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Abstract: A theory of voltage-induced control of magnetic domain walls propagating along the major
axis of a magnetostrictive nanostrip, tightly coupled with a ceramic piezoelectric, is developed in
the framework of the Landau–Lifshitz–Gilbert equation. It is assumed that the strains undergone
by the piezoelectric actuator, subject to an electric field generated by a dc bias voltage applied
through a couple of lateral electrodes, are fully transferred to the magnetostrictive layer. Taking
into account these piezo-induced strains and considering a magnetostrictive linear elastic material
belonging to the cubic crystal class, the magnetoelastic field is analytically determined. Therefore, by
using the classical traveling-wave formalism, the explicit expressions of the most important features
characterizing the two dynamical regimes of domain-wall propagation have been deduced, and
their dependence on the electric field strength has been highlighted. Moreover, some strategies to
optimize such a voltage-induced control, based on the choice of the ceramic piezoelectric material
and the orientation of dielectric poling and electric field with respect to the reference axes, have
been proposed.

Keywords: magnetoelastic effects; domain wall propagation; Landau-Lifshitz-Gilbert equation; cubic
magnetostrictive materials; piezoelectric ceramics

1. Introduction

Domain walls (DWs) in ferromagnetic nanostripes have been receiving great attention
by researchers both from the theoretical viewpoint [1–3] and for their potential applications
in DW-based devices, such as memories, logic gates and sensors [4–8]. In these contexts,
achieving an effective control of the DW features by means of several external sources,
such as magnetic fields, spin-polarized currents and/or electrically-induced mechanical
strains, thus becomes fundamental. A great contribution in these research areas has
been provided by the employment of magnetostrictive (MS) materials, thanks to their
capability of transforming magnetic energy into mechanical energy and vice versa. Further
improvements have been obtained by combining piezoelectric (PZ) and magnetoelastic
(ME) effects, that have been exploited to build efficient multiferroic heterostructures [9–15].

In this paper, we aim at accounting for all the above findings to theoretically describe
and optimize the control of DWs that move along the major axis of a thin and elongated
MS nanostrip placed in tight contact with a thick PZ actuator. Thanks to ME effects, a dc
bias voltage applied to the PZ layer generates an electric field that induces deformations
of the material that are, in turn, transferred to the adjacent MS layer. Therefore, a hybrid
PZ/MS bilayer is a device where an electric field may induce changes of the ME field.
Such variations may then be used to tune the key dynamical features associated to DW
propagation [12–15].

In our previous works [16–18], in particular, we carried out the mathematical mod-
eling of the above-mentioned magnetization dynamics with particular emphasis on the
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characterization of the ME field felt by the MS layer as a function of the crystal symmetry
(isotropic, cubic or hexagonal). The expressions of the physical quantities there provided
were given in terms of the strains generated by the PZ layer, but such strains were left
unidentified. Indeed, we only estimated numerically their order of magnitude, but we
did not provide their functional dependence on the electric voltage applied across the
actuator. However, the analytical predictions carried out in Ref. [16] were compared with
experimental results reported in Ref. [13] obtaining a qualitative satisfying agreement, so
proving the validity and consistency of our approach.

Starting from such an agreement, here we extend those results with a twofold goal.
The first goal consists of establishing an explicit functional dependence of the physical
quantities involved in steady and precessional regimes on the electric field generated into
the PZ layer via a dc bias voltage. We aim at filling this gap by considering constitutive
equations for the piezoelectric layer and solving analytically suitable boundary conditions
at the interface between PZ and MS layers. The second goal consists of optimizing the
control of DW dynamics as a function of two features: the choice of the ceramic PZ material
and the orientation of dielectric poling and electric field.

The manuscript is organized as follows. In Section 2, we present the theoretical
framework used to study the propagation of magnetic DWs along the major axis of a MS
nanostrip subject to the simultaneous effects arising from dipolar, exchange, anisotropy,
Zeeman and ME fields. In particular, the ME field describes the response of a linear elastic
cubic MS material and also accounts for the piezo-induced strains. Then, through the
classical traveling wave ansatz, the explicit expressions of the key physical quantities
characterizing the steady and the precessional regime of DW propagation are deduced and
their dependence on the electrical field strength generated is emphasized. In Section 3, we
carry out some numerical investigations to quantify the effects of the electric field strength
on the physical quantities discussed in the previous section. In particular, some strategies
to optimize such a voltage-induced are proposed and discussed. Concluding remarks are
given in Section 4.

