
actuators

Article

Develop Real-Time Robot Control Architecture Using Robot
Operating System and EtherCAT

Wei-Li Chuang 1, Ming-Ho Yeh 2 and Yi-Liang Yeh 2,*

����������
�������

Citation: Chuang, W.-L.; Yeh, M.-H.;

Yeh, Y.-L. Develop Real-Time Robot

Control Architecture Using Robot

Operating System and EtherCAT.

Actuators 2021, 10, 141. https://

doi.org/10.3390/act10070141

Academic Editor: Gary M. Bone

Received: 11 May 2021

Accepted: 20 June 2021

Published: 24 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ADLINK Technology Inc., New Taipei City 235603, Taiwan; wei-li.chuang@adlinktech.com
2 Department of Mechanical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan;

t109568033@ntut.edu.tw
* Correspondence: ylyeh@ntut.edu.tw

Abstract: This paper presents the potential of combining ROS (Robot Operating System), its state-of-
art software, and EtherCAT technologies to design real-time robot control architecture for human–
robot collaboration. For this, the advantages of an ROS framework here are it is easy to integrate
sensors for recognizing human commands and the well-developed communication protocols for data
transfer between nodes. We propose a shared memory mechanism to improve the communication
between non-real-time ROS nodes and real-time robot control tasks in motion kernel, which is imple-
mented in the ARM development board with a real-time operating system. The jerk-limited trajectory
generation approach is implemented in the motion kernel to obtain a fine interpolation of ROS
MoveIt planned robot path to motor. EtherCAT technologies with precise multi-axis synchronization
performance are used to exchange real-time I/O data between motion kernel and servo drive system.
The experimental results show the proposed architecture using ROS and EtherCAT in hard real-time
environment is feasible for robot control application. With the proposed architecture, a user can
efficiently send commands to a robot to complete tasks or read information from the robot to make
decisions, which is helpful to reach the purpose of human–robot collaboration in the future.

Keywords: Robot Operating System; EtherCAT; robot control; motion planning; jerk-limited trajec-
tory; real-time motion control

1. Introduction

In recent years, human–machine collaboration has been an emerging field. In the
past, many companies believed that in order to achieve Industry 4.0, a fully automated
production model in unmanned factories that replaced all humans with robots was re-
quired. For example, traditional automobile manufacturing vendors adopt thousands of
industrial robots for full automation and mass production demands. However, unlike these
vendors above, many small and medium-sized vendors in the area of electronics manufac-
turing industry have other requirements to manufacture products with small amounts but
customized specifications. Although the price of traditional industrial robots has been de-
creasing, the high learning curve and high cost of training are still its major disadvantages.
Therefore, the human–machine collaboration mode is addressed to satisfy these require-
ments. In the human–machine collaboration mode, the relationship between humans and
machines has changed from giving commands to working together; operators control and
monitor production processes, while robots are responsible for repeated and dangerous
works. With this cooperation mode of humans and machines, these factories will become
more intelligent and efficient in practice. Therefore, the development of collaborative robot
control technologies is an essential topic.

Regarding human–robot collaboration (or machines), the area of robotic research in in-
dustrial applications seeks approaches for a human–robot interface now [1]. This interface
is required not only for simplifying robot programming, but also for the online information

Actuators 2021, 10, 141. https://doi.org/10.3390/act10070141 https://www.mdpi.com/journal/actuators

https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0001-6335-7435
https://doi.org/10.3390/act10070141
https://doi.org/10.3390/act10070141
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/act10070141
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act10070141?type=check_update&version=2

Actuators 2021, 10, 141 2 of 16

exchange in order to obtain status or make decisions. Typical approaches such as teach-
pendant, which allows user to program desired positions, and so called “lead-by-the-nose”
technique, where users can drag and move the robot by hand to any desired positions,
are widely used as human–robot interface today [2]. However, these approaches need
proprietary devices and lack user-friendly operation. Recent researches have shown that
human–robot interaction technologies can use gesture and voice to guide the robots in a
more natural way [3–5]. In [3], Microsoft Kinect was used as a sensor and C-sharp program-
ming language was used to recognize user’s gesture and voice commands. Those com-
mands to Kinect will be proceeded by a library to obtain desired positions and fed to robot
controller via TCP/IP for robot motion. Similar researches in this area use an ROS frame-
work to integrate various sensors like a vision system and microphones found in [2,6–9].
In their architectures, ROS acts as a middleware between sensing devices and real robot,
and common communication protocols such as TCP/IP are used to send proceeded infor-
mation from sensors to the robot controller. In the literature [6–9], it is mentioned that ROS
here has easy extensibility and rich functionalities by open-sourced packages, libraries,
and tools. The advantages of ROS above, especially its state-of-art motion planning al-
gorithms [10] and build-in communication protocols [11], enables us to adopt ROS for
robot control system in this paper and meanwhile retain the compatibility of integrating a
human–robot interaction interface in the future.

In the view of robotic development history, ROS is a well-known open source frame-
work that contains thousands of packages and communication protocols for developers
to quickly integrate complicated hardware and software to build custom control systems.
It was proposed by several researchers from Stanford University in the United States in
order to make the traditional development of robots more open and reduce the time it
takes for engineers to build a control system to deal with basic configurations or algo-
rithms. In the ROS world, there are many enthusiastic developers who are willing to share
their self-developed programs for the benefit of the community. The research report [12]
compared the main robotic middleware frameworks in the world and indicated ROS,
as a famous robotic middleware, does not support hard real time. Although ROS 2.0
declares that it supports this feature in this report, we still choose ROS as middleware
frameworks since ROS 2.0 is still in hard development now. As stated in [13], real-time
tasks are required in many robot applications, such as robot motion control, even if ROS
does not provide real-time guarantees. Some researches [6,7] focus on developing their
own ROS applications in standard Linux and communicate external robot controller via
slow serial port or TCP/IP protocol. The performance bottleneck of such architecture
may come from the time-consuming communication protocol between non real-time tasks
(ROS applications) and real-time tasks (robot control). Thus, some researchers take great
efforts to overcome these barriers [14–16]. In [14], they proposed a pure software solution
for real-time ROS control system based on Xenomai, which contains real-time nodes for
robot control and non-real-time nodes for motion planning package MoveIt that run par-
allel on different threads, and the communication is carried out by ROS action protocol.
The research in [15,16] also proposes a real-time control architecture based on Xenomai to
control a service robot along with non-real-time ROS packages. Compared to [14] of pure
software solution, a Raspberry Pi 3 development board is used in [15]. In [15], most critical
communication between ROS node and motor control in this architecture is implemented
by so-called cross-domain datagram protocol (XDDP), which is essentially a message-
passing mechanism. However, complex message mechanism for communication in ROS is
a bottleneck for real-time systems [17].

