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Abstract: A sealless pump, also known as a wet rotor pump or a canned pump, requires a stationary
sleeve in the air gap to protect the stator from a medium that flows around the rotor and the pump
impeller. Since the sleeve is typically made from a non-magnetic electrically conductive material,
the time-varying magnetic flux density in the air gap creates an eddy current loss in the sleeve.
Precise assessment of this loss is crucial for the design of the pump. This paper presents a method
for calculating the eddy current loss in such sleeves by using only a two-dimensional (2D) finite
element method (FEM) solver. The basic idea is to use the similar structure of Ampère’s circuital
law and Faraday’s law of induction to solve eddy current problems with a magnetostatic solver.
The theoretical background behind the proposed method is explained and applied to the sleeve of a
sealless pump. Finally, the results obtained by a 2D FEM approach are verified by three-dimensional
FEM transient simulations.

Keywords: eddy current loss; air gap sleeve; sealless pump; finite element method

1. Introduction

An electrical machine, either synchronous or induction, with an internal rotor and a
stationary sleeve fixed to the inner side of the stator is typically used as a sealless pump [1].
Optionally, an additional sleeve is mounted on the rotor to reduce the friction caused by
rotor cavities. Sealless pumps are used in circulating systems that require a leak-proof
enclosure, where glands and seals may not be reliable enough. Although such pumps have
clear advantages in hazardous applications, they face the challenge of finding a suitable
non-magnetic material for the sleeves. Since electrically non-conductive materials such as
carbon graphite may not be suitable in certain applications, materials with a low electrical
conductivity such as titanium, silicone steel, SUS304, SUS316L, Inconel 718, Hastelloy C,
or stainless steel 1.4571 might be used [2–4]. Regardless of the type of the machine, the
time-varying magnetic flux density in the air gap leads to substantial eddy current losses
in electrically conductive sleeves. These losses can significantly outweigh the copper and
iron losses, thereby reducing the efficiency of the machine. Thus, minimizing the eddy
current loss in each such sleeve should be the main focus of the design and optimization of
every sealless pump [4,5].

An assessment of the eddy current loss in thin electrically conductive sleeves can be
approached purely theoretically as in [6]. In this work the application of the field theory
leads to a classical boundary-value problem that accounts for the dimensions of the sleeve
and the length of the overhang. The eddy current loss problem is commonly formulated
numerically and adopted for use with boundary and finite element methods [7,8]. On the
contrary, in some cases a volume integral formulation using facet elements is translated
into an equivalent lumped element network as demonstrated in [9].
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Analytical models are typically fast to evaluate, but often lack accuracy due to some
geometrical assumptions and a limited number of spatial harmonics of the magnetic flux
density considered in the calculation of the eddy current loss. On the other hand, the two-
or three-dimensional (3D or 2D) finite element method (FEM) provides a variable accuracy
that depends on the number of finite elements employed in the calculation. As such, it can
provide a high accuracy at the expense of the computation time and complexity. This paper
tries to make a compromise between speed and accuracy by using a magnetostatic 2D FEM
solver while taking advantage of the similarity between the differential forms of Faraday’s
law of induction and Ampère’s circuital law for magnetostatics. The functionality of the
proposed method is demonstrated for a permanent magnet synchronous machine with em-
bedded rotor magnets. The main advantage of the proposed method is its easy integration
in the simulation workflow of genetic algorithms for multi-objective optimizations, such as
those in the System Model Space (SyMSpace) [10].

2. Theoretical Background
2.1. Structural Similarity of Ampère’s Circuital Law and Faraday’s Law of Induction

Ampère’s circuital law defines the relationship between the magnetic flux density (B),
the current density (J), and the electric field (E). Its differential form can be written as

∇× B = µ0J + µ0ε0
∂E
∂t

, (1)

where µ0 is the magnetic permeability of free space and ε0 is the electrical permittivity
of free space. The term ε0

∂E
∂t is also referred to as the displacement current. In electrical

machines this displacement current can be neglected if conductors with high electrical
conductivity σ are used, such that

σ� ωε (2)

applies, where ω denotes the angular speed. Therefore, the electromagnetic problem is
reduced to a magnetostatic one

∇× B = µ0J (3)

which can be easily handled by a finite element solver [11]. For a more efficient and smart
simulation workflow it is beneficial to be able to solve eddy current problems by using
a magnetostatic solver. Solutions of eddy current problems are obtained by solving
Faraday’s law of induction, which can be written in its differential form as

∇× E = −∂B
∂t

. (4)

Equation (4) describes a time-varying problem which cannot be directly solved by a
magnetostatic solver. Nevertheless, the structure of (3) and (4) can be generalized in the
form of

∇× x = y. (5)

Therefore, the solution of eddy current problems (4) can be evaluated using a solver
for magnetostatic problems (3). For this approach, the field quantities must be reassigned
according to

J = − 1
µ0

∂B
∂t

. (6)

After substituting J by the right-hand side of (4), the numerical value of the solution
of (3) refers to E instead of B.
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2.2. Calculation of Eddy Current Loss

The magnetic energy (Wm) can be obtained from the magnetic energy density (wm) in
the volume of the sleeve (V) as

Wm =
∫∫∫

V
wm dV. (7)

In general, wm can be obtained from the magnitude of the magnetic field strength (H)
as

wm =
∫ B

0
H(B′)dB′. (8)

In magnetically non-conductive materials used for the aforementioned sleeves, the
relationship between H and the magnitude