2. Materials and Methods

In this section, we develop the theoretical framework used to describe the propagation
of magnetic DWs along the major axis of a thin MS nanostrip placed in tight contact with a
PZ actuator. The framework is developed at mesoscopic scale, i.e., the length scale (from a
few to ten nanometers) at which one can reasonably discuss magnetization dynamics by
averaging the behavior of a few thousands of atoms.

As mentioned in the Introduction, the application of a dc bias voltage via a couple
of lateral electrodes generates an electric field into the PZ that is transformed into strains.
We assume that these lateral electrodes are placed in such a way that the voltage-induced
electric field is always parallel to the dielectric poling field which, in turn, points along
one of the reference axes. These assumptions give rise to three different configurations, as
schematically depicted in Figure 1.

Let us discuss in more detail the working principle of the hybrid PZ/MS device [12–14].
Magnetization dynamics take place in a thin parallelepiped-shape MS nanostrip having
the major axis placed along ex axis, width along ey and thickness along ez. It is assumed
that a DW, i.e., an intermediate region separating adjacent magnetic domains with differ-
ent orientations, is nucleated at the center of the nanostrip. The MS layer is surrounded
by a constant-in-time and uniform-in-space external bias magnetic field hext, directed
along the ez axis, that drives a 1D motion of the magnetic DW along ex axis, i.e., the
major axis of the nanostrip. Owing to the thin and elongated geometry, variations of the
physical quantities associated to DW propagation along ey and ez axes can be safely disre-
garded [16,17,19–22]. Apart from the external field, DWs are subject to further magnetic
fields arising from (short-range) exchange and (long-range) dipolar interactions, magne-
tocrystalline anisotropy, stress-free magnetostriction and ME effects due to the coupling
with the adjacent PZ actuator.
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Figure 1. Layout of the three investigated configurations of the hybrid PZ/MS device where the dielectric poling and the
voltage-induced electric field are collinear and aligned to the: (a) ex axis, (b) ey axis or (c) ez axis.

Let us focus on this latter contribution and discuss, in detail, how the application of a
dc electric voltage V between two lateral electrodes of a PZ layer may lead to changes of
ME field. By applying an electric voltage of a given polarity between two opposite faces of
the PZ actuator, the resulting electric field E may induce an elongation or a contraction of
the width of the material along the same axis and, in turn, it may lead to a contraction or an
elongation in the two orthogonal directions, respectively. By exploiting the thinness of the
MS layer and the perfect acoustic contact realized with the adjacent, much thicker, PZ layer,
the piezo-induced strains generated at the common interface are transferred from the PZ to
the MS. This latter assumption appears to be more than reasonable from the mechanical
point of view, considering the negligible thickness of the MS layer in comparison with that
of the PZ actuator [12–14].

In the 1D approximation, the above field-driven DW dynamics occurring in the MS layer
are generally described by means of Landau–Lifshitz–Gilbert (LLG) equation [20,23–28] as:

.m = γ
(

heff ∧m
)
+ td. (1)

In (1), m(x, t) stands for the unit magnetization vector characterizing the local spatio-
temporal evolution of the state of the MS material, the superposed dot denotes partial
time derivative, the coefficient γ = MSµ0γe is expressed in terms of the the saturation
magnetization MS, the magnetic permeability of the vacuum µ0 and of the gyromagnetic
ratio γe = g e/me (being g the Landè factor, e the electron charge and me the electron
mass), heff represents the effective magnetic field, whereas td accounts for all the intrinsic
dissipative phenomena.

In detail, the effective field heff encloses the abovementioned contributions arising
from external, exchange, demagnetizing, magnetocrystalline anisotropy and magnetoelastic
fields:

heff = hextez + l2
exc

∂2m
∂x2 −

(
Nxmxex + Nymyey + Nzmzez

)
+ hani + hme, (2)