Considering the obstacles, this paper proposes an architecture of using PC for ROS
nodes in standard Linux, which connects an ARM development board via PCI bus for
robot control in real-time Linux. By physical dual-port RAM, we can use a shared memory
mechanism and design data exchange approaches to solve the communication problem
of real-time robot control tasks in ARM development board and non-real-time ROS node
tasks in PC. The results of research [18] show that Linux kernels with the PREEMPT_RT

Actuators 2021, 10, 141 3 of 16

patch provide better guarantees of hard real-time performance, and it is suitable for use in
time-sensitive embedded control systems. Thus, comparing to Xenomai mentioned above,
we try to use PREEP_RT patch to make standard Linux become a real-time system on the
ARM development board to execute robot control tasks.

In our architecture, we use the famous ROS MoveIt package that contains state of
the art software for motion planning. Zhang et al. [14] reported they use MoveIt to plan a
robot trajectory with information about position, velocity, acceleration, and time, and the
planned trajectory was sent to the arm controller for the robot control. With this infor-
mation, the robot controller can use cubic polynomial or quintic polynomial to generate
position commands to motor. Here we try to seek an alternative since the environment in
the actual production line is quite complicated, and various machines, wiring, and so on
are subject to change at any time. Therefore, the robot controller used for human–robot
collaboration applications must be able to react immediately in a dynamic environment or
unexpected events, such as people touching. Many researchers take great efforts for the
demands above to develop approaches that can be used to generate smooth joint space
trajectories. Research literature [19,20] proposes a real-time algorithm for time-optimized
third-order trajectory that is composed of seven cubic polynomials under extreme con-
ditions such as maximum velocity, acceleration, and jerk, but the algorithm only allows
the final velocity to be zero. On the other hand, in addition to the method of connecting
trajectories with polynomials, there are also literatures that propose methods to generate
trajectories based on FIR filters. Compared with the earlier literature [21], it is proposed to
use FIR filter to plan acceleration and deceleration and analyze the roundness contour error
in CNC application. The literature [22] proposed a general-purpose speed planning method
that can be generated according to different acceleration and deceleration requirements,
but it only considers the zero initial and end motion states. In the research literature [23],
a dynamic trajectory generation method that allows any initial motion state (velocity and
acceleration) is proposed, as long as a simple second-order acceleration-limited trajectory
is generated first, and then converted through the FIR filter to get smooth third-order
jerk-limited trajectory (jerk-limited trajectory). In this paper, an s-curve velocity planning
method is proposed to generate jerk-limited trajectories for actuator control of robot. It is
implemented in ARM development board and the advantage of it is to allow the user to
specify information and kinematic constraints to describe the trajectory.

Nowadays, in order to avoid the demerits of a centralized control system, Ethernet-
based industrial communication protocols including POWERLINK, Ethernet/IP, EtherCAT,
and PROFINET, are widely used for automation and control systems in the world. The re-
searches in [24,25] report using Ethernet POWERLINK to build their real-time control
system. On the other hand, the industrial Ethernet-based protocol EtherCAT has drawn
great attention of researchers [26–31], since it provides determinism and real-time control.
In [27], researchers presented their works about the implementation and analysis of a motor
drive with the EtherCAT. Here, comparing with the EtherCAT software solution in [14],
we will execute the EtherCAT stack in ARM development board to communicate between
robot controller and servo drive system. The underlying layer of EtherCAT leverages
standard Ethernet technologies. It is developed for automation applications that need
short data update times with low communication jitter for precise synchronization control
and low hardware costs. There are numerous commercial EtherCAT products, such as
controllers, I/O device, and servo drive, that appear in the market. CANopen is a communi-
cation protocol and device profile specification for embedded systems used in automation.
Each CANopen device needs to have an object dictionary used for configuration and
communication with the device; communication protocols such like Service Data Object
(SDO) protocol and Process Data Object (PDO) protocol; and an application that performs
the functions of the device. In this paper, a special device profile (CiA402) for motion
control application is used. This device profile supports many kinds of control modes,
and the control modes can be switched on the fly. Here, the CSP (Cyclic Synchronous

Actuators 2021, 10, 141 4 of 16

Position) control mode is adopted since it can send synchronized commands from the
master controller to multi servo drives of the robot within one cycle time.

The main purpose of this paper is to develop a general real-time robot control architec-
ture for applications, especially for human–robot collaboration, which strongly need audio
and vision sensors for interaction. The advantage of the ROS framework here is the capabil-
ity of connecting sensors to receive human commands and data transfer between modules
are easy implemented. Comparing to TCP/IP or message-passing mechanism used by
other authors, we propose a shared memory mechanism to improve the communication
between non-real-time ROS nodes and real-time robot control tasks. The advantage of the
shared memory mechanism is the human commands from sensors can be sent to the robot
efficiently, and vice versa. Instead of cubic or quintic polynomial approach, a jerk-limited
trajectory generation approach is implemented in real-time motion kernel to obtain fine
interpolation of ROS MoveIt planned robot trajectory to motor. Unlike other EtherCAT
software solution, the proposed EtherCAT stack executes in the ARM development board
for the most-critical communication between robot controller and servo drive systems.
Through this, we can deterministically get robot status or send human commands for
human–robot collaboration.

This paper is organized as follows. Section 2 introduces how a jerk-limited trajectory
is generated in real-time motion kernel to get fine interpolation of MoveIt planned path;
Section 3 shows the whole data flow of robot control architecture and its components,
and Section 4 shows the experimental setup and results using single actuator. Finally,
we discuss the results in detail and make conclusions about this research works.

2. Jerk-Limited Trajectory Generation

In this section, an algorithm developed for jerk-limited trajectory generation is in-
troduced. The jerk-limited trajectory generation, using an s-curve velocity profile, as il-
lustrated in Figure 1, can be divided into T1 ∼ T3 for the acceleration phase, T4 for the
constant velocity phase, and T5 ∼ T7 for the deceleration phase respectively. These time
intervals have to be integer cycle times for interpolation in a real-time environment. It is
important that the time of each cycle should be as small as possible to avoid quantization
errors in the results. The symbol ti is denoted as the time boundary value of each phase.
The position P(t) and velocity V(t) have cubic and parabolic profiles in this schematic.
The total distance L is important for determination of the shape of the velocity profile.
Nonzero start Vstart and end Vend velocities are allowed here for serious velocity blending.
The maximum velocity Vmax is used in the T4 phase. The Vstart, Vend, and Vmax values are
unsigned values. The acceleration (or deceleration) A(t) is a trapezoid and linear profile,
and its maximum value is Accmax (or Decmax). The jerk profile J(t) is discontinuous and
its maximum value is Jacc or (Jdec). The acceleration and jerk profiles show the ramping ac-
celeration/deceleration with constant jerk occurring in the T1 and T5 phases, and constant
acceleration/deceleration and zero jerk occurring in the T2 and T6 phases. No acceleration,
deceleration, and jerk change occurs in the T4 phase. It is assumed that T1 = T3 and T5 = T7
for a symmetrical profile. The acceleration jerk can be Jacc = Accmax/T1 and deceleration
jerk Jdec = Decmax/T5. The jerk profile J(t) can be expressed as

