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Abstract: Inertially Actuated Jumping Robots (IAJR) provide a promising new means of locomotion.
The difficulty of IAJR is found in the hybrid nature of the ground contact/flying dynamics. Recent
research studies in our Systems Lab have provided a family tree of inertially actuated locomotion
systems. The proposed Tapping Robot is the most prompt member of this tree. In this paper, a
feedback linearization controller is introduced to provide controllability given the 3-dimensional
motion complexity. The research objective is to create a general controller that can regulate the
locomotion of Inertially Actuated Jumping Robots. The expected results can specify a desired speed
and/or jump height, and the controller ensures the desired values are achieved. The controller can
achieve the greatest response for the Basketball Robot at a maximum jump height of 0.25 m, which is
greater than the former performance with approximately 0.18 m. The design paradigm used on the
Basketball Robot was extended to the Tapping Robot. The Tapping Robot achieved a stable average
forward velocity of 0.0773 m/s in simulation and 0.157 m/s in experimental results, which is faster
than the forward velocity of former robot, Pony III, with 0.045 m/s.

Keywords: inertially actuation; jumping robot; feedback linearization

1. Introduction

Inertially Actuated Jumping Robots (IAJR) should be designed for maneuverability,
speed, and efficiency. In light of recent autonomous technology, highly dynamic robots
have revealed themselves to achieve performance unreachable by direct human control.

The benefit of land vehicles is their maneuverability and responsiveness. Inertially
actuated jumping robots can vary their jumping frequency to change jumping height
and/or progression speed. A jumping robot can track complicated paths by changing
directions while it maintains ground contact [1]. When in the air, jumping robots can
travel at high speeds. By changing the physical parameters of the robot design and the
controller parameters, a jumping robot will be able to perform complicated dynamics. IAJR
are novel also because they are not biomimetic. Most research in locomotion is inspired by
nature [2–7]. The IAJR uses masses to excite dynamics that is not found in nature.

An issue with locomotion is the periodic stability of gaits [8–14]. To analyze stability
in IAJR, Poincaré Map and Floquet Theory will be used [15,16]. The stability analysis will
show that the controller proposed in this paper stabilizes the periodic response of the
Basketball robot.

The jumping robot design provided in this paper is derived from Pony robots [17,18].
The Pony robot is capable of multiple modes of locomotion. The Tapping robot is only
able to tap. This allows us to focus on controlling this mode of locomotion. The electronic
components and mechanical components of IAJR have been advanced in this version.
Pony robots suffered from a few limitations. For the first limitation, they used a simple
linear PID controller. This works well for Pony robots because the rotational velocity of
the spinners is far below the saturation speeds of the motors. This means that there is
sufficient power to overcome the nonlinearities with linear controllers. In this paper, we
use an adaptive feedback system identification to estimate the dynamic parameters of the

Actuators 2021, 10, 114. https://doi.org/10.3390/act10060114 https://www.mdpi.com/journal/actuators

https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-3339-0802
https://orcid.org/0000-0002-8593-4587
https://doi.org/10.3390/act10060114
https://doi.org/10.3390/act10060114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/act10060114
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act10060114?type=check_update&version=2


Actuators 2021, 10, 114 2 of 24

spinners, friction in gears associated with the spinners, and motor parameters. Then, a
feedback linearization is used to overcome the effect of nonlinearities on the system. To the
best knowledge of the authors, no one studied the application of this type of controller on
inertial actuation robots.

Another area of improvement for Pony robots is the actuation force. Pony robot’s
locomotion is generated by spinners through springs. The spring stiffness of Pony III
robot [18] is sufficiently low such that the springs can be fully collapsed and generated
repetitive impacts with the walking surface. We discovered that using stiffer springs
would eliminate ground impacts and energy losses associated with it. In supplementary
video 3, one can observe that the springs do not fully compress and there are no ground
impacts. The Pony robot has a spring stiffness of 700 N/m. The Tapping Robot in this
paper has a spring stiffness of 3600 N/m, which prevents impacts. The stiffer springs can
store over 4.14 times the energy of the Pony robot’s springs.

Biomimetic and Inertially Actuated Robots are not the only types jumping robots in the
field. Other means of jumping locomotion have been developed. One jumping mechanism
is to store energy in a spring and release it all at once for an explosive jump. Examples of this
are the 7 g Miniature robot [19] and the Jollbot [20]. The problem with spring mechanisms
of this type is that one cannot generate multiple jumps without having to recompress.
Another jumping mechanism is the use of fluid power. The Sandia Hopper [21] uses
compressed gas to generate very powerful jumps. However, this requires a heavy external
gas tank to work. The IAJR provides a solution to these issues. Our robot can generate a
consistent sequence of jumps, taking advantage of the inertial actuation.

This paper, learning from the behavior of previous inertially actuated robots, develops
a new Tapping Robot that has a significantly improved control system. Accordingly, the
following three robots are considered:

1. Fixed Pivot A “spinner” is simply a pendulum. As the pendulum rotates, the inertia
creates reaction forces at the pivot point. These reaction forces allow IAJR to move.