In (2), lexc is the so-called exchange length of the magnetic material, which is related to
the exchange constant Aexc through l2

exc =
2Aexc
µ0 M2

S
. The demagnetizing field is approximated

through the demagnetizing factors Nx, Ny and Nz, that fulfill the usual normalization
condition Nx + Ny + Nz = 1. This approximation, usually adopted in the literature to get
a rough estimation of the demagnetizing field [29], holds sufficiently well in the middle
of the magnetic nanostrip, sufficiently far from the edges, where the field inhomogeneity
becomes more relevant. Its use does not hinder our main goal of extracting the dependence
of the ME field on the voltage-induced strains.
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The magnetocrystalline anisotropy field hani and magnetoelastic field hme depend on
the crystal symmetry of the MS layer, which is here assumed to be cubic and belonging to
the crystal classes 4̄3m, 432 and m3̄m [17,18,30]. For these crystals, the magnetocrystalline
anisotropy field can be expressed as:

hani = − 2K1

µ0M2
S

[
mx

(
1−m2

x

)
ex + my

(
1−m2

y

)
ey + mz

(
1−m2

z

)
ez

]
(3)

where K1 denotes the cubic anisotropy coefficient. By also assuming to deal with a linear
elastic material, the magnetoelastic field reads [16–18,26–28,31,32]:

hme =
1

µ0M2
S
(
˜
ε−

˜
εm) :

˜
C :

∂
˜
εm

∂m
, (4)

being
˜
εm the MS strain tensor,

˜
ε the total (elastic+magnetostrictive) strain tensor, “:” the

double contraction and
˜
C the fourth-order elasticity (or stiffness) tensor. For cubic crystals,

the magnetostriction strain tensor
˜
εm is expressed in terms of two MS coefficients, λ100 and

λ111, as follows:

˜
εm =

3
2


λ100

(
m2

x − 1
3

)
λ111mxmy λ111mxmz

λ111mxmy λ100

(
m2

y − 1
3

)
λ111mymz

λ111mxmz λ111mymz λ100

(
m2

z − 1
3

)

 (5)

whereas the elasticity tensor is expressed in terms of three independent elastic constants
c11, c12 and c44 and, in Voigt notation, takes the form:

˜
C =



c11 c12 c12
c12 c11 c12 [ 0 ]
c12 c12 c11

c44 0 0
[ 0 ] 0 c44 0

0 0 c44

. (6)

Then, to identify the six independent components of the total strain tensor
˜
ε, we

neglect strain variations along the z axis (owing to the small thickness of the MS layer)
and apply mechanical boundary conditions at the top and the bottom xy surfaces of the
MS layer.

In detail, since the top xy surface is free, the normal components of the Cauchy stress
tensor

˜
σ =

˜
C : (

˜
ε−

˜
εm) vanish. Therefore, the boundary condition

˜
σn = 0, with n ≡ ez

the normal to the top surface, leads to:
σxz = 0

σyz = 0

σzz = 0

⇒


εxz =

3
2 λ111mxmz

εyz =
3
2 λ111mymz

εzz = − c12
c11

(
εxx + εyy

)
+ 3

2 λ100
c11−c12

c11

(
m2

z − 1
3

) (7)

On the other hand, by assuming an ideal acoustic contact between the PZ and the
bottom surface of the MS, the voltage-induced planar strains imposed by the PZ layer
are fully transferred to the MS. By introducing the projector on the PZ/MS interface,
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Pik = Iik − nink, with Iik the elements of the identity matrix and ni the components of the
unit vector orthogonal to the PZ/MS interface, the acoustic contact can be described as:

PikεPZ
kl Pl j = Pikεkl Pl j = εIF

ij ⇒


εPZ

xx = εxx = εIF
xx

εPZ
xy = εxy = εIF

xy

εPZ
yy = εyy = εIF

yy

(8)

The strains
˜
εPZ generated into the PZ may be correlated to the components of the

voltage-induced electric field, E =
(
Ex, Ey, Ez

)
, through the third-order strain-piezoelectric

tensor
˜
d as:

εPZ
kl = dijkEk (9)

where the tensor
˜
d depends on the direction of the dielectric polarization Π as well as

on the crystal symmetry of the PZ material [33]. We consider a PZ actuator made by a
polarized ceramic that, being a transversely isotropic material, allows to define

˜
d in terms

of three independent coefficients (d1, d2, d4). We also assume that the ceramic PZ layer is
polarized along a reference axis (ex, ey, ez) and that the electric field E is parallel to Π (see
Figure 1). In these three different configurations, the PZ strain tensor reads:

for E//Π//ex:
˜
εPZ =

 d1 0 0
0 d2 0
0 0 d2

Ex

for E//Π//ey:
˜
εPZ =

 d2 0 0
0 d1 0
0 0 d2

Ey

for E//Π//ez:
˜
εPZ =

 d2 0 0
0 d2 0
0 0 d1

Ez

(10)

In (10), we are assuming that the electric field is homogeneously distributed through
the PZ layer. However, the exact computation of non-homogeneous depolarizing field
that would provide the actual value of the electric field at the PZ/MS interface is beyond
the scope of the present paper, as we are only interested in highlighting the functional
dependence between mechanical strains and the electric field value at such an interface.