J(t) =

Jacc 0 ≤ t < t1
0 t1 ≤ t < t2
−Jacc t2 ≤ t < t3
0 t3 ≤ t < t4
Jdec t4 ≤ t < t5
0 t5 ≤ t < t6
−Jdec t6 ≤ t < t7

(1)

Actuators 2021, 10, 141 5 of 16

Actuators 2021, 10, x FOR PEER REVIEW 5 of 16

𝐴(𝑡) =
⎩⎪⎪
⎨⎪⎪
⎧𝐽 𝑡 0 ≤ 𝑡 < 𝑡𝐴𝑐𝑐 𝑡 ≤ 𝑡 < 𝑡 −𝐽 (𝑡 − 𝑡) + 𝐴𝑐𝑐 𝑡 ≤ 𝑡 < 𝑡0 𝑡 ≤ 𝑡 < 𝑡 𝐽 (𝑡 − 𝑡) 𝑡 ≤ 𝑡 < 𝑡𝐷𝑒𝑐 𝑡 ≤ 𝑡 < 𝑡−𝐽 (𝑡 − 𝑡) + 𝐷𝑒𝑐 𝑡 ≤ 𝑡 < 𝑡

 (2)

Next, integrating (2), the velocity profile 𝑉(𝑡) is obtained as

Figure 1. S-curve velocity profile for jerk-limited trajectory generation.

𝑉(𝑡) =
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧12 𝐽 𝑡 + 𝑉 0 ≤ 𝑡 < 𝑡𝐴𝑐𝑐 (𝑡 − 𝑡) + 𝑉 𝑡 ≤ 𝑡 < 𝑡− 12 𝐽 (𝑡 − 𝑡) + 𝐴𝑐𝑐 (𝑡 − 𝑡) + 𝑉 𝑡 ≤ 𝑡 < 𝑡𝑉 𝑡 ≤ 𝑡 < 𝑡12 𝐽 (𝑡 − 𝑡) + 𝑉 𝑡 ≤ 𝑡 < 𝑡𝐷𝑒𝑐 (𝑡 − 𝑡) + 𝑉 𝑡 ≤ 𝑡 < 𝑡− 12 𝐽 (𝑡 − 𝑡) + 𝐷𝑒𝑐 (𝑡 − 𝑡) + 𝑉 𝑡 ≤ 𝑡 < 𝑡

 (3)

and the 𝑉 can be

Figure 1. S-curve velocity profile for jerk-limited trajectory generation.

Integrating (1) with respect to time, the acceleration profile A(t) can be written as

A(t) =

Jacct 0 ≤ t < t1
Accmax t1 ≤ t < t2
−Jacc(t− t2) + Accmax t2 ≤ t < t3
0 t3 ≤ t < t4
Jdec(t− t4) t4 ≤ t < t5
Decmax t5 ≤ t < t6
−Jdec(t− t6) + Decmax t6 ≤ t < t7

(2)

Next, integrating (2), the velocity profile V(t) is obtained as

V(t) =

1
2 Jacct2 + Vstart 0 ≤ t < t1
Accmax(t− t1) + V1 t1 ≤ t < t2

− 1
2 Jacc(t− t2)

2 + Accmax(t− t2) + V2 t2 ≤ t < t3
V3 t3 ≤ t < t4
1
2 Jdec(t− t4)

2 + V4 t4 ≤ t < t5
Decmax(t− t5) + V5 t5 ≤ t < t6

− 1
2 Jdec(t− t6)

2 + Decmax(t− t6) + V6 t6 ≤ t < t7

(3)

and the Vi can be

Vi =

V1 = 1
2 JaccT2

1 + Vstart
V2 = AccmaxT2 + V1
V3 = − 1

2 JaccT2
1 + AccmaxT1 + V2 = Vmax

V4 = V3
V5 = 1

2 JdecT2
5 + V4

V6 = DecmaxT6 + V5

(4)

Actuators 2021, 10, 141 6 of 16

Finally, integrating (3) with respect to time yields the position profile P(t) as

P(t) =

1
6 Jacct3 + Vstartt 0 ≤ t < t1
Accmax

2 (t− t1)
2 + V1(t− t1) + P1 t1 ≤ t < t2

− 1
6 Jacc(t− t2)

3 + Accmax
2 (t− t2)

2 + V2(t− t2) + P2 t2 ≤ t < t3
V3(t− t3) + P3 t3 ≤ t < t4
1
6 Jdec(t− t4)

3 + V4(t− t4) + P4 t4 ≤ t < t5
Decmax

2 (t− t5)
2 + V5(t− t5) + P5 t5 ≤ t < t6

− 1
6 Jdec(t− t6)

3 + Decmax
2 (t− t6)

2 + V6(t− t6) + P6 t6 ≤ t < t7

(5)

And the Pi (i = 1 to 6) can be

Pi =

P1 = VstartT1 +
1
6 JaccT3

1
P2 = V1T2 +

1
2 AccmaxT2

2 + P1
P3 = V2T1 +

1
2 AccmaxT2

1 −
1
6 JaccT3

1 + P2
P4 = V3T4 + P3
P5 = V4T5 +

1
6 JdecT3

5 + P4
P6 = V5T6 +

1
2 DecmaxT2

6 + P5

(6)

If considering the cycle time Ts of digital control system, the time interval T1 and Ta
can be obtained respectively by

T1 = ROUND
(
|(Accmax)/Jacc|

Ts

)
Ts (7)

Ta = ROUND
(
|(Vmax −Vstart)/Accmax|

Ts

)
Ts (8)

where Ta = T1 + T2 and ROUND(.) denotes the round operation. So the adjusted accelera-
tion can be found by

Accadj = (Vmax −Vstart)/Ta (9)

Again, similar operation and Equations (7)–(9) are applied to obtain T5, Td, and Decadj
respectively. Now the time interval T4 can be obtained by considering total distance L

T4 = ROUND

 L− (2T1 + T2)
(

Vstart + 0.5 ∗ AccadjTa

)
− (2T5 + T6)

(
Vmax + 0.5 ∗ DecadjTd

)
VmaxTs

Ts (10)

If the condition T4 > 0 is held, then we can get modified maximum acceleration,
maximum velocity, and maximum deceleration respectively

Accmax =
L − Vstart(2T1 + T2 + T4 + T5 + 0.5 ∗ T6)−Vend(T5 + 0.5 ∗ T6)

TaTc
(11)

Vmax =
L − Vstart(T1 + 0.5 ∗ T2)−Vend(T5 + 0.5 ∗ T6)

