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Abstract: Unlike rigid actuators, soft actuators can easily adapt to complex environments. Under-
standing the relationship between the deformation of soft actuators and external factors such as
pressure would enable rapid designs based on specific requirements, such as flexible, compliant
endoscopes. An effective model is demonstrated that predicts the deformation of a soft actuator
based on the virtual work principle and the geometrically exact Cosserat rod theory. The defor-
mation process is analyzed for extension, bending, and twisting modules. A new manufacturing
method is then introduced. Through any combination of modules, the soft actuator can have a
greater workspace and more dexterity. The proposed model was verified for various fiber-reinforced
elastomeric enclosures. There is good agreement between the model analysis and the experimental
data, which indicates the effectiveness of the model.

Keywords: soft actuators; virtual work principle; Cosserat rod theory; fiber-reinforced elastomeric
enclosures; model analysis

1. Introduction

In the field of soft actuators, a fiber-reinforced elastomeric enclosure (FREE) developed
by McKibben et al. [1–6] has attracted attention because of its simple structure, high force-
to-weight ratio, and high pressure. These unique capabilities enable a variety of potential
medical device applications [7,8]. In addition, soft actuators conform to the surroundings
and move with dexterity [9–11]. Many soft actuators based on FREEs have been developed.
They have a wide range of motions via combinations of programmed actions, including
extension, bending, and twisting. Thus, it is essential to understand how to design a soft
actuator to achieve a particular spatial motion. To make the design simpler and more
systematic, there is a need to develop soft actuators that are easy to manufacture and
program with respect to the complex environment.

As actuators based on FREEs can better match the behavior of biological muscles than
others, research groups have begun to analyze the characteristics of soft actuators [12–14].
Finite-element analysis [15] is commonly used to optimize and guide the parameters for a
soft actuator, and can also suggest designs. However, it can only analyze the movement of
the foundation, and the calculations can be very large computationally.

Krishnan et al. [16,17] analyzed the mobility of generalized FREEs based on simple
geometric relationships that result from the inextensibility of fibers and fluidic actuation.
They examined the static behavior, such as extension, contraction, and twisting, by the prin-
ciple of virtual work. However, this predicted only one-dimensional shape changes of soft
actuators, without exploring actual application scenarios. To make it more flexible, some
researchers arranged different fiber angles on the soft actuator to enable the single-drive
actuator to perform a variety of actions [18–20]. These reports were based on geometric
modeling, rather than a force analysis of the soft actuator.
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Uppalapati et al. [21,22] combined multiple modules in parallel to maximize the
workspace. They introduced an inverse formulation using Cosserat rods [23–25]. However,
they did not establish a direct numerical relationship between pressure and deformation
of a soft actuator. The actuator length was assumed to be constant, which is effective for
bending or winding modules, but not for extension or twisting. Hence, there is a need to
design a soft actuator that performs a specific motion, especially in complex environments.

To improve predictions, we used a geometric analysis model based on the principle
of virtual work, combined with a mechanical analysis model based on Cosserat rod the-
ory. Together, they predicted deformations of a soft actuator, especially gravity-induced
shape deformation.

The advantages of using a combined model are:
(1) The geometric analysis estimates the extension, contraction, and torsion angle at

any time. The Cosserat rod theory cannot perform this requirement.
(2) The Cosserat rod theory analyzes soft actuator deformation via mechanical charac-

teristics. External forces can be integrated into the model. The geometric analysis model
cannot account for the effects of external forces.

Hence, the combination of these analytical models provides more accurate deforma-
tion features. Extension, bending, and twisting modules are fabricated, and deformations
are verified. Experimental data agreed well with the proposed model. Finally, we randomly
combined modules and performed a series of target capture experiments to demonstrate
this approach.

2. Analytical Modeling of Actuator Segments

In this section, we describe in detail the Cosserat rod theory and the geometric model-
ing of soft actuators.