From (10), we deduce that the shear strains acting on the PZ actuator vanish in all the
above configurations (and, indeed, the coefficient d4 never appears in our calculations) so
that, also taking into account (7) and (8), the total strain tensor can be expressed as:

˜
ε =


εPZ

xx 0 3
2 λ111mxmz

0 εPZ
yy

3
2 λ111mymz

3
2 λ111mxmz

3
2 λ111mymz − c12

c11

(
εPZ

xx + εPZ
yy

)
+ 3

2
c11−c12

c11
λ100

(
m2

z − 1
3

)
 (11)

where the dependence of the strain components εPZ
xx and εPZ

yy on the electric field is explicitly
given in (10).
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Consequently, inserting (5), (6) and (11) into (4), the components of the ME field
hme take the form:

hme
x =

3mx

µ0M2
S

{
λ100

c11 − c12

c11
β1(E)− 3c44λ2

111m2
y+

+
3
2

λ2
100

c12 − c11

c11

[
(c11 + c12)(m2

x − 1
3 ) + c12(m2

y − 1
3 )
]}

, (12a)

hme
y =

3my

µ0M2
S

{
λ100

c11 − c12

c11
β2(E)− 3c44λ2

111m2
x+

+
3
2

λ2
100

c12 − c11

c11

[
c12(m2

x − 1
3 ) + (c11 + c12)(m2

y − 1
3 )
]}

, (12b)

hme
z =0 (12c)

where:

β1(E) =


[(c11 + c12)d1 + c12d2]Ex for E//Π//ex

[(c11 + c12)d2 + c12d1]Ey for E//Π//ey

(c11 + 2c12)d2Ez for E//Π//ez

(13)

β2(E) =


[(c11 + c12)d2 + c12d1]Ex for E//Π//ex

[(c11 + c12)d1 + c12d2]Ey for E//Π//ey

(c11 + 2c12)d2Ez for E//Π//ez

(14)

Finally, the dissipative torque term td in Equation (1) includes the classical Gilbert
damping torque [24,25] as well as the non-linear rate-independent dry friction [16,21,22,34,35],
namely:

td =
(

αG + γαD‖
.m‖−1

)
(m ∧ .m), (15)

where the strength of linear and nonlinear dissipation is measured by the phenomenological
dimensionless coefficients αG and αD, respectively.

By expressing the unit magnetization vector in polar coordinates (θ, ϕ), inserting (2),
(3), (12) and (15) into the LLG Equation (1), we get:

sin θ
.
ϕ−

[
αG + γαD

( .
θ2 + sin2 θ

.
ϕ2
)−1/2

] .
θ = γ

{
− l2

exc
∂2θ

∂x2 + l2
exc sin θ cos θ

(
∂ϕ

∂x

)2
+

− cos θ cos ϕ
(

hme
x + hani

x

)
− cos θ sin ϕ

(
hme

y + hani
y

)
+ sin θ

(
hext + hani

z

)
+

+ sin θ cos θ
[

Nx cos2 ϕ + Ny sin2 ϕ− Nz

]}
, (16a)[

αG + γαD

( .
θ2 + sin2 θ

.
ϕ2
)−1/2

]
sin θ

.
ϕ +

.
θ = γ

{
l2
exc sin θ

∂2 ϕ

∂x2 + 2l2
exc cos θ

∂θ

∂x
∂ϕ

∂x
+

+
(

Nx − Ny
)

sin θ cos ϕ sin ϕ +
(

hme
y + hani

y

)
cos ϕ−

(
hme

x + hani
x

)
sin ϕ

}
. (16b)