Tc
(12)

Decmax =
Vstart(T1 + 0.5T2) + Vend(T1 + 0.5 ∗ T2 + T4 + 2T5 + T6)− L

TdTc
(13)

where Tc = T1 + 0.5 ∗ T2 + T4 + T5 + 0.5 ∗ T6. However, if the condition becomes T4 ≤ 0,
there is no constant velocity phase since the velocity cannot reach Vmax. It is necessary to
calculate adjusted maximum velocity

Vadj =
−β+

√
β2 − 4 ∗ α ∗ γ

2α
(14)

Actuators 2021, 10, 141 7 of 16

where we can get α = 1
Accmax

+ 1
Decmax

, β = Accmax
Jacc

+ Decmax
Jdec

, and γ = Accmax∗Vstart
Jacc

+

Decmax∗Vend
Jdec

− V2
start

Accmax
− V2

end
Decmax

− 2L respectively. Now, we can replace the initial Vmax by
Vadj, set T4 = 0, and apply Equations (7)–(9) to have modified time intervals and apply
Equations (11)–(13) to have modified maximum acceleration, maximum velocity, and max-
imum deceleration again. Finally, the jerk-limited trajectory q[k] can be calculated via
integration using the following bilinear transform.

a[k] = a[k− 1] + 0.5 ∗ Ts ∗ (j[k] + j[k− 1]) (15)

v[k] = v[k− 1] + 0.5 ∗ Ts ∗ (a[k] + a[k− 1]) (16)

q[k] = q[k− 1] + 0.5 ∗ Ts ∗ (v[k] + v[k− 1]) (17)

where j[k], a[k], v[k], and q[k] are the jerk value, acceleration value, velocity value, and po-
sition value of jerk-limited trajectory respectively.

3. Real-Time ROS Control Architecture

In this section, the details of robot control architecture are presented. Figure 2 shows
the data flow diagram of the proposed real-time ROS control architecture that is imple-
mented in PC and ARM development board. In PC, the ROS Melodic is installed in Linux
Ubuntu 18.04. The ARM development board with hard real-time motion control kernel
and EtherCAT stack implemented inside it is connected to PC via PCIe bus and connected
to EtherCAT servo drive via Ethernet cable respectively. This board has a physical dual-
port RAM used as shared memory for data exchange between the shared library and the
underlying real-time motion kernel.

Actuators 2021, 10, x FOR PEER REVIEW 8 of 16

Figure 2. Data flow diagram in proposed ROS control architecture.

3.1. RVIZ
RVIZ in ROS is a software used to visualize the control results of a robot. Through

RVIZ, we can directly input the position command of the robot arm on this software
interface to run the motion plan task or execute the robot to the target position. When the
motion planning task detects path interference, the RVIZ screen will display the obstacle
in red. If we ignore it and continue to execute the command in this situation, the software
will issue an error message to warn that it is a dangerous movement. This warning
message can also be read by related topics in an associated state at the same time. These
feedback messages are also necessary to plan the path on the fly.

3.2. MoveIt
MoveIt is a high-level robot motion planning software. It has a graphical user

interface called MoveIt Setup Assistant for configuration. This interface can help us to
generate a file including robot-related parameters and other configuration for collision
and interference modules. This interface also supports joint grouping. This interface
allows us to specify a ROS controller to adapt either MoveIt or the third party motion
planning algorithm for actuator control. No matter if we use position_controllers or Joint
Position Controller, we can receive the corresponding information on the topic named
“joint_state” as goal position to underlying controller. Thanks to ROS modular design, we
can achieve the results of greatly reducing the development time. This interface has
special feature to save several robot poses and restore the robot to these poses any time.

MoveIt and its related controller provide a convenient way to move robot pose. For
instance, it is supposed that position controller is used as the MoveIt controller. Once the
position and pose of the robot end effect is defined in Cartesian coordinates, this position
controller can command the end effect to move to the position we specify. The ROS
message called “geometry_msgs” provides messages for common geometric primitives
such as points, vectors, and poses. These primitives are designed to provide a common
data type and facilitate interoperability throughout the system [10]. We use Pose

Motion kernel

Control node

EtherCAT master stack

EtherCAT servo drive system

PC, Linux

ARM development board,
Embedded real-time Linux

Ethernet cable

PCIe bus, Dual-port RAM

Shared library

ROS MoveIt!

ROS RVIZ

Actuator control

joint state message

I/O data R/W interface

Non real-time

Hard real-time

Figure 2. Data flow diagram in proposed ROS control architecture.

The control flowchart is described as follows. After booting, the first step is to launch
the ROS core, the MoveIt software, related libraries, and other functions we will use step by

Actuators 2021, 10, 141 8 of 16

step. After creating a related ROS control node successfully, we will initialize the real-time
motion kernel in ARM development board, set relevant parameters for it, and then tell
the moveit_group functions about the name of the group we set in MoveIt. In this control
process, we need to specify the target position in Cartesian coordinates into the Position
controller in MoveIt for motion planning, and then the control node will call the interface of
MoveIt to read the planned trajectory position (unit is radian) back as goal position to the
motion kernel to command servo drive via EtherCAT. The unit of these points is converted
from radian to pulse for the motion kernel. Meanwhile we can read the command position
and feedback position from motion kernel to validate if our actuator’s actual position is
correct or not. Next, each component of this architecture will be described in detail.

3.1. RVIZ

RVIZ in ROS is a software used to visualize the control results of a robot. Through RVIZ,
we can directly input the position command of the robot arm on this software interface
to run the motion plan task or execute the robot to the target position. When the motion
planning task detects path interference, the RVIZ screen will display the obstacle in red.
If we ignore it and continue to execute the command in this situation, the software will
issue an error message to warn that it is a dangerous movement. This warning message
can also be read by related topics in an associated state at the same time. These feedback
messages are also necessary to plan the path on the fly.

3.2. MoveIt

MoveIt is a high-level robot motion planning software. It has a graphical user interface
called MoveIt Setup Assistant for configuration. This interface can help us to generate a file
including robot-related parameters and other configuration for collision and interference
modules. This interface also supports joint grouping. This interface allows us to specify
a ROS controller to adapt either MoveIt or the third party motion planning algorithm
for actuator control. No matter if we use position_controllers or Joint Position Controller,
we can receive the corresponding information on the topic named “joint_state” as goal
position to underlying controller. Thanks to ROS modular design, we can achieve the
results of greatly reducing the development time. This interface has special feature to save
several robot poses and restore the robot to these poses any time.

MoveIt and its related controller provide a convenient way to move robot pose.
For instance, it is supposed that position controller is used as the MoveIt controller. Once the
position and pose of the robot end effect is defined in Cartesian coordinates, this position
controller can command the end effect to move to the position we specify. The ROS message
called “geometry_msgs” provides messages for common geometric primitives such as
points, vectors, and poses. These primitives are designed to provide a common data type
and facilitate interoperability throughout the system [10]. We use Pose parameter to set
the state, but this is simply a simulation and does not actually make the robot move to
this value.