2. Basketball Robot Kashki et al. [22] introduced the first nonlinear controller for the
Basketball Robot. The robot was mounted on a vertical guide to fix the main assembly to
vertical motion only. Kashki’s Basketball robot is controlled in experimentation.

3. Tapping Robot Following the controller design from the “Basketball Robot”, the vertical
actuation is fixed to a frame to test the controller’s dynamics with a robot that can move
both vertically and horizontally. The resulting robot is called a “Tapping Robot”, which
can jump on a hybrid nonlinear path.

First, we derive the equations of motion of these three robots. We carry out a frequency
analysis of the models of the Basketball and Tapping robots whereby we compute the
spinner’s resonant frequency and the spinner’s frequency for which the robot transitions
to the flight mode. These frequency analyses set the stage for our controller design.

We use a Feedback-Linearization Controller on the Basketball and Tapping Robots. A
Feedback-Linearization Controller, here, provides enormous simplification of the real-time
implementation of controlling the robot. For these robots, there exists two general phases:
One phase is when the robot’s springs are in contact with the ground. A second phase is
when the robot’s springs have lost contact with the ground and it is in “flying mode”.

For this controller to work, two sub-controllers are introduced. The first sub-controller
is an off-line parameter identification scheme. The second sub-controller is based on a
partial-feedback linearization approach. The parameter identification is needed to properly
run the partial-feedback linearization. These two sub-controllers allow for better control
of the spinners that power the jumps. Furthermore, this controller can cancel out the
effect of discontinuities that result from loosing contact with the ground. Simulations and
experimental results are used to verify the performance of these controllers. The control
action leads to over a fourfold increase in the maximum jumping height of the Basketball
Robot, verified by simulations [22]. The new controller enables the Tapping Robot to travel
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about 2.5 times faster than previous designs [18]. This increase in performance was verified
by experimentation of the Tapping Robot and experimentation of the Pony Robot .

The novelty of this presented work is the treatment of a jumping robot as a hybrid
system. The discontinuity that results from switching between the ground contact and
flying modes is eliminated by artificially introducing spring contact forces into the robot
while in flight mode. These implementations of feedback linearization leads to stable
periodic orbits for the Basketball and the Tapping robots with significantly improved
jumping heights and progression speeds.

The research objective is to create a general controller that can regulate the locomotion
of Inertially Actuated Jumping Robots. The expected results are to be able to specify
a desired speed and/or jump height and the controller ensures the desired values are
achieved. The novelty of the study is the use of a feedback linearization controller and an
off-line parameter identification scheme to regulate the dynamics of Inertially Actuated
Jumping Robots. We have demonstrated numerically as well as experimentally significant
improvement in performance as a result of this approach.

2. Dynamics of The System
2.1. Equations of Motion

To derive the equations of motion, let us apply the Newton–Euler Method. A space-
fixed reference frame (XY) is defined (see Figure 1).

θ

Y

X

ψ

Ry

Rx
τ

lP

mP,IP

mP g

Figure 1. Robot’s spinner free body diagram.

2.1.1. Fixed Pivot

The equations of motion for the spinner are

θ̈ =
τ + (−g + ÿ) lP mP sin(θ)− lP mP cos(θ)ẍ

l2
P mP + IP

(1)

Ry =−mP(g + lP cos(θ) θ̇2 + sin(2θ) ẍ + cos(2θ) ÿ

+ lP sin(θ) θ̈) (2)

Rx =mP(lP sin(θ)θ̇2 − cos(2θ)ẍ + sin(2θ)ÿ− lP cos(θ)θ̈) (3)

where, lp, mp, IP, {x, y}, θ, and {Rx, Ry} are spinner length, spinner mass, spinner rotational
inertia, spinners pivot point position coordinates, spinner angle with respected to main
body, and reaction force between the spinner and the main body, respectively. In a fixed
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pivot, the accelerations of the pivot point of the spinners (ẍ, ÿ) are zero. We should note
that in this case, the main body tilt angle (ψ) is zero.

The input of motor can be expressed as [23]

τ =
η Rg

Ts
(Vb

u
100

Kv − Rg θ̇) (4)

where η, Rg, Ts, u, Vb, and Kv are motor efficiency, motor gear ratio, speed/torque gradient,
input PWM signal to motor driver ∈(−100%,100%), battery voltage, and motor speed
constant, respectively. To control the motor, the user sends in a percentage of the total
voltage. In a feedback linearization control scheme, an accurate of model is needed.

