  π/4  3π/8  π/2  

 
Figure 15. The maximum single-step displacement (MSD) and the gap adjustment interval (GDI) 
changing with the phase difference in the range of 0 to π/2 (step value π/36). 

Figure 15 indicates that the trends of MSD and GDI are opponent, which means that 
larger MSD and GDI cannot be obtained at the same time. The most compromised phase 
difference calculated is 0.295π, which is the intersection of the two curves and, at this 
point, MSD and GDI are equal, and both have larger values. In practical applications, it is 
necessary to select an appropriate phase difference according to the performance require-
ments of the actuators; that is, when a larger MSD is required to pursue larger driving 
velocity, the phase difference exceeding 0.295π may be a better choice, and in order to 
meet the intention of convenient adjustment, less than 0.295π may be more suitable. This 
paper is mainly to prove the feasibility of the driving principle, so in the follow-up exper-
iments, π/4 is selected as the representative to verify the driving performances for con-
venience 

5. Verification and Performances 
In order to verify the feasibility of the proposed driving principle, and also to test the 

output performances of the designed piezoelectric actuator, an experimental system, as 
shown in Figure 16, was established. Being different from the experimental system in Fig-
ure 13, this system only requires one laser displacement sensor to measure the output 
displacement of the slider. 

According to the suppressing principle, to suppress the backward motion, the rela-
tive gap between the output end of flexure hinge mechanism and the slider must be within 
a certain range. If the relative gap is too big, as the major axis of motion trajectory has 
limited length, the output end of flexure hinge mechanism is not able to contact the slider, 
or the effective driving length is too short. If it is too small, the output end of flexure hinge 
mechanism would not completely separate from the slider when it moves from point B to 
point A, as illustrated in Figure 2, resulting in the backward motion. Therefore, a suitable 
relative gap should be determined first by experiments. 
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changing with the phase difference in the range of 0 to π/2 (step value π/36).

Figure 15 indicates that the trends of MSD and GDI are opponent, which means that
larger MSD and GDI cannot be obtained at the same time. The most compromised phase
difference calculated is 0.295π, which is the intersection of the two curves and, at this
point, MSD and GDI are equal, and both have larger values. In practical applications,
it is necessary to select an appropriate phase difference according to the performance
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requirements of the actuators; that is, when a larger MSD is required to pursue larger
driving velocity, the phase difference exceeding 0.295π may be a better choice, and in order
to meet the intention of convenient adjustment, less than 0.295π may be more suitable.
This paper is mainly to prove the feasibility of the driving principle, so in the follow-up
experiments, π/4 is selected as the representative to verify the driving performances for
convenience

5. Verification and Performances

In order to verify the feasibility of the proposed driving principle, and also to test
the output performances of the designed piezoelectric actuator, an experimental system,
as shown in Figure 16, was established. Being different from the experimental system in
Figure 13, this system only requires one laser displacement sensor to measure the output
displacement of the slider.
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Figure 16. Experimental system for testing the output performances of the designed piezoelectric
actuator.

According to the suppressing principle, to suppress the backward motion, the relative
gap between the output end of flexure hinge mechanism and the slider must be within
a certain range. If the relative gap is too big, as the major axis of motion trajectory has
limited length, the output end of flexure hinge mechanism is not able to contact the slider,
or the effective driving length is too short. If it is too small, the output end of flexure hinge
mechanism would not completely separate from the slider when it moves from point B to
point A, as illustrated in Figure 2, resulting in the backward motion. Therefore, a suitable
relative gap should be determined first by experiments.