It also provides a programming interface named “move_group_interface” that can
be used to move the robot or plan a path. When programming with MoveIt, the main
user interface is through the “MoveGroup” class. It is convenient to provide functionality
for most operations that a user may want to carry out, specifically setting joint or pose
goals, creating motion plans, moving the robot, adding objects into the environment,
and attaching/detaching objects from the robot [10]. The “setPoseTarget” parameter is
used to plan this movement so that the actuator reaches the final position after the algorithm
has passed.

3.3. Control Node

A control node to connect the underlying real-time motion kernel by shared library is
created here. This control node defines several messages for communication with other
nodes via topic protocol. The control node with trajectory planning method will cyclically

Actuators 2021, 10, 141 9 of 16

subscribe a message called “joint state” as a goal position that is published by “MoveIt”
to command an actuator to this position. Simultaneously, the control node will receive
command position/velocity, feedback position/velocity, and motion status from motion
kernel of ARM development board respectively for validation. The command position and
command velocity denote the results of position profile and velocity profile. The feedback
position and feedback velocity denote the actuator’s actual position and velocity. The mo-
tion status is used to indicate whether the requested motion is completed or not. No matter
whether the motion is completed or not, the control node can perform trajectory planning
algorithms any time and the results will transfer to the ARM development board via shared
library to control the actuator.

3.4. Real-Time Motion Kernel

The real-time motion kernel is implemented in ARM development board. It consists
of various software modules that are sequentially executed in a synchronized schedule.
The first handshake module is responsible for data consistency between kernel and shared
library in dual-port RAM. The s-curve velocity planning method implemented in motion
kernel is used for joint space jerk-limited trajectory generation, which will generate a
smooth position every sampling time under kinematic constraints (maximum velocity
and maximum acceleration) to servo drive via EtherCAT. The input of s-curve velocity
planning is the current position/velocity and final position/velocity respectively. In ad-
dition, maximum speed, maximum acceleration, and jerk factor also need to be given by
the user. The output of s-curve velocity planning will provide the interpolator to generate
trajectory that is sent to servo drive via I/O data interface using EtherCAT PDO protocol.
This algorithm will first calculate a limit distance; if the given distance exceeds the limit
distance, there will be a constant velocity movement. Otherwise, it will adjust velocity
profile automatically. The trajectory planning algorithm will consider the cycle time of the
system, so there will be no truncation errors in the final position and final velocity.

3.5. EtherCAT Stack

The EtherCAT master stack is also implemented in ARM development board. It pro-
vides an interface for motion kernel to communicate with underlying servo drive via
EtherCAT protocols. The master stack operation is high-precisely synchronized with Ether-
CAT servo drive under low jitter by distributed clock mechanism to handle real-time
process data exchange for motion control application. The process data description can
refer to the drive profile defined by CAN in Automation in detail. The proposed motion
control architecture adopts cyclic synchronous position mode defined by EtherCAT tech-
nology. In this mode, motion control kernel needs send the interpolator’s position to the
servo drive via process data named target position and receive the actuator’s real position
via process data named actual position simultaneously. Then the interior position control
loop in EtherCAT servo drive will command the motor to this position.

4. Experimental Setup and Results

This section will introduce our works to setup the related software and hardware for
the actuator control experiment in detail. Figure 3 shows the overview of test devices for
experiments. ROS Melodic is installed in Linux Unbutu 18.04 LTS of a personal computer
first. The ARM development board (PCIe-8338) is used in this research. Figure 3a shows it
is installed in the PCIE slot of PC. With a software development tool, we have the ability to
modify standard motion kernel on it and implement related applications and trajectory
generation algorithms for research. The EtherCAT stack here is a licensed software that
provides API for applications in motion kernel. A well-tuned YASKAWA Sigma 7 EtherCAT
servo drive system in Figure 3a is connected to the ARM development board via Ethernat
cable. Figure 3b shows the ROS user interface RVIZ on screen and the layout of test devices.
Figure 3c shows the top view and EtherCAT interface of the ARM development board.
For safety, after setting up the hardware equipment and turning the power on, we need

Actuators 2021, 10, 141 10 of 16

to confirm their status first. This step will check if the board is operating normally and
the connection with the servo controller is normal. By inputting command in terminal:
roslaunch panda_moveit_config demo.launch, then a virtual seven degree-of-freedom robot
arm provided by the ROS community is created to display the motion planning results in
RVIZ. It is noticed that only the first axis of the robot arm motor (YASKAWA SGM7J) is
connected to a real EtherCAT servo drive system in this experiment. The angle information
and speed information of it can be calculated by MoveIt.

Actuators 2021, 10, x FOR PEER REVIEW 10 of 16

position via process data named actual position simultaneously. Then the interior position
control loop in EtherCAT servo drive will command the motor to this position.

4. Experimental Setup and Results
This section will introduce our works to setup the related software and hardware for

the actuator control experiment in detail. Figure 3 shows the overview of test devices for
experiments. ROS Melodic is installed in Linux Unbutu 18.04 LTS of a personal computer
first. The ARM development board (PCIe-8338) is used in this research. Figure 3a shows
it is installed in the PCIE slot of PC. With a software development tool, we have the ability
to modify standard motion kernel on it and implement related applications and trajectory
generation algorithms for research. The EtherCAT stack here is a licensed software that
provides API for applications in motion kernel. A well-tuned YASKAWA Sigma 7
EtherCAT servo drive system in Figure 3a is connected to the ARM development board
via Ethernat cable. Figure 3b shows the ROS user interface RVIZ on screen and the layout
of test devices. Figure 3c shows the top view and EtherCAT interface of the ARM
development board. For safety, after setting up the hardware equipment and turning the
power on, we need to confirm their status first. This step will check if the board is
operating normally and the connection with the servo controller is normal. By inputting
command in terminal: roslaunch panda_moveit_config demo.launch, then a virtual seven
degree-of-freedom robot arm provided by the ROS community is created to display the
motion planning results in RVIZ. It is noticed that only the first axis of the robot arm motor
(YASKAWA SGM7J) is connected to a real EtherCAT servo drive system in this
experiment. The angle information and speed information of it can be calculated by
MoveIt.

Figure 3. Overview of test devices in laboratory for experiments: (a) ARM development board and EtherCAT servo drive.
(b) ROS RVIZ and MoveIt. (c) ARM development board near view.