2.1.2. Basketball Robot

The spinner is attached at the center of mass of the robot, and the motion of the
assembly is restricted in the vertical direction. The reaction forces Rx and Ry act on the
center of mass (see Figure 2). The actuating pendulum has not been depicted in the figure
in order to simplify the presentation. Instead, the inertial actuator is represented by the
two reaction forces Rx and Ry. The equation of motion for the Basketball Robot is

mm ÿm + (b ẏm + k ym)Sc + mm g = Ry (5)

where mm, ym, b, k, and Sc ∈ {0, 1} are the main body mass, main body y-position, spring
damping constant, spring elastic constant, and spring contact switch, respectively. The
spring is assumed to become a rigid body while the robot is in flight. Inertial deflection of
the spring while in flight is negligible.

x

y

Rx

Ry

mm, Im

ym
k, b

mm g

Figure 2. Basketball Robot free body diagram.

For the rest of this subsection, let us assume the basketball robot never leaves the
ground and is in ground contact (Sc = 1).

In analysis of the Basketball Robot, changing the states given by the Newton–Euler
method to the states θ̈ and ÿg can facilitate development of analysis. By definition of the
center of mass y-position as

yg = ym − ym0 −
lP mP cos(θ)

mm + mP
(6)

ym0 = Ls −
g(mm + mP)

k
(7)

where Ls is the uncompressed spring length. We define a new state ξ as

ξ = ym − ym0 (8)
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Let us assume the Basketball Robot has reached a constant angular velocity. This
would mean that any acceleration effects are negligible. The dynamics of the Basketball
Robots height can be rewritten as

(mm + mp) ξ̈ + b ξ̇ + k ξ = lP mP cos(θ) θ̇2 (9)

With the fact that the ideal angular velocity of the spinner, ωd, is constant, at the ideal
steady state, Equation (9) becomes

(mm + mp) ξ̈ + b ξ̇ + k ξ = lP mP cos(ωd t)ω2
d (10)

Equation (10) mathematically shows what has been intuitively understood. The rota-
tional velocity of the spinners creates a sinusoidal input in the spring–mass–damper system.
In a linear system, according to Bounded Input Bounded Output (BIBO), a sinusoidal input
creates a sinusoid output. The closer the frequency of the input to the resonant frequency
of the output, the greater the response is obtained. Equation (10) is an ordinary linear
differential equation. Let us assume the following initial conditions:

ξ0 = 0; ξ̇0 = 0; θ0 = 0 (11)

The steady-state solution ξs is

ξs = ξm sin(ωd t + φ) (12)

ξm =

√
l2
P m2

P ω4
d

b2ω2
d + (k− (mm + mP)ω

2
d)

2
(13)

φ = tan−1

(
k− (mm + mP)ω

2
d

b ωd

)
(14)

Using the first and second derivative tests, the resonant frequency ωr is

ωr =
k√

−(b2/2) + k(mm + mP)
(15)

To find the maximum response ξr for the system, we substitute the ωr into ξm:

ξr =
2k lP mP

b

√
1

4k(mm + mP)− b2 (16)

Using the parameters from the Basketball Robot [22], the theoretical maximum re-
sponse is at 25.7 rad/s, with a maximum response amplitude of 0.274 meters (Figure 3).
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ξ
(m

)

Figure 3. The relationship between the magnitude of the steady state response and the desired
rotational velocity of the spinner.

At large responses, this analysis fails because the inertial forces are large. However, at
low frequencies, this analysis can be used to identify what frequency will cause the robot
to start jumping or whether the robot will jump at all. If we set the steady state response of
Equation (15) to the spring length (horizontal dashed line in Figure 3), then we can find the
critical frequency, which will cause the robot to start jumping. For the Basketball Robot,
ωd > 17.4 rad/s.

2.1.3. Tapping Robot

We are assuming that there are two conditions. The first condition occurs when the
back pivot point of the robot (see Figure 4) is fixed and Ẋm = 0. The second condition
occurs when the robot’s back pivot point is sliding and has overcome static friction at
the back pivot point. The case where the back pivot point loses contact with the ground
is ignored as most of the dynamics occur near the springs. Initial experimentation and
simulation did not show the back pivot point loses contact with the ground. Therefore, we
chose to adopt this simplification.

mm ,Im

X

Y

ψ

Xm

R y

Rx

hp

hm

lm

lS

FN

Ff

τ
mm g

Fs

Figure 4. Tapping Robot’s free body diagram (FBD).

The constant angular velocity assumption can be applied to Tapping Robot when
Ẋm = 0. The following transformations, symbolic calculations, and linearization are
applied to the dynamics of Tapping Robot in this condition:

1. Set θ̈ and τ to be zero because in the constant angular velocity assumption, the angular
acceleration is zero, and, accordingly, the input torque is zero.

2. Replace θ̇ as ωd, which is the desired angular velocity achieved at the ideal steady state.
3. Replace θ as ωd t because the angular velocity is constant.
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4. Linearize the dynamics of Tapping Robot in the no sliding mode about ψ = 0 because
this is approximately the static equilibrium state for Tapping Robot.

The steps above produce a linearized version of the Tapping Robot. The transient
response is ignored because the focus of this analysis is in the steady state. Applying the
steps in constant angular velocity solution, the transition and resonant frequencies are
approximately 35.3 rad/s and 49.0 rad/s, respectively.