Here, to find the suitable relative gap, two sine-wave driving voltages with the
amplitude of 80 V, frequency of 20 Hz and phase difference of 45◦ (the driving voltage of
PES1 is ahead 45◦ of that of PES2) were applied to these two PESs. Initially, we made the
flexure hinge mechanism have contact with the slider. In this case, the backward motion
will appear in the output displacement. Afterwards, we gradually increased the relative
gap until the backward motion almost disappeared, and the corresponding gap was defined
as the critical relative gap, i.e., the relative gap of zero. When further increasing the relative
gap to +5 µm, the slider did not move due to the large gap; whereas, when decreasing
the relative gap to −5 µm, the backward motion will appear again. The corresponding
experimental results are presented in Figure 17. Here, the forward motion is defined as the
motion of the slider to the side of PES1, and when the slider moves to the side of PES2, it is
regarded as the reverse motion. Accordingly, the subsequent experiments were carried out
under this critical relative gap of zero.

Under this critical relative gap and the driving frequency of 20 Hz, the output dis-
placement of the slider changing with various driving voltages (60, 80, 100, and 120 V) was
measured and presented in Figure 18a. It is rather remarkable that the slider almost does
not move when the driving voltage is 60 V. This is as the critical relative gap is identified
for the driving voltage of 80 V, which may be a little large for 60 V. Thus, the output
end of flexure hinge mechanism cannot contact the slider. When increasing the driving
voltage to 80, 100, and 120 V, very good stepping motions, almost without backward
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motion, are achieved, which means that the critical relative gap is also applicable for these
driving voltages.
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Figure 18. (a) Motion characteristics of the slider obtained under the critical relative gap and various
driving voltages, and (b) single-step displacement changing with the voltage under the critical
relative gap.

Figure 18b shows the relationship between the voltage and the single-step displace-
ment of the slider under the critical relative gap. The experimental results are presented by
the solid line, and the theoretical calculation results are presented by the dashed line. These
two results are very close, and the maximum deviation is only 2.67%, demonstrating the
correctness of the theoretical analysis. However, it is noted that, no matter which curve it
is, it shows strong nonlinearity. If the gap is changed, the curve will also change drastically.
It is impossible to calculate the equation of the curve with a simple function.

Although the actuator shown in Figure 3 is designed for working under the elliptical
trajectory, it can realize normal stick-slip driving when a trapezoid driving voltage is
applied to the PES1 or PES2. Accordingly, for comparison, under the critical relative gap,
the trapezoid driving voltage with a frequency of 20 Hz and various amplitudes (40, 60, 80,
100, and 120 V) were applied to PES2. Figure 19 presents the output displacement. The
change in the amplitude of driving voltage here is used to simulate the effects of a relative
gap on the output characteristics. Evidently, although the backward motion is reduced
when decreasing the driving voltage, it indeed exists for all the driving voltages from 40 to
120 V. The comparative results in Figures 18a and 19 demonstrate the effectiveness of the
elliptical trajectory on suppressing the backward motion.
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Figure 19. Output displacement of the slider working under the normal stick-slip driving principle.

Furthermore, under the driving voltages of 80 V, phase difference of 45◦, and critical
relative gap, the effects of driving frequency on the output characteristics are tested.
Figure 20a shows the output displacement of the slider obtained under various driving
frequencies (20, 40, 60, 80, and 100 Hz). Figure 20b shows the relationship between
the velocity of the slider and the frequency. It is easily observed that increasing the
driving frequency, the motion velocity of the slider increases linearly, reaching 366 µm/s at
100 Hz. Therefore, the velocity of the slider could be easily controlled by only changing
the frequency. Furthermore, when the driving frequency is in the range of 20 to 60 Hz, an
ideal stepping displacement without the backward motion is achieved. Further, increasing
the driving frequency to 80 and 100 Hz, a very small backward motion appears. This kind
of change is mainly due to the effects of driving frequency on the output characteristics
of PES, which further affects the contact condition between the output end of flexure
hinge mechanism and the slider. However, compared with the results obtained under
the normal stick-slip driving principle in previous studies [24,25,31,32], the backward
motion in Figure 20a is quite small, especially as the ideal stepping displacement without
backward motion could obtained under the frequency range of 20 to 60 Hz.