Now we can start these software MoveIt and RVIZ, and we need to prepare a launch
file named “demo.launch” including the startup and related parameters of the two software
in advance. Meanwhile, the related nodes including our control node will also be launched.
When our control node is created successfully, it will use shared library to initialize and
start the motion kernel in ARM development board. This control node adopts a super
loop software model, which uses an infinite while loop to read and write data. There is an
internal ROS node named “joint_state_publisher” that will publish the message named
“joint_states” from the motion planning results of MoveIt via topic protocol. We need to
read this message and send it to motion kernel as the goal position cyclically. In order to
prevent blocking of our program, we use the function named “AsyncSpinner” that is a
built-in support provided by roscpp for calling callback function from multiple threads. It is
equivalent to the standard C++ function of creating a thread. Alternatively, we can also use
MoveIt interface function to get the same message efficiently. Based on this programming
design, the sampling rate of the control node to this message “joint_states” can reach

Actuators 2021, 10, 141 11 of 16

500 Hz, which benefits the motion kernel with better command resolution. The MoveIt’s
configurations regarding kinematic constraints and original position need to coincide
with the motion kernel. Once a new “joint_states” message is read by the control node,
we convert the unit from degree to pulse, and then start a point-to-point movement of
motion kernel. At the same time, some feedback information are collected for validation.

Figure 4 shows the screenshot of RVIZ panel for operation. We can set Velocity Scaling,
Accel. Scaling on the panel. The right screen of RVIZ shows the 7 degrees-of-freedom
robot. We can directly manipulate the robot arm in RVIZ and then move this robot arm
to the arbitrary position. The RVIZ provides three kinds of commands bottoms named
Plan, Execute, and Plan & Execute. The Plan command just displays the planned path
and does not actually move the robot arm to this position. We can use this command
to simulate the robot arm movement and examine the obstacles on the path to prevent
collision. The Execute command can make motion kernel execute commands to move the
robot arm to the final position along the planned path. The Plan & Execute command is
used to run the above two functions at the same time. Figure 5 shows the current position
information (angle) of each axis of our arm in RVIZ, and they are used to verify our actuator
control experimental results.

Actuators 2021, 10, x FOR PEER REVIEW 12 of 16

Figure 4. Screenshot of motion planning configuration displayed in RVIZ control panel.

Figure 5. Screenshot of current joint states displayed in RVIZ control panel.

Figure 6 shows experimental results using proposed architecture. It is noticed again
that only the first axis of the robot is connected to a real servo drive. The blue line
“MoveitPosition” is MoveIt planned path obtained via topic protocol. The command
position (ArmCommand), feedback position (Arm Position), and motor encoder
(ArmEncoder) are sampled from motion kernel in ARM development board. Every time

Figure 4. Screenshot of motion planning configuration displayed in RVIZ control panel.

Figure 6 shows experimental results using proposed architecture. It is noticed again
that only the first axis of the robot is connected to a real servo drive. The blue line “Moveit-
Position” is MoveIt planned path obtained via topic protocol. The command position
(ArmCommand), feedback position (Arm Position), and motor encoder (ArmEncoder)
are sampled from motion kernel in ARM development board. Every time a control node
receives a new “MoveitPosition”, it will interrupt the current motion in motion kernel
and generate a new one by proposed trajectory generation approach through the API of
shared library. This process will repeat again and again until MoveIt motion planning
is completed. The results show the actual position of motor follows the MoveIt planned
path well and reaches the desired position (160 degree). Figure 7 shows the feedback

Actuators 2021, 10, 141 12 of 16

velocity trajectory obtained from the same control process and same MoveIt planned path
above. We can observe that the max velocity of it obeys the given kinematic constraint
(90 degree/second).

Actuators 2021, 10, x FOR PEER REVIEW 12 of 16

Figure 4. Screenshot of motion planning configuration displayed in RVIZ control panel.

Figure 5. Screenshot of current joint states displayed in RVIZ control panel.

Figure 6 shows experimental results using proposed architecture. It is noticed again
that only the first axis of the robot is connected to a real servo drive. The blue line
“MoveitPosition” is MoveIt planned path obtained via topic protocol. The command
position (ArmCommand), feedback position (Arm Position), and motor encoder
(ArmEncoder) are sampled from motion kernel in ARM development board. Every time

Figure 5. Screenshot of current joint states displayed in RVIZ control panel.

Actuators 2021, 10, x FOR PEER REVIEW 13 of 16

a control node receives a new “MoveitPosition”, it will interrupt the current motion in
motion kernel and generate a new one by proposed trajectory generation approach
through the API of shared library. This process will repeat again and again until MoveIt
motion planning is completed. The results show the actual position of motor follows the
MoveIt planned path well and reaches the desired position (160 degree). Figure 7 shows
the feedback velocity trajectory obtained from the same control process and same MoveIt
planned path above. We can observe that the max velocity of it obeys the given kinematic
constraint (90 degree/second).

Figure 6. Trajectories of MoveIt planned path (MoveItPosition), command position (ArmCommand), feedback position
(Arm Position), and motor encoder (ArmEncoder).

Figure 7. Trajectory of feedback velocity.

Figure 6. Trajectories of MoveIt planned path (MoveItPosition), command position (ArmCommand), feedback position
(Arm Position), and motor encoder (ArmEncoder).

Actuators 2021, 10, 141 13 of 16

Actuators 2021, 10, x FOR PEER REVIEW 13 of 16

a control node receives a new “MoveitPosition”, it will interrupt the current motion in
motion kernel and generate a new one by proposed trajectory generation approach
through the API of shared library. This process will repeat again and again until MoveIt
motion planning is completed. The results show the actual position of motor follows the
MoveIt planned path well and reaches the desired position (160 degree). Figure 7 shows
the feedback velocity trajectory obtained from the same control process and same MoveIt
planned path above. We can observe that the max velocity of it obeys the given kinematic
constraint (90 degree/second).

Figure 6. Trajectories of MoveIt planned path (MoveItPosition), command position (ArmCommand), feedback position
(Arm Position), and motor encoder (ArmEncoder).

Figure 7. Trajectory of feedback velocity.

Figure 7. Trajectory of feedback velocity.

5. Discussion

Our tests in the last section in Figure 6 show the ROS communication via topic is
evaluated stably, since we can see the goal positions from MoveIt are published every 0.1 s.
Although our control node reads these goal positions in free run mode, it is quarantined
to send these data to the underlying motion kernel of ARM development board in a
synchronized way by handshake protocol. We highlight this, since multi-axis control in
the future especially needs this mechanism. The smooth trajectory of command position
and feedback position in Figure 6, thanks to the cycle time of time-critical motion control
task in motion kernel, can reach 1000 microseconds or less. Again, we have to highlight the
distributed clock technology of EtherCAT is used here. By this technology, we can have
more confidence to extend current single axis control architecture to multi-axis control in
the future. The poor velocity blending results of Figure 6 are introduced by many small
line segments and high velocity constraints. We can use look-ahead buffer in the future to
avoid problems like this.