3. Controller Design

The control scheme that will be used in this paper is based on a self-tuning adaptive
feedback linearization approach with parameter identification.

3.1. Off-Line Spinner Parameter Identification

The success of Tapping Robot controller in this paper depends on the accuracy of the
estimated parameters of the partial feedback linearization. The first step in estimating
the required parameters is to find the parameters isolated to the spinner. To find these
parameters, a self-tuning adaptive controller is used. One advantage of the control scheme
provided in this paper is that angular acceleration is not used. The desired trajectory of the
spinners is a constant velocity. Therefore, only terms in the spinners’ dynamics that affect
the steady state angular velocity are required to be known. We assume the spinner’s pivot
is fixed and the dynamics of the spinner given by

(IP + l2
p mp)θ̈ + lp mp g sin(θ) = τ (17)

In experimentation, there is an offset of origin for θ, such that θ = θ̂ + δθ. The
dynamics can be expanded as follows:

sin(θ̂ + δθ) = cos(θ̂) sin(δθ) + cos(δθ) sin(θ̂) (18)

Substituting the offset into the dynamics and solving for u signal from the MCU
(microcontroller unit), in Equation (4), as the input:

φT f = u (19)

φ =


I∗p

C1C2
Rg
C2

g lp mp cos(δθ)
C1C2

g lp mp sin(δθ)
C1C2

; f =


θ̈
θ̇

sin(θ − δθ)
cos(θ − δθ)

 (20)

where

C1 =
ηRg

Ts
; C2 =

Vb
100

Kv; I∗p = Ip + l2
pmp (21)

We should note that δθ is an experimental sensor angle offset. Let us consider the
following lemma [24]:

Lemma 1. Consider two signals e and φ related by the following dynamic equation:

e = H(s)(k φT v) (22)

where e is a scalar output signal, H(s) is a strictly positive real transfer function, k is an unknown
constant with known sign, φ is an m× 1 vector function of time, and v is a measurable m× 1
vector. If the vector φ varies according to

φ̇ = −sgn(k) γ e v (23)
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with γ being a positive constant, then e and φ are globally bounded. Furthermore, if v is bounded,
then e→ 0 as t→ ∞.

Let us define the input u as
u = φ̂

T f − λ e (24)

where φ̂ as the estimation vector of φ. λ is the proportional gain in the adaptive controller.
This gain is tuned such that lead the estimate states converge in minimum time. The error
e can be given as follows:

φ̂ =


0
â2
â3
â4

; e = ˙̂θ −ωd (25)

Note that âi ; i : {2, 3, 4} is the estimation of each element of the vector φ in Equation (20).
â1 is neglected because the desired response is a constant velocity. When e→ 0, the θ̈ → 0.
Therefore, â1 is not important for the desired response and can be left out. By substituting the
input in Equation (24) into (19), we have

λ e = φ̃
T f (26)

where
φ̃ = φ̂−φ (27)

Let us define an adaptation law:

˙̃φ = −γ e f (28)

where

γ =


0 0 0 0
0 γ1 0 0
0 0 γ2 0
0 0 0 γ2

 (29)

Here, the components of γ are the feedback gains of the adaptation law and γ2 is
repeated because the adaptation of â3 is very similar to â4, as the sinusoidal function is the
cosine function with a shift of π

2 . Therefore, the difference in learning settling time of â3
and â4 should be insignificant.

Lemma 1 can be applied to this controller. Let H(s) = 1
λ , k be selected as unity, and f

be v. The proportional gain, λ can be moved to the right hand side of Equation (26):

e =
1
λ

φ̃
T f (30)

Which becomes
e = H(s)(kφ̃

Tv) (31)

Next, let φ̃ in Equation (26) be φ in Equation (22) in Lemma 1. Therefore, Equation (26)
is mathematically equivalent to Equation (22). Furthermore, the adaptive gains in γ are
positive. Therefore, Equation (28) is mathematically equivalent to Equation (23) in Lemma
1 and θ̇ → ωd as t → ∞. Even more importantly, because θ̇, sin(θ), and cos(θ) are
independent of each other, having a desired trajectory that is a constant speed results in
a convergence of φ̂ to the actual parameters of φ, excluding the first element. By using
this controller, off-line of the actual operation, the parameters for the partial feedback
linearization of the control law in Equation (24) can be estimated.
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3.2. Partial-State Feedback Linearization Controller Design During Contact Mode

To reach a practical steady state, a state feedback linearization must be used to cancel
out the significant nonlinearities.

Let us consider that the robot is in contact with the springs. In Section 3.1, we found
the parameters dependent only on the spinner. With φ̂, we can cancel out the spinner-
dependent nonlinearities. A block diagram of this feedback linearization controller is
shown in Figure 5 ([25]), where

uv = λk(ωd − θ̇) (32)

u = φ̂ f − uv (33)

where λk is the controller gain, uv is virtual input after linearization, and f is the system
model equation.