Let us now investigate the above system of governing equations in the two characteris-
tic dynamical regimes: steady and precessional [36]. Let us first consider the steady regime
that takes place if the strength of the external sources is below a critical value, usually
referred to as Walker breakdown (WB) [20]. Here, DWs undergo a rigid motion along the
nanostrip axis ex with constant velocity v, fixed azimuthal angle ϕ0 and the polar angle
satisfies the classical traveling wave ansatz θ = θ(ξ), being ξ = x− vt, so that system (16)
becomes:
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αGvθ′ + α̂D = γ
{
− l2

excθ′′ +
(

Nx cos2 ϕ0 + Ny sin2 ϕ0 − Nz

)
sin θ cos θ+

+
(

hext + hani
z

)
sin θ −

[(
hme

x + hani
x

)
cos ϕ0 +

(
hme

y + hani
y

)
sin ϕ0

]
cos θ

}
, (17a)

vθ′ = −γ
{(

Nx − Ny
)

sin ϕ0 cos ϕ0 sin θ +
(

hme
y + hani

y

)
cos ϕ0 −

(
hme

x + hani
x

)
sin ϕ0

}
, (17b)

where the prime stands for the derivative with respect to the traveling wave variable ξ and
α̂D = γαDsign(vθ′).

Taking into account (3) and (12), Equation (17b) can be recast as:

θ′ = Γ
(

1 + k sin2 θ
)

sin θ, (18)

where the parameters Γ and k depend on the electric field as follows:

Γ(E) =
γ

2v

[
Ny − Nx +

3λ100

µ0M2
S
(c12 − c11)β3(E)

]
sin 2ϕ0, (19a)

k(E) =

[
9λ2

100(c11 − c12)− 18λ2
111c44 − 4K1

](
cos2 ϕ0 − sin2 ϕ0

)
2µ0M2

S

(
Nx − Ny

)
+ 6λ100(c11 − c12)β3(E)

, (19b)

with:

β3(E) =


(d2 − d1)Ex for E//Π//ex

(d1 − d2)Ey for E//Π//ey

0 for E//Π//ez

(20)

As it is easy to ascertain, Equation (18) admits two kinds of steady-state solutions
corresponding to sin θ = 0 and sin2 θ = −1/k (existing for k < 0 only), respectively. The
former represents the classical Walker profile of a Bloch DW with θ varying between 0◦ and
180◦ [20]; the latter describes the 71◦ and 109◦ DW configurations observed in materials
with cubic symmetry [1,17]. It should be kept in mind that, according to our previous
assumptions, the profile given in (18) strictly holds in the proximity of the DW region,
namely close to the interface separating two different domains.

Then, by inserting (18) into (17a), we obtain:

P sin θ + R sin θ cos θ + S sin3 θ cos θ + ΓkαGv sin3 θ + 3γl2
exck2Γ2 sin5 θ cos θ + α̂D = 0, (21)

where:

P = ΓαGv− γhext, (22a)

R = γ

{
l2
excΓ2 + Nz − Ny sin2 ϕ0 − Nx cos2 ϕ0 −

2K1

µ0M2
S
+ (22b)

+
3λ100

µ0M2
S

c11 − c12

c11

[
εPZ

xx

(
c11 cos2 ϕ0 + c12

)
+ εPZ

yy

(
c11 sin2 ϕ0 + c12

)
+

λ100(c11 + 2c12)

2

]}
,

S = γ

{
4kl2

excΓ2 +
4K1

(
1− cos2 ϕ0 sin2 ϕ0

)
µ0M2

S
− 18

µ0M2
S

c44λ2
111 cos2 ϕ0 sin2 ϕ0+ (22c)

− 9
2µ0M2

S
λ2

100
c11 − c12

c11

[
c12 + c11

(
1− 2 cos2 ϕ0 sin2 ϕ0

)]}
.
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Furthermore, by setting R = 0, we retrieve the expression of the DW width δ = 1/Γ
in terms of magnetostriction, voltage-induced strains and magnetocrystalline anisotropy,
as follows:

δ(E) =

√√√√ Aexc

K1 − ψ +
µ0 M2

S
2
(

Nx cos2 ϕ0 + Ny sin2 ϕ0 − Nz
) , (23)

where ψ depends on the electric field through the strains εPZ
xx and εPZ

yy as follows:

ψ =
3
2

λ100
c11 − c12

c11

[
εPZ

xx

(
c11 cos2 ϕ0 + c12

)
+ εPZ

yy

(
c11 sin2 ϕ0 + c12

)
+

λ100(c11 + 2c12)

2

]
(24)

Now, in order to deduce the explicit expression of the DW velocity in this regime,
under the assumption of a classical Walker profile with 0◦ ≤ θ ≤ 180◦, it suffices to perform
the average of Equation (21) over the DW width:

v(E) =
3

αG

δ(E)
3 + 2k(E)

(
γhext − π

2
α̂D

)
, (25)

which points out the possibility to achieve an electric-field control of the steady DW velocity
through the quantities k = k(E) and δ = δ(E). To characterize DW dynamics in more detail,
let us discuss the functional dependence of three characteristic parameters associated with
the steady regime of propagation: DW mobility, propagation threshold and WB field. The
former quantity is defined as the sensitivity of the velocity with respect to the strength of the
forcing term, i.e., ∂v/∂hext which, from (25), is strictly related to the ratio δ(E)/(3 + 2k(E)).
To compute the propagation threshold, i.e., the minimum value of the external field that
allows us to drive the DW motion, we impose in Equation (25) that the DW velocity must
be non-negative, so we obtain:

hext
TH =

π

2γ
α̂D. (26)

Equation (26) clearly denotes that the nonlinear dry dissipation is the only mechanism
responsible for the threshold, hence the electric field does not play any role in this context.
The WB condition constitutes another restriction on the DW velocity that arises from (19a)
and takes the form:

v ≤ γδ

2

∣∣∣∣∣Nx − Ny +
3λ100(c11 − c12)β3(E)

µ0M2
S

∣∣∣∣∣. (27)

Combining (25) with (27), it is possible to set the upper boundary of the range in
which the external field triggers steady DW dynamics, namely:

hext
WB =

π

2γ
α̂D +

αG(3 + 2k)
6

∣∣∣∣∣Nx − Ny +
3λ100(c11 − c12)β3(E)

µ0M2
S

∣∣∣∣∣ (28)

which turns out to be affected by the electric field through the functions k(E) and β3(E).
To summarize the results obtained in the steady regime, taking into account all

the above functional dependencies (19b), (20), (23), (24), (25), (26) and (28), we can thus
conclude that, if dielectric poling Π and electric field E point along ex or ey, then the
strength of the electric field generated into the PZ actuator may be used to vary and control
the DW width δ, the DW velocity v, the DW mobility ν and the WB field hext

WB. On the other
hand, if Π and E are aligned to the ez axis, the electric field affects the DW velocity v only,
through variations induced in the DW width δ.

When the external field strength is much larger than WB value, i.e., condition (27) is
violated, DW dynamics takes place into the so-called precessional regime. In this case, the
DW velocity is not constant anymore and the magnetization vector exhibits periodic in
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time oscillations at microwave frequency with constant angular speed
.
ϕ = ω0. Under the

above hypotheses, the governing system (16) reads:

ω0 sin θ +

[
αGv + γαDv

(
v2θ′

2
+ ω2

0 sin2 θ
)−1/2

]
θ′ =

= γ

{[
Nx cos2 ϕ + Ny sin2 ϕ− Nz

]
sin θ cos θ − l2

excθ′′+

−
[(

hme
x + hani

x

)
cos ϕ +

(
hme

y + hani
y

)
sin ϕ

]
cos θ +

(
hext + hani

z

)
sin θ

}
, (29a)[

αG + γαD

(
v2θ′

2
+ sin2 θω2

0

)−1/2
]

sin θω0 − vθ′ =

= γ

{(
Nx − Ny

)
sin θ cos ϕ sin ϕ +

(
hme

y + hani
y

)
cos ϕ−

(
hme

x + hani
x

)
sin ϕ

}
. (29b)

To get an explicit expression of the DW velocity, two further assumptions are made:
(i) Equation (18) still qualitatively describes the travelling wave profile in the precessional
regime, and (ii) the spatio-temporal dependence of the polar coordinate θ(x, t) is approxi-
mated by its value at the center of the DW (θ = π

2 ). Equation (29) can be recast accordingly
as follows:

ω0 + Γ(1 + k)
[

αG + γαD

(
v2Γ2(1 + k)2 + ω2

0

)−1/2
]

v = γhext, (30a)[
αG + γαD

(
v2Γ2(1 + k)2 + ω2

0

)−1/2
]

ω0 = Γv(1 + k)+

+ γ sin ϕ cos ϕ
{

Nx − Ny +
3λ100
µ0 M2

S
(c11 − c12)β3+

+ cos2 ϕ−sin2 ϕ

µ0 M2
S

[
9
2 λ2

100(c11 − c12)− 9c44λ2
111 − 2K1

]}
(30b)

Then, by performing the average of the Equation (30) over a period of precession, and
considering a restriction between average velocity and angular speed, that is generally
expressed as Γ(1 + k)v� ω0, we obtain:

ω0 + αGΓ(1 + k)v = γhext, (31a)

αGω0 + γαD = Γ(1 + k)v (31b)

from which we deduce the expression of the average DW velocity:

v(E) =
γ

1 + α2
G

δ(E)
1 + k(E)

(
αGhext + αD

)
. (32)

Expression (32) underlines the feasibility of controlling the DW propagation via electric
fields, through k = k(E) and δ = δ(E), also in the precessional regime. In particular, the
voltage-induced ME effects may alter the DW mobility and modulate the upward shift of
the average DW velocity through the ratio δ(E)/(1 + k(E)).

3. Results and Discussion

In the previous section, we computed the key dynamical features associated to steady
and precessional dynamical regime and inspected their dependence on the electric field
generated into the PZ layer in three different configurations, where the dielectric poling
and the electric field are parallel and point along one reference axis. In this section, we
evaluate such quantities numerically with the aim of establishing which PZ material, and
which common orientation for poling and electric fields, allows us to optimize the voltage
response of DWs propagating in a hybrid PZ/MS system.
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In our analysis, we consider a Fe0.8Ga0.2 alloy, named Galfenol, as MS ferromagnet
exhibiting cubic anisotropy. Moreover, the selection of the most performing PZ actuator is
carried out among seven ceramic materials: PZT4, PZT5A, PZT5H, PZT6B, PZT7A, PZT8,
and BaTiO3. The values of the corresponding material parameters are summarized in
Tables 1 and 2, respectively.

Table 1. Numerical values of parameters characterizing the Galfenol-based MS layer.

Quantity Unit Value Ref.

µ0 MS T 1.5 [37]
Aexc pJ/m 14 [37]
αG – 0.04 [37]

3
2 λ100 – +400× 10−6 [38,39]
3
2 λ111 – +40× 10−6 [38,39]

c11 GPa 200 [38,39]
c12 GPa 160 [38,39]
c44 GPa 130 [38,39]
K1 J/m3 −0.5× 104 [40]
Nx – 0.6424 assumed
Ny – 0.0092 assumed
Nz – 0.3484 assumed
ϕ0 deg 10 assumed
αD – 0.1 assumed

Table 2. Numerical values of the PZ coefficients d1 and d2 (×10−10) associated to different ceramic
materials. Values are extracted from Ref. [33].

Material d1 d2

PZT4 +2.89 −1.23
PZT5A +3.74 −1.71
PZT5H +5.92 −2.74
PZT6B +0.72 −0.27
PZT7A +1.53 −0.65
PZT8 +2.15 −0.93

BaTiO3 +1.91 −0.79

In Figures 2 and 3, the electric-field dependence of k (19b), δ (23), hext
WB (28), steady (25)

and precessional (32) DW velocities is shown for the abovementioned materials and for
different orientations of poling and electric fields. In these figures, the strength of the
electric field is taken of the same order of magnitude as the one reported in the literature
for piezoceramic materials [41,42].

As already seen, the parameter k (top panels of Figure 2) and the WB field hext
WB

(bottom panels of Figure 2) do not undergo variations with the electric field, when poling
and electric fields point along ez (configuration (c)). On the contrary, if both fields are
aligned along ex (configuration (a)) or ey axis (configuration (b)), it is possible to obtain
a quasi-linear tuning of the above quantities with a sensitivity that varies according to
the choice of the PZ material. Indeed, for the ceramic exhibiting the largest sensitivity,
i.e., PZT5H, the parameter k is modulated by about 8% around the value reported in the
absence of any external stimulus (k(E = 0)=18.0× 10−3), whereas the WB field varies
by less than 0.6% around the value hext

WB(E = 0) = 16.99× 10−2. Instead, the material
appears to be less sensitive to the electric field is the PZT6B, since the related variations
reduce down to less than 1% for k and to less than 0.06% for hext

WB. Note, also, that results
corresponding to configurations (a) and (b) differ from one another by the slopes of the
curves around the values at rest.
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Figure 2. Electric-field dependence of parameter k (top panels), DW width δ (middle panels) and WB field hext
WB (bottom

panels) in the three proposed configurations: (a1–a3) E//Π//ex, (b1–b3) E//Π//ey and (c1,c2,c3) E//Π//ez, for the seven ceramic
PZ materials taken into account (depicted in the top legend).