We think ROS programming has a certain learning curve for developers to build their
own nodes and packages from scratch and integrate them into real systems. It will require
some efforts to build ROS infrastructure to manipulate an underlying hardware device via
library and device driver. Besides, the embedded software design of motion kernel in ARM
development board to handle the motion control and EtherCAT tasks is also a challenge.
In order to evaluate its real-time performance, we use Linux API to get a high resolution
timer counter to calculate the period time and consuming time of time-critical task in motion
kernel. The measurement results show the period of time is 1000 microseconds with low
jitter, and the consuming time of it does not exceed 300 microseconds. We must emphasize
that our system’s cycle time for motion control and EtherCAT can reach 250 microseconds,
which has great benefit to control performance.

In Table 1, we compare the proposed architecture to other ROS-based real-time control
systems to analyze the merits and demerits. First, Delgado et al. [15] and this paper use a
development board to build real-time systems, but author [14] build theirs in PC. Based on
our measured results, the cycle time of real-time tasks using Linux using PREEMPT_RT
patch is stable. The difference of real-time OS is not very obvious. The shared memory
mechanism of proposed architecture for NRT (non-real-time) task and RT (real-time) task
communication is an efficient approach for data exchange, but it needs a user to prevent

Actuators 2021, 10, 141 14 of 16

two tasks writing to the same location simultaneously. The author [14] and this paper
use EtherCAT protocol to interact with servo drive system. Here we highlight that our
EtherCAT stack supports EtherCAT DC (distributed clock) technology, which is a precision
synchronization mechanism. Both authors use ROS packages for motion planning, but we
provide a jerk-limited trajectory generation approach to obtain fine interpolation of MoveIt
planned path to motor.

Table 1. Comparison of proposed architecture and other researches.

Authors Hardware Real-Time OS NRT Task and RT
Task Comminication

Servo Drive
Communication Motion Planning

This paper PC and ARM
development board

Linux using
PREEMPT_RT patch

Shared memory
mechanism EtherCAT protocol MoveIt

[14] PC Xenomai ROS action protocol EtherCAT protocol MoveIt

[15] PC and Raspberry Pi 3 Xenomai Mseeage-passing
interface (XDDP) SPI interface move_base package

So far, this research uses ROS to build a robot control system. The main drawback
of it is if master node disappears suddenly, the whole nodes of the system will not work,
too. In order to correct it, many developers are undertaking heavy development for a
new version called ROS 2.0. With this, our future work will build on our ROS centralized
system to ROS 2.0 distributed system to leverage the benefits of DDS (Data Distribution
Service) technology [32].

6. Conclusions

The main purpose of this paper is to find approaches for human–robot collaboration,
which strongly needs audio and vision sensors for interaction. We present the preliminary
research results to assess the feasibility of combining ROS and EtherCAT to develop real-
time robot control architecture for it. A high-level ROS MoveIt framework is used for
motion planning and a control node is created to adapt ROS and real-time motion kernel of
ARM development board. When motion kernel receives a new goal position, it will perform
s-curve velocity planning for jerk-limited trajectory generation. Finally, these command
positions will send to the servo drive via EtherCAT for actuator control. The experimental
results show the actual position of the actuator follows MoveIt planned path well. By the
proposed architecture, audio and vision sensors can be easily integrated into ROS to carry
out signal processes for recognizing human commands. These commands can be sent
to a robot via proposed communication protocols including ROS topic, shared memory
mechanism, and EtherCAT. A robot can send information back to a human through the
same channels. Therefore, the proposed real-time control system is helpful to reach the
requirements of human–robot collaboration in the future.

Author Contributions: Conceptualization, W.-L.C. and Y.-L.Y.; Data curation, M.-H.Y.; Methodology,
W.-L.C.; Project administration, Y.-L.Y.; Resources, W.-L.C. and Y.-L.Y.; Software, M.-H.Y.; Supervision,
Y.-L.Y.; Validation, M.-H.Y.; Writing—original draft, W.-L.C. and M.-H.Y.; Writing—review & editing,
W.-L.C. and Y.-L.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Actuators 2021, 10, 141 15 of 16

References
1. Berg, J.; Lu, S. Review of Interfaces for Industrial Human-Robot Interaction. Curr. Robot. Rep. 2020, 1, 27–34. [CrossRef]
2. Deng, H.; Xia, Z.; Weng, S.; Gan, Y.; Fang, P.; Xiong, J. A motion sensing-based framework for robotic manipulation. Robot.

Biomim. 2016, 3, 23. [CrossRef] [PubMed]
3. Kaczmarek, W.; Panasiuk, J.; Borys, S.; Banach, P. Industrial Robot Control by Means of Gestures and Voice Commands in Off-Line

and On-Line Mode. Sensors 2020, 20, 6358. [CrossRef] [PubMed]
4. Torres, S.H.M.; Kern, M.J. 7 DOF industrial robot controlled by hand gestures using microsoft kinect v2. In Proceedings of the

2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena, Colombia, 18–20 October 2017; pp. 1–6.
5. Mazhar, O.; Ramdani, S.; Navarro, B.; Passama, R.; Cherubini, A. Towards Real-Time Physical Human-Robot Interaction Using

Skeleton Information and Hand Gestures. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–6.

6. Tsarouchi, P.; Athanasatos, A.; Makris, S.; Chatzigeorgiou, X.; Chryssolouris, G. High Level Robot Programming Using Body and
Hand Gestures. Procedia CIRP 2016, 55, 1–5. [CrossRef]

7. Zhang, Y.; Lu, Z.; Wang, C.; Liu, C.; Wang, Y. Voice control dual arm robot based on ROS system. In Proceedings of the 2018 IEEE
International Conference on Intelligence and Safety for Robotics (ISR), Shenyang, China, 24–27 August 2018; pp. 232–237.

8. Megalingam, R.K.; Reddy, R.S.; Jahnavi, Y.; Motheram, M. ROS Based Control of Robot Using Voice Recognition. In Proceedings
of the 2019 Third International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 10–11 January 2019;
pp. 501–507.

9. Bisi, S.; De Luca, L.; Shrestha, B.; Yang, Z.; Gandhi, V. Development of an EMG-Controlled Mobile Robot. Robotics 2018,
7, 36. [CrossRef]

10. MoveIt! Available online: http://docs.ros.org/en/indigo/api/moveit_tutorials/html/doc/pr2_tutorials/planning/src/doc/
move_group_interface_tutorial.html (accessed on 1 May 2021).

11. Joseph, L. Mastering ROS for Robotics Programming: Design, Build, and Simulate Complex Robots Using Robot Operating System and
Master Its Out-of-the-Box Functionalities; CPackt Publishin: Birmingham, UK, 2015.