Assuming that we have perfect knowledge of the parameters of the system and the
accelerations of the body (Ẍb,Ÿb) are insignificant, the spinner’s dynamics become linear.
At steady state, the response in Equation (15) can be used. The case where the back pivot
point looses contact with the ground is ignored as the majority of the dynamics occur near
the springs. The initial experimentation did not show the back pivot point loose contact
with the ground.

+
, , ̇

̇

̇
-

Figure 5. Spring Contact Basketball Robot Controller.

3.3. Spring Compensator Design

When ground contact is lost and the robot is in flight, the force created by the springs
disappears from the dynamics. This is a discontinuity that causes a lost of input/output
resonance. We artificially reintroduce, through the controller, the spring forces to restore
resonance (as discussed in Section 2.1.2). To do so, first, we solve Equations (1), (2), and
(5) for θ̈ in both modes. The corresponding dynamical equation of θ̈ for contact and flying
modes are given as follows:

θ̈c = Ir(τ +
l2
pm2

p sin(2θ)θ̇2

2(mm + mp)
−

lpmpk(Ls − ym) sin(θ)
(mm + mp)2 ) (34)

θ̈ f = Ir(τ + SP +
l2
pm2

p sin(2θ)θ̇2

2(mm+mp)
)

Ir =
2(mm+mp)

2mm(Ip+l2
pmp)+mp(2Ip+l2

pmp)+l2
pm2

p cos(2θ)

(35)

where SP is a “spring compensator” that will restore resonance. Now, we set θ̈c = θ̈ f and
solve for SP.

SP =
k lp mp(Ls − ym) sin(θ)

mm + mp
(36)
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Due to the fact that this system is highly nonlinear, the performance of the spring
compensator can only be fully analyzed by numerical simulations. This leaves the final
feedback linearization controller for the Basketball Robot (Equation (33)):

u = φ̂ f + (1− Sc)
k lpmp(Ls − ym) sin(θ)

mm + mp
− uv (37)

The parameters are found off-line. The parameters for φ̂ are found using the adaptive
feedback system identification from Section 3.1. The parameters for the spring compensator
are found by tuning.

3.4. Controller Applied to Tapping Robot

A shortcut to the feedback linearization designed in the previous section is to simply
replace the spring force term in the spinner dynamics with a virtual spring force, when the
springs have lost contact with the ground. In order to do so, the following design algorithm
must be used:

1. Assign two different systems. The first system, θ̈c, is the dynamics of the spinner,
while in contact with the ground. The second system, θ̈ f , is the dynamics of the
spinner, while the springs are not in contact with the ground.

2. Define the input as
u = φ̂ f + (1− Sc)SP − uv (38)

3. Substitute the input into the two systems, with Sc defined accordingly.
4. Solve for SP.
5. Set the damping constant to zero in the solution because we are not measuring ψ̇.

For Tapping Robot, with the parameters substituted (Appendix A Table A2):

SP =

− 6250(tan(ψ) + 0.0560)(−2.76 sin(θ) + cos(θ)− 0.978)
−2.76 sin(θ) + cos(θ)− 132

(39)

4. Simulation Results

Mathematica’s NDSolve function was used for numerically solving the differential
equation. All options were used at their default setting. The sensor feedback and control
law was continuous.

4.1. Off-Line Spinner Parameter Identification

In the simulation of the off-line parameter identification, the parameters for the
spinner in Tapping Robot were used (See Appendix A Table A2). Other parameters include
γ1 = 0.02, γ2 = 0.2, λ = 10, and ωd = 5 rad/s. Figure 6a–d shows the convergence of
the spinner’s error to zero and the estimated parameters. â2 and â3 are the gravitational
terms, composed of the sin(θ) and cos(θ), respectively. â4 is the back electromotive force of
the motor.
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Figure 6. Simulation Results for Convergence of Parameters.

4.2. Basketball Robot Simulation Results

The simulation section of the Basketball Robot is structured according to increasing the
sophistication of the controller design until the jumping of the Basketball Robot is stabilized.

4.2.1. Effects of Partial Linearization

Let us first analyze the dynamics of the Basketball Robot while it is in contact with the
ground. We show the results of the Basketball Robot when the partial linearization term
φ̂ f term is ignored and activated in the controller. For the simulations in Figure 7, the
blue curve is the response of the Basketball Robot when the partial feedback linearization
is ignored, and the green curve is when it is activated. At higher speeds, other nonlinear
terms emerge to effect its performance.
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Figure 7. Attached to ground, Spinner Response.

4.2.2. Response at Resonant Frequency

When we change ωd to 25.7 rad/s, which is the resonant frequency (ωr) calculated
from Equation (16), we get the response for the spinners velocity and ym in Figures 7c and 8c.