Actuators 2021, 10, x FOR PEER REVIEW 21 of 23 
 

 

Therefore, the velocity of the slider could be easily controlled by only changing the fre-
quency. Furthermore, when the driving frequency is in the range of 20 to 60 Hz, an ideal 
stepping displacement without the backward motion is achieved. Further, increasing the 
driving frequency to 80 and 100 Hz, a very small backward motion appears. This kind of 
change is mainly due to the effects of driving frequency on the output characteristics of 
PES, which further affects the contact condition between the output end of flexure hinge 
mechanism and the slider. However, compared with the results obtained under the nor-
mal stick-slip driving principle in previous studies [24,25,31,32], the backward motion in 
Figure 20a is quite small, especially as the ideal stepping displacement without backward 
motion could obtained under the frequency range of 20 to 60 Hz. 

V
el

oc
ity

  (
μm

/s)

Time (s) Frequency (Hz)
(a) (b)

D
isp

la
ce

m
en

t (
μm

)

 
Figure 20. (a) Motion characteristics of the slider obtained under various driving frequencies, and 
(b) the velocity of the slider changing with the frequency under the critical relative gap. 

The above results show the forward motion characteristics of the slider. As the de-
signed actuator has a symmetrical structure, the reverse motion could be realized by 
simply changing the phase difference of the driving voltages, i.e., the driving voltage of 
PES2 being ahead 45° of that of PES1. Under the driving voltage of 80 V, frequency of 20 
Hz, and critical relative gap, reverse motion of the slider was attempted, and the output 
displacement is presented in Figure 21. It is noteworthy that the reverse motion of the 
slider also shows the stepping characteristics almost without the backward motion. Thus, 
forward and reverse stepping motions of the slider have been successfully realized by 
employing the elliptical trajectory, and the backward motion appearing in the normal 
stick-slip principle has been effectively suppressed, verifying the feasibility and validity 
of the suppressing principle by employing the elliptical trajectory. 

0 0.1 0.2 0.3 0.4 0.5
Time (s)

0

20

40

60

60 V
80 V
100 V

 
Figure 21. Reverse motion characteristics of the slider under the driving frequency of 20 Hz, various 
driving voltages, and critical relative gap. 

  

Figure 20. (a) Motion characteristics of the slider obtained under various driving frequencies, and
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The above results show the forward motion characteristics of the slider. As the
designed actuator has a symmetrical structure, the reverse motion could be realized by
simply changing the phase difference of the driving voltages, i.e., the driving voltage of
PES2 being ahead 45◦ of that of PES1. Under the driving voltage of 80 V, frequency of
20 Hz, and critical relative gap, reverse motion of the slider was attempted, and the output
displacement is presented in Figure 21. It is noteworthy that the reverse motion of the
slider also shows the stepping characteristics almost without the backward motion. Thus,
forward and reverse stepping motions of the slider have been successfully realized by
employing the elliptical trajectory, and the backward motion appearing in the normal
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stick-slip principle has been effectively suppressed, verifying the feasibility and validity of
the suppressing principle by employing the elliptical trajectory.
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6. Conclusions

In this paper, to avoid the inherent backward motion of stick-slip piezoelectric actua-
tors, a novel principle of utilizing the elliptical trajectory was proposed. According to this
principle, an actuator prototype was designed by using a flexure hinge mechanism and
two vertically arranged piezoelectric stacks. By analysis and experiments, the following
conclusions could be obtained.

1. Although the measured motion trajectories were a little different from the theoretical
ones, the approximate elliptical trajectories had been achieved by the flexure hinge
mechanism combined with two vertically arranged piezoelectric stacks;

2. There existed a critical relative gap, under which the piezoelectric actuator could
output stepping displacement with completely suppressed backward motion when
working under the elliptical trajectory. However, under this gap, the backward motion
appeared to correspond to various driving voltages when the actuator worked under
the normal stick-slip driving principle. These comparative results demonstrated the
feasibility and effectiveness of the proposed suppressing principle;

3. Under this critical relative gap, when changing the driving voltage and frequency in a
certain range, the actuator could achieve forward and reverse stepping displacement
nearly without the backward motion when working under the elliptical trajectory,
further confirming the applicability.
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