12. Fischer, H.; Vulliez, M.; Laguillaumie, P.; Vulliez, P.; Gazeau, J.P. RTRobMultiAxisControl: A framework for real-time multi-axis
and multi-robot control. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1205–1217. [CrossRef]

13. Wei, H.; Shao, Z.; Huang, Z.; Chen, R.; Guan, Y.; Tan, J.; Shao, Z. RT-ROS: A real-time ROS architecture on multi-core processors.
Future Gener. Comput. Syst. 2016, 56, 171–178. [CrossRef]

14. Zhang, G.J.; Li, Z.; Ni, F.L.; Liu, H. A Real-time Robot Control Framework Using ROS Control for 7-DoF Light-weight Robot. In Pro-
ceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Hong Kong, China, 8–12 July 2019;
pp. 1574–1579.

15. Delgado, R.; You, B.J.; Choi, B.W. Real-time control architecture based on Xenomai using ROS packages for a service robot. J. Syst.
Softw. 2019, 151, 8–19. [CrossRef]

16. Delgado, R.; You, B.-J.; Han, M.; Choi, B.W. Integration of ROS and RT tasks using message pipe mechanism on Xenomai for
telepresence robot. Electron. Lett. 2019, 55, 127–128. [CrossRef]

17. Jiang, Z.; Gong, Y.; Zhai, J.; Wang, Y.-P.; Liu, W.; Wu, H.; Jin, J. Message Passing Optimization in Robot Operating System. Int. J.
Parallel Program. 2019, 48, 119–136. [CrossRef]

18. Adam, G.K.; Petrellis, N.; Doulos, L.T. Performance Assessment of Linux Kernels with PREEMPT_RT on ARM-Based Embedded
Devices. Electronics 2021, 10, 1331. [CrossRef]

19. Haschke, R.; Weitnauer, E.; Ritter, H. On-line planning of time-optimal, jerk-limited trajectories. In Proceedings of the 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3248–3253. [CrossRef]

20. Kröger, T.; Wahl, F.M. Online Trajectory Generation: Basic Concepts for Instantaneous Reactions to Unforeseen Events. IEEE
Trans. Robot. 2009, 26, 94–111. [CrossRef]

21. Chen, C.-S.; Lee, A.-C. Design of acceleration/deceleration profiles in motion control based on digital FIR filters. Int. J. Mach.
Tools Manuf. 1998, 38, 799–825. [CrossRef]

22. Jeon, J.W.; Ha, Y.Y. A generalized approach for the acceleration and deceleration of industrial robots and CNC machine tools.
IEEE Trans. Ind. Electron. 2000, 47, 133–139. [CrossRef]

23. Besset, P.; Béarée, R. FIR filter-based online jerk-constrained trajectory generation. Control Eng. Pract. 2017, 66, 169–180. [CrossRef]
24. Romanov, A.; Slepynina, E. Real-time Ethernet POWERLINK Communication for ROS. Part I. General Concept. In Proceedings

of the 2020 Ural Smart Energy Conference (USEC), Ekaterinburg, Russia, 13–15 November 2020; pp. 159–162.
25. Romanov, A.; Slepynina, E. Real-time Ethernet POWERLINK Communication for ROS. Part II. Hardware and Software. In Pro-

ceedings of the 2020 Ural Smart Energy Conference (USEC), Ekaterinburg, Russia, 13–15 November 2020; pp. 163–166.
26. Moon, Y.S.; Ko, N.Y.; Lee, K.S.; Bae, Y.C.; Park, J.K. Real-time EtherCAT Master Implementa-tion on Xenomai for a Robot System.

Int. J. Fuzzy Log. Intell. Syst. 2009, 9, 244–248. [CrossRef]
27. Sung, M.; Kim, K.; Jin, H.W.; Kim, T. An EtherCAT-based motor drive for high precision motion systems. In Proceedings of the

9th IEEE International Conference on Industrial Informatics, Lisbon, Portugal, 26–29 July 2011; pp. 163–168.
28. Sygulla, F. An EtherCAT-Based Real-Time Control System Architecture for Humanoid Robots. In Proceedings of the 2018

IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018;
pp. 483–490.

http://doi.org/10.1007/s43154-020-00005-6
http://doi.org/10.1186/s40638-016-0056-9
http://www.ncbi.nlm.nih.gov/pubmed/28018838
http://doi.org/10.3390/s20216358
http://www.ncbi.nlm.nih.gov/pubmed/33171844
http://doi.org/10.1016/j.procir.2016.09.020
http://doi.org/10.3390/robotics7030036
http://docs.ros.org/en/indigo/api/moveit_tutorials/html/doc/pr2_tutorials/planning/src/doc/move_group_interface_tutorial.html
http://docs.ros.org/en/indigo/api/moveit_tutorials/html/doc/pr2_tutorials/planning/src/doc/move_group_interface_tutorial.html
http://doi.org/10.1109/TASE.2018.2889813
http://doi.org/10.1016/j.future.2015.05.008
http://doi.org/10.1016/j.jss.2019.01.052
http://doi.org/10.1049/el.2018.5560
http://doi.org/10.1007/s10766-019-00647-w
http://doi.org/10.3390/electronics10111331
http://doi.org/10.1109/iros.2008.4650924
http://doi.org/10.1109/TRO.2009.2035744
http://doi.org/10.1016/S0890-6955(97)00065-5
http://doi.org/10.1109/41.824135
http://doi.org/10.1016/j.conengprac.2017.06.015
http://doi.org/10.5391/IJFIS.2009.9.3.244

Actuators 2021, 10, 141 16 of 16

29. Delgado, R.; Choi, B.W. Network-Oriented Real-Time Embedded System Considering Synchronous Joint Space Motion for an
Omnidirectional Mobile Robot. Electronics 2019, 8, 317. [CrossRef]

30. Cereia, M.; Bertolotti, I.C.; Scanzio, S. Performance of a Real-Time EtherCAT Master Under Linux. IEEE Trans. Ind. Inform. 2011, 7,
679–687. [CrossRef]

31. Rostan, M.; Stubbs, J.E.; Dzilno, D. EtherCAT enabled advanced control architecture. In Proceedings of the 2010 IEEE/SEMI
Advanced Semiconductor Manufacturing Conference (ASMC), San Francisco, CA, USA, 11–13 July 2010; pp. 39–44.

32. Park, J.; Delgado, R.; Choi, B.W. Real-Time Characteristics of ROS 2.0 in Multiagent Robot Systems: An Empirical Study.
IEEE Access 2020, 8, 154637–154651. [CrossRef]

http://doi.org/10.3390/electronics8030317
http://doi.org/10.1109/TII.2011.2166777
http://doi.org/10.1109/ACCESS.2020.3018122

	Introduction
	Jerk-Limited Trajectory Generation
	Real-Time ROS Control Architecture
	RVIZ
	MoveIt
	Control Node
	Real-Time Motion Kernel
	EtherCAT Stack

	Experimental Setup and Results
	Discussion
	Conclusions
	References