Furthermore, Figure 7c depicts how much the actual spinner velocity deviates from
the model. In this case, the spinner has a maximum error of 2.79 rad/s or 12.2% of the
modeled response. Figure 8c shows how much the actual ym deviates from the model. The
red line is the maximum response amplitude calculated from Equation (16). One can see
that the Basketball Robot greatly outperforms the model. The robot has a maximum error
of 0.0638 m and 28%. This shows that at a certain point, the rotational acceleration of the
spinners, as an input to the ym dynamics, adds to the response. Therefore, to calculate the
expected response, numerical simulations must be performed.
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(c) Basketball Robot at the resonant frequency

Figure 8. Attached to ground, Basketball Robot Response.

4.2.3. Effects of Partial Linearization, Jumping, With No Spring Compensation

Now, we let the Basketball Robot loose contact with the ground. In Figure 9a, λk = 10,
and ωd is the resonant frequency calculated from Equation (16). There appears to be an
unpredictable oscillation of jumps.

4.2.4. Full Controller Response

Let us simulate the Basketball Robot with the same parameters as the simulation in
Section 4.2.3, but now with the spring compensator.

Figure 9b shows the stable oscillations in steady state condition. The maximum spring
deflection, at steady state, has an amplitude of 0.047 meters. As one can see in Figure 8c,
maximum spring deflection occurs using the resonant frequency and it is 0.133 meters.
This means that the spring should be able to store more energy at the resonant frequency.
We can try adjusting λk. Let us set λk to 0.1 and Figure 9c shows the response. Figure 9d
shows the stable periodic oscillations achieved by this controller. Notice that the variables
in Figure 9d are in terms of the center of mass.
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(c) With virtual spring λk = 0.1.
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Figure 9. Basketball Jump Response.

We can claim that by changing λk, we can change the performance.
Figure 10 was obtained by simulating the system at its resonance frequency and

varying λk between 0 and 0.13, and calculating the maximum response in the last two
seconds of the simulation. The last two seconds were arbitrarily chosen to be in steady state
condition. There is a monotonically increasing relationship from the point the robot begins
to jump and its maximum at λk = 0.13. As a side note, one can adjust both λk and ωd to
theoretically achieve bigger jumps, but this is not physically feasible. Ignoring physical
limitations, simulations show this controller can achieve a jump height of 0.86 meters (see
Figure 11).

Figure 10 can be used to prescribed the jump height of the basketball robot by choosing
the appropriate values of λk. This is the desired response of the Feedback Linearization
Controller applied to the Basketball Robot.
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Figure 10. Basketball Robot Response Curve, ωd = 25.7.
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Figure 11. Basketball Super Jump Response, λk = 0.105 and ωd = 45.

4.3. Stability Analysis

In this section, we analyze the stability of the system in neighborhoods of equilibria.
In this regard, we use Poincaré Map and Floquet Theory. Because the closed form analytic so-
lution of differential equations of motion is not available, numerical integration is used [13].
Let q(t) be the the periodic solution of the equations of motion for all states. The simplified
hyperplane of the Poincaré section can be defined as

S = (ym, θ, θ̇) ∈ R3; ẏm = 0 (40)

If q[k] ∈ S denotes the kth intersection of S by the flow of q(t) the discrete-time
Poincaré Map P : S→ S can be expressed as

q[k + 1] = P(q[k]) (41)
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Subsequently, if q∗ stands for the fixed point of the Poincaré Map, then the local
exponential stability of q∗ on S is equivalent to local exponential stability of the underlying
limit cycle. We used Floquet Theory for stability analysis of limit cycles [15,16]. In this
regard, the local linearization of the Poincaré Map about its fixed point yields

P(q) ' J(q∗)(q− q∗)

J =
∂P(q)

∂q
(42)

where J is 3× 3 linearized Jacobian matrix of P

J = [Ji,j]; Ji,j =
∂P

∂qi
(43)

Then, the floquet or characteristic multipliers ρi’s are defined as eigenvalues of the
Jacobian matrix J

ρi = ‖λi‖; λi = eig(J) (44)

where, ρi and λi are the ith characteristic multiplier and Jacobian matrix eigenvalue, re-
spectively, and “‖ ‖” is the modulus operator. Therefore, the limit cycle stability can be
identified by Floquet multiplier metrics as

q(t) =


stable ∀‖ρi‖ < 1

marginally stable ∀‖ρi‖ = 1
unstable ∀‖ρi‖ > 1

(45)

As Kashki et al. [22] showed, the system has periodic motion, we can use the Poincaré
Map and Floquet Theory. The Floquet multipliers associated with the corresponding Poincaré
map for the simulations are calculated numerically as:

ρ1 = ‖λ1‖ = 0.3866 < 1

ρ2 = ‖λ2‖ = 0.0425 < 1

ρ3 = ‖λ3‖ = 0.0087 < 1 (46)

All norms of characteristic multiplier of the system are less than one, which means
that the limit cycle is asymptotically stable.

4.4. Tapping Robot Simulation Results

The following are the results of the dynamics and controller provided in this paper for
Tapping Robot.