2.1. The Cosserat Rod Theory

The centerline curve of a rod with r(s) ∈ R3 and material orientation R(s) ∈ SO(3),
as functions of a reference parameter s ∈ [0, l], are the main characteristics, as shown in
Figure 1.
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The v(s) and u(s) are kinematic variables that represent the linear and angular
rates of change of r(s) and R(s) in a local frame, respectively. Thus, they have the
following relationship:

.
r(s) = R(s)v(s), (1)
.
R(s) = R(s)û(s) (2)
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where û(s) represents the skew symmetric matrix of the vector u(s). This is defined:

û(s) =

 0 −u3 u2
u3 0 −u1
−u2 u1 0


From the force and moment balance analysis of the rod in Figure 1, the following can

be obtained:
(n(s)− FeR(s)v(s))s + fd(s) = 0 (3)

.
m(s) +

.
r(s)× n(s) + L(s) = 0, (4)

where n(s) indicates the internal force and m(s) indicates moment vectors. R(s)v(s)
indicates the tangential direction of a point on the soft actuator. fd(s) is the distributed
force acting on the actuator and L(s) is the applied moment distribution.

We use linear constitutive laws to map these variables to the internal forces and
moments, as shown in Equations (5) and (6):

n(s) = R(s)Kse(s)(v(s)− v0(s)) (5)

m(s) = R(s)Kbt(s)(u(s)− u0(s)), (6)

where
Kse(s) = diag(GAt(s), GAt(s), EAt(s))

Kbt(s) = diag
(
EIxx(s), EIyy(s), EIzz(s)

)
Kse(s) is the stiffness matrix for shear and extension, and Kbt(s) is the stiffness matrix

for bending and torsion. G is the shear modulus, and Ixx, Iyy, and Izz are the second
moments of area for the tube cross sections about the principal axes.

It is necessary to make a brief explanation here. For the bending and twisting modules
v(s) = v0(s) =

[
0 0 1

]T and the axial force Fe = 0. In other cases, v(s) = v0(s) =[
0 0 λ1

]T .
The explicit model equations can be obtained by combining Equations (1)–(6) and

the following:

.
u(s) =

.
u0(s)− K−1

bt

(
û(s)Kbt(u(s)− u0(s)) + v̂Kse(v(s)− v0(s)) + RT L(s)

)
, (7)

.
v(s) = v0(s)

(
I − K−1

se Fe

)−1(
K−1

se

(
−û(s)Kse(v(s)− v0(s)) + Feû(s)v(s)− RT fde3

))
, (8)

where e3 =
[

0 0 1
]T , and because we assume no body moments, L(s) = 0.

Then, the boundary conditions are determined. At s = 0, r0(s = 0) =
[

0 0 0
]T ,

R0 = Eye(3) and u(s = l) = u0 =
[

k 0 τ
]T . Matlab ode45 was used with the shooting

method to solve the boundary-value problem.

2.2. Geometric Model Analysis

The relationship between soft actuator deformation and the fiber angle is given by:

λ1
2(cos α)2 + λ2

2(sin α)2
(

θ + δ

θ

)2
= 1, (9)

λ1
2(cos β)2 + λ2

2(sin β)2
(

φ + δ

φ

)2
= 1, (10)

where θ = l0 tan(α)
r0

, φ = l0 tan(β)
r0

, λ1 = l∗
l0

, λ2 = r∗
r0

, and λ1, λ2 indicate axial elongation
and radial elongation, respectively, and α, β ∈

(
0,±π

2
)

indicate the helical angles of the
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fiber, as shown in Figure 2. δ is the net angular deformation of the actuator’s end. l0
and r0 are the initial actuator lengths. l∗, r∗ are the deformed elemental axial length
and radius, respectively.
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Figure 2. A cylindrical FREE actuator wrapped with a double family of helical fibers.

The fibers were inextensible, so the relationship between input pressure and axial
elongation can be obtained by the virtual work principle, as follows:

P
∂V
∂λ1

+
∂(uVt)

∂λ1
= 0, (11)

u =
E
6
(I1 − 3), (12)

I1 = λ2
1 + λ2

2 + λ2
3, λ3 =

1
λ1λ2

, (13)

where P is the pressure and V is the volume of the actuator cavity. Vt is the volume of
rubber, and E is Young’s modulus of the material. This was numerically inverted to solve
for λ1, given P from Equations (9)–(13).

Modeling of Extension, Bending and Twisting

To model extension and bending, the helical angles of the fibers were set to
α = −β, (α, |β|) > 54.73◦. If the angles are symmetrical, the soft actuator becomes
longer under continuous air pressure and will not twist. Therefore, Equations (9)–(10)
can be simplified as follows:

λ1
2(cos α)2 + λ2

2(sin α)2 = 1, (14)

The only difference between the bending and extension modules is that the bending
module must add another fiber as the binding layer. The added fiber allows the soft
actuator to bend towards the fixed side. The process of change with the bending module is
shown in Figure 3.

k =
1
ρ
=

λ1 − 1
(λ1 + 1)r

, (15)

The twisting module is a combination of the bending and rotating modules, as shown
in Figure 4. The helical angle of the fiber had an asymmetrical arrangement, with a motion
similar to the predator action of an octopus arm. In this case, Equation (14) is not applicable
and λ1 can only be solved with Equations (9)–(13). Finally, the relationship between
pressure and the deformation of the soft actuator can be obtained through the principle of
virtual work under ideal conditions.

All of the above cases were obtained for an ideal state, without considering the effects
of external forces, such as gravity. In Figure 5, the gray cylinder on the left depicts the
length of an actuator without the effect of gravity. The dark gray cylinder on the right
depicts the change in length when considering the effect of gravity. Hence, there is a large
difference when gravity is considered for a soft actuator.
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To describe the above actions more accurately, the Cosserat rod theory was used to
improve the soft actuator model under external loads. Initially, the equivalent axial force
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generated by internal pressurization of the tube was determined with Equation (16). This
equation makes a preliminary hypothesis for the model derivation.

Fe = EAt∆λ, (∆λ = λ1 − 1), (16)

where At is the cross-sectional area of the soft actuator and is equal to At = π
(
r2
∗ − r2

0
)
.

3. Manufacturing Soft Actuators

The actuators needed five materials: a hollow latex tube, fibers, rubber cement, a latex
tube surface-treatment agent, and a metal rod, as shown in Figure 6a,b. The latex tube had
15-mm inner and 20-mm outer diameters.
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(b) Latex tube surface treatment agent.

The soft actuators were fabricated by mounting the latex tube on the metal rod, which
had a diameter equal to the inner diameter of the latex tube. To paste the fiber and latex
tube together, a layer of treatment agent (J-740, DOLDSUN TIME) was applied to the
surface of the latex tube. This agent enhanced the fiber restraint effect.

Then, the metal rod was fixed for machine control of the fiber-winding angle on the
latex tube. The molding effects are shown in Figure 7. Finally, we used rubber cement to
adhere the fiber to the latex tube.
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4. Experimental Validation

To fabricate extending, bending, and twisting actuators, we used a hollow latex tube
with E = 7× 105 N/m2 and G = 2.33× 105 N/m2. The fiber reinforcement was Kevlar.
It was assumed that the fiber was inextensible. For the extension and bending modules,
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the fiber angles were set to α = −β = 85◦, and α = 85◦, β = −80◦ for the twisting module.
Detailed parameters are listed in Table 1.

Table 1. Detailed configuration of soft actuators.

Fiber Angle Inner Radius Wall Thickness Density Length

Extension module α = −β = 85◦ r = 7.5 mm rt = 2.5 mm 870 kg/m3 0.478 m
Bending module α = −β = 85◦ r = 7.5 mm rt = 2.5 mm 870 kg/m3 0.378 m
Twisting module α = 85◦, β = −80◦ r = 7 mm rt = 2.5 mm 870 kg/m3 0.7 m

4.1. Module Testing

The modules were verified separately with experimental data. The model data of the
combined virtual work principle and the Cosserat rod theory were compared and analyzed
with experimental data.

4.1.1. Extension Module Test Experiment

The length of the extension module was set to 0.478 m. In Figure 8, the red line is the
experimental data for the actuator length, and the blue line is the length of the extension
module predicted by the model. The experimental data were always greater than the
data predicted by the model, and the maximum error was 0.0056 m. The reason for the
large error may be because the extension module was not an ideal straight line during the
fabrication process. There was a certain degree of bending. Therefore, with continuous
pressure, the soft actuator was slightly bent along the elongation, which led to the actual
length of the soft actuator always being less than the length predicted by the model. In
general, the data predicted by the model matched the experimental results well, and were
effective enough to predict the shape change of the model.
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4.1.2. Bending Module Test Experiment

The length of the bending module was 0.378 m. Then, with input pressures P from
40 kPa to 110 kPa, we used the analytical model to predict the shape of the actuator, as
shown in Figure 9. The direction of gravity was positive along the z-axis. The abscissa
represents the deviation of the soft actuator from the y-axis direction. Experimental data
under corresponding conditions were also acquired. The position of the soft actuator must
be determined via image processing.
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In Figure 9, there is good agreement between the analytical model and the experimen-
tal data. To better evaluate the accuracy of the analytical model, we used end-position
errors to measure the model. Thus, the prediction model was evaluated by determining
the position error of the end point between the model and experiment. The error was
calculated by:

error_position =

√(
zend.exp − zend.ana

)2
−
(

yend.exp − yend.ana

)2
, (17)

where zend.exp are the experimental position coordinates of the end of the z-axis, and
zend.ana are the position coordinates obtained by analytical modeling. yend.exp and yend.ana
are determined similarly. Using this evaluation method, we obtained position errors of
0.0139 m, 0.012 m, 0.0403 m, and 0.0519 m under various input pressures (40–110 kPa).

The possible reason for the error is that the curvature of the soft actuator was not a
constant curvature model with increasing input air pressure. Thus, there may have been
deviations in the estimated position of the actuator. Another reason is that the cover at the
end of the actuator had weight, which could make the predicted shape deviate from the
actual shape.

4.1.3. Twisting Module Test Experiment

The length of the twisting module was 0.7 m. As its motion was three-dimensional, a
helical radius was used to measure the model, extract the experimental data, and evaluate
the accuracy of the model. The radius could be obtained by the virtual work principle
and the Cosserat rod theory. Initially, the λ1 of the actuator under ideal conditions was
solved by using the virtual work principle. Then, the Cosserat rod theory was used to
obtain the actuator attitude information. The curvature of the actuator centerline could be
obtained by this method. The relationship between curvature and the helical radius could
be obtained from previous reports [22]:

rhelix =
k

k2 + τ2 k =
sin2 ξ

rhelix + r
, (18)

τ =
δ

l
, (19)

where τ is the twist per unit length.
ξ represents the angle between the tangent direction at the end of the actuator and the

z-axis direction of the global coordinate system.
The change in radius of the twisting module could be obtained by the above method,

as shown in Figure 10. The experimental data were always larger than the predicted
data from the model. The maximum error was 0.01927 m, which may be because the
cover at the end of the torsion module was made of metal and had a certain weight that
affected the helical radius. However, the agreement between the spatial twisting model
and experimental data was quite high, indicating the reliability of the proposed model.

4.2. Model Series Motion Experiment

The function of a single module is limited. Therefore, to highlight the operation of the
soft actuator, we fabricated the extension, bending, and twisting modules at different scales.
The twisting module was used as the end actuator, and it captured the target, as shown
in Figure 11a. Then, we combined the torsion module with the bending and elongation
modules to grasp the target. In Figure 11b,c, the twisting, bending, or extension modules
could grasp the target.
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Figure 11. Grasping of the soft actuator based on the combination module. (a) A single twisting module grabs a water bottle.
(b) Target-grabbing based on a combination of bending and twisting modules. (c) Target-grabbing based on a combination
of extension and twisting modules.

5. Conclusions

Although there have been many reports on model analyses for soft actuators, especially
for FREEs, few systematically analyzed separate modules, especially considering the effects
of external forces. Here, we improved the description of spatial state changes in soft
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actuators. Firstly, a geometrically exact steady-state model (Cosserat rod theory) and
the virtual work principle were used to predict deformation characteristics. The most
important contribution is that the combination of these two models increased the design
speed of the soft arm and improved the accuracy of shape prediction. Secondly, to verify the
effectiveness of the model, we used the model to predict extension, bending, and twisting
deformation actuators. Then, a comparison of the model analysis and the experimental
data for the three modules verified that the result errors were 0.0056 m, 0.0519 m, and
0.01927 m. Finally, to expand the function of the soft actuator, the extension, bending, and
twisting modules were randomly combined to grasp objects in space by controlling the
pressure of the three modules.

A soft actuator constructed using FREEs can easily change its shape by means of
external forces. Hence, in future work, we plan to change this structure into a module
with variable stiffness, then we will optimize the structure of the soft actuator to minimize
the volume. Finally, we plan to examine dynamic modeling analysis of the soft actuator
because most modeling of the flexible actuator is still based on quasi-static motion.
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