A different scenario takes place for the voltage-induced dependence of the DW width
δ (middle panels of Figure 2) that is always affected by variations of the electric field,
independently of the common orientation of poling and electric fields. However, different
sensitivities and slopes are obtained by varying the PZ material and the orientation of
the above fields. In detail, starting from the value at rest δ(E = 0) = 5.36 nm, the three
proposed configurations allow to get an overall modulation of about 4.5% in case (a), 0.1%
in case (b) and 4% in case (c). The above reported best values are provided by PZT5H
in configurations (a) and (c), but by PZT4 in setup (b). It should also noticed that, in
configuration (b), the PZT5H exhibits the lowest sensitivity to the electric field.

Let us now inspect how the electric-field dependence of the parameters k and δ reflects
into the overall DW velocity, in the two investigated dynamical regimes. For simplicity,
we fix the external field at a value that falls in the range hext

TH < hext < hext
WB in the steady

regime, whereas it satisfies hext > hext
WB in the precessional one.

First of all, as one can argue from the comparison of the rows of Figure 3, the electric
field response shows no qualitative differences between steady and precessional regime.
So, without loss of generality, we shall limit our discussion to the steady regime only. The
material that exhibits the largest sensitivity is PZT5H in configurations (a) and (c), but
PZT4 in configuration (b). However, the effects arising from sweeping the electric field
strength across the PZ layer range over different scales. Indeed, taking into account the
reference value v(E = 0) = 278.4 m/s, we get overall variations of about 4% in case (a),
0.2% in case (b) and 3.7% in case (c).
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Therefore, if the lateral electrodes need to be placed along the xz axis (configuration
(b)), then the ceramic PZ material that provides the better performances is PZT4 whereas,
in all other configurations, the material that optimizes the system response is PZT5H.
However, it should be remarked that the overall sensitivity of the DW velocity with electric
field observed in configuration (b) is about one order of magnitude smaller than those
obtained in configurations (a) and (c).

We can thus conclude our theoretical investigations by claiming that, in order to
optimize the voltage-control of the DW properties in both dynamical regimes, the optimum
setup has to be constituted by a ceramic PZ layer made by PZT5H polarized along the
x axis (i.e., along the major axis of the nanostrip) through a couple of lateral electrodes
placed on the yz faces.
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Figure 3. Electric-field dependence of steady (top panels) and precessional (bottom panels) velocity in the three proposed
configurations, (a1,a2) E//Π//ex, (b1,b2) E//Π//ey and (c1,c2) E//Π//ez, for the seven ceramic PZ materials taken into ac-
count (depicted in the top legend). Steady and precessional velocities are obtained by fixing the bias magnetic field at
hext = 16.5 × 10−2 and hext = 20 × 10−2, respectively. These values fulfill the restrictions reported in the main text.

4. Conclusions

Our theoretical results demonstrated that the propagation of DWs along the major axis
of a MS nanostrip, placed on the top of a thick PZ actuator, can be controlled by the electric
field generated into the PZ layer via a dc bias voltage. We deduced the explicit expressions
of the electric field dependence of the most relevant dynamical features characterizing
the steady and the precessional regime of propagation. In particular, we discussed the
sensitivity with respect to the electric field of DW width, velocity and mobility, propagation
threshold and WB field. Moreover, such functional dependencies were evaluated in three
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configurations where the dielectric poling and the electric field are collinear and directed
along one of the reference axes. Then, we carried out numerical investigations with the
main aim of proposing a strategy to optimize the voltage-control of the above described
DW propagation. Two key degrees of freedom were considered in such an optimization
procedure: the choice of the ceramic PZ material and the common orientation of dielectric
polarization and electric field. Our results revealed that the DW velocity exhibits the largest
sensitivity on the electric field (modulation up to 4%) by using the ceramic PZT5H as PZ
actuator, polarizing the dielectric along the x axis and placing the lateral electrodes on
the yz faces. When poling and electric fields are aligned to the z axis, a slightly smaller
tunability (about 3.7%) was achieved by using the same ceramic material. The sensitivity
was significantly reduced (by roughly one order of magnitude) when both fields point
along the y axis, but in this case the material exhibiting the best performances was the PZT4.

We believe that the proposed theoretical optimization may suggest some useful guide-
lines for the development of practical tunable sensors based on the propagation of magnetic
DWs. Finally, we aim at further extending the framework here discussed in the context of spin-
orbitronic technologies, where thin magnetic layers exhibit perpendicular anisotropy and/or
Dzyaloshinskii-Moriya interaction, as well as in antiferromagnetically-coupled devices.
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