Figure 12 depicts the response of Tapping Robot, when the robot is run at the transition
frequency ωd = 35.3, and λk = 0.5625, and also the response at the Pseudostable condition
which is ωd = 39 and λk = 0.003. In simulation, the spring compensator approach did
not lead to stable periodic orbits. Therefore, for the results shown, the partial feedback
linearization of Equation (38) was used with Sc = 1. For the feedback linearization scheme,
however, a value of ωd = 39 rad/s has led to a stable limit cycle. The response reaches
steady state at 6.5 s. As desired, a stable periodic progression of the Tapping Robot has
been achieved.
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Figure 12. Tapping Robot Simulations.

5. Experimental Setup
5.1. Mechanical Components

In Figures 13 and 14 are photographs of the Tapping Robot. The main components
of Tapping Robot are the spinners, the frame, and the springs. The spinners were custom-
machined to be interchangeable with different masses. In the experiment, two 104 gram
brass weights were locked onto two 3′′ 10–32 machine screws. The two spinners were
coupled together inside the gearbox, such that they spin together, essentially creating a
single spinner. Inside the gearbox, there are miter gears linked together. The back miter
gear connects to an incremental encoder with an index. The middle miter gear connects to
the spinner. The front miter gear connects to the motor. The frame came from an aluminum
erector set. The springs are custom made oppositely wound springs with a total spring
constant of 3600 N/m (Hanson Springs, Dallas, TX, USA). The two springs have opposite
windings to cancel out any moments created by their compression. The free length and the
outer diameter are 127 mm and 49.2 mm, respectively.

The rotational sensor is a model GHS38-6G1024BML5 rotary encoder (CALT, Baoshan
District, Shanghai, China) . The encoder has an 6mm shaft and 1024 Pulse/Revolution
resolution. This creates a 0.0879◦ resolution using a quadrature decoder function on the
Due microcontroller (Arduino, Ivrea, Italy). The encoder has an index output triggered
every revolution. This prevents a drift in the position reading. The encoder is linked to the
system through the miter gear.

The miter gears are 25 Teeth, 1 Module, ISO 8 /Brass Miter Gears(SDP\SI, Hicksville,
NY, USA) . They are greased to reduce vibrations. The middle miter gear is secured to the
shaft with a setting screw coated in Loctite 242.
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Figure 13. Top view of robot.

Figure 14. Isometric view of experimental set up.

Due to the high torques required in the robot, the A-max 32, Graphite Brushes, 15
Watt, with terminals was selected (Maxon Motor AG, Sachseln, Switzerland). To increase
the available torque, the motor was attached to a Planetary Gear-head GP 32 A Ø32 mm,
0.75–4.5 Nm, Metal Version. The motor has a nominal voltage of 12 volts; a no-load speed
of 4680 rpm; stall torque of 101 mNm; and a maximum efficiency of 77%. The gearbox has
a gear ratio of 5.8:1; a maximum continuous torque of 0.75 Nm; and a maximum efficiency
of 80%.

5.2. Electrical Components

In Figure 15 is the electrical circuit diagram of the Tapping Robot. The entire controller is
run on an Arduino Due. All digital pins have interrupts for encoders. To power the robot a
Turnigy Graphene 1300mAh 3S 45C LiPo Pack w/ XT60 is used (HobbyKing, Kowloon, Hong
Kong, China). The lithium polymer has an operating voltage of 9 to 12.6 volts. The power
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is sent from the batteries to the motor driver. The motor driver used is a G2 High-Power
Motor Driver 18v17 (Pololu Corporation, Las Vegas, NV, USA). The motor driver can provide
a continuous output current of 17 Amps. A RC Receiver is added to provide direct control of
the robot. Navigation is controlled by the user through the RC transmitter/receiver. The RC
transmitter is the FS-T6 6-channel transmitter and the RC receiver is the FS-R6B 6-channel
receiver (Shenzhen Flysky Technology Co.,Ltd., Shenzhen, China).
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Figure 15. Electrical schematic.

5.3. Data Acquisition

The data gathered for the Tapping Robot experiment was captured by a RX100V
point-and-shoot camera (Sony, Minato City, Tokyo, Japan) for a 2 dimensional image. The
video was shot at 70 mm 35 mm-equivalent focal length. The video was shot at 960 fps
and 1920 × 1080 pixel resolution. The data gathered for the fixed spinner experiment were
captured a direct serial com-port to a computer.

6. Experimental Results
6.1. Off-Line Spinner System Identification

One assumption of the model for the spinner is that the spinner is fixed at its pivot
point. Therefore, in performing the off-line spinner parameter identification (Section 3.1),
the frame of robot was fixed to a table.

Three different experiments were run with different initial conditions. The curves
corresponding to each set of initial conditions is shown in Table 1.
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Table 1. Spinner System Identification Initial Conditions.

Experiment No. 1 2 3

â2[0] 0 10 30

â3[0] 10 20 30

â4[0] 0 0 2.3

Results

Figure 16 shows the convergence of the spinner’s error to 0 and the estimated pa-
rameters. According to the specifications of the Maxon motor, the speed constant is
1.165%/(rad/s). However, as shown by the plot, the controller levels off at 2%/(rad/s).
Other experimentation showed that there exists a friction force that is constant and not
related to the angular velocity. This results in a steady-state error for the estimated speed
constant. One can see the video of this experiment as a Supplementary Material to this paper.
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0 100 200 300 400 500
0
5
10
15
20
25
30
35

Time (seconds)

a4
(%

)

(c) â4.

Figure 16. Experimental parameter convergence.

6.2. Tapping Robot

The Tapping Robot was run at ωd = 36 rad/s and λk = 0.5625. The experiment in
Figure 17 shows a steady forward progression of Tapping Robot. This is the desired result
of this paper and shows the controller has been successful. In comparison to the simulation
in Figure 12b, the robot has a stronger periodic oscillation in its progression. This can
be seen in the velocity plot in Figure 18. In the simulation, Tapping Robot’s velocity is
never negative, where as in the experiment, the robot slides forwards and backwards.
One can see the video of this experiment as a supplementary material to this paper. Like
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the simulation, the partial feedback linearization of Equation (38) was used with Sc = 1.
The spring compensator was not active because the sampling rate of the rangefinder was
insufficient for successful controller action.
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Figure 17. Experimental Horizontal Progression of Tapping Robot.
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Figure 18. Experimental Horizontal Velocity of Tapping Robot.

7. Discussion

While inertially actuated jumping robots promise speed and maneuverability, the
work in this paper shows the complexity for controlling them. In research of IAJR up to
this point, basketball robots and tapping-like robots have been achieved and controlled.
The previous controller applied to the basketball robot achieved a maximum jump height
of 0.18 m. As shown in simulations, the controller in this paper achieved a jump height
of 0.25 m. This is a 39% increase in response. The previous controller applied to a similar
tapping-like robot achieved a forward progression speed of 0.045 m/s. The tapping robot
presented in this paper, with the new controller applied, achieved a forward progression
speed of 0.157 m/s. This is a 249% increase in performance. This paper stays consistent
to previous concepts presented by our lab, but builds on it with simpler controllers and
higher performance.

However, the improvements of the family of controllers presented in this paper are
not only quantitative, but also structural. In [22], the adaptive controller for the Basketball
robot requires a complicated control algorithm. This algorithm involves a predictive
timing of when the robot will return to the ground. This method is subject to errors. The
feedback linearization controller has no predictive measurements and is simpler. The input
variables only needed for the feedback linearization are θ, θ̇, and ym. All of which require
no predictions. The structural advantage of the feedback linearization controller to the
controllers used on the Pony robot is also simplicity. The two previous controllers were a
PID controller and a sliding mode controller. The issue with the PID controller is it does not
account for nonlinearities. Obviously, the feedback linearization controller does. Finally,
the sliding mode controller requires a sliding mode term in the dynamics to account
for parameter uncertainty. Because the parameters are identified offline, the feedback
linearization controller does not need a sliding mode term and is simpler and faster.
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There is more future work to be done. The model of the Tapping Robot requires
improvement as well. Experiments showed that the back end of the robot does not stay in
contact with the ground for all times. However, this is not the case for simulation. This
may be the cause of the disagreement between the experimental and simulation results.
Due to a slow range finder, the spring compensator was not able to be implemented in
the experiment. A faster rangefinder needs to be developed and selected. A robust term
needs to be added to this controller, as feedback linearization controllers are sensitive to
parameter errors.

Another issue is the synchronization of the spinners in IAJR to locomotion. The
periodic motion of the locomotion is dependent on the spinners inertial forces being
applied in sync with the movement. This transient dynamic is outside the scope of this
paper and should be investigated further.

Once Tapping Robot’s dynamics are better understood and controlled, then IAJR can
be extended to more complex designs, such as the designs introduced in [17].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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Appendix A. Simulation Parameters

Table A1. Basketball Robot parameters.

Parameter Value Unit Parameter Value Unit

mp 0.4 Kg Ls 0.125 m
mm 1.4 Kg η 0.625 -
lp 0.08 m Kv 93.2 rad/(s.V)
IP 0 Kg.m2 Rg 35 -
k 1182 N/m Ts 2104.9 rad/(m.N.s)
b 5 N.s/m Vb 12.6 V

https://www.mdpi.com/article/10.3390/act10060114/s1
https://www.mdpi.com/article/10.3390/act10060114/s1


Actuators 2021, 10, 114 23 of 24

Table A2. Tapping Robot parameters.

Parameter Value Unit Parameter Value Unit

mp 0.167 Kg b 5 N.s/m
mm 1.62 Kg Ls 0.087 m
lp 0.042 m µs 0.3 -
IP 0.0004 Kg.m2 µk 0.25 -
Im 0.015 Kg.m2 δθ 0.4485 rad
ls 0.0635 m η 0.8 -
lm 0.305 m Kv 41.47 rad/(s.V)
hm 0.107 m Rg 5.8 -
hP 0.003 m Ts 4921.83 rad/(m.N.s)
k 3600 N/m Vb 11.6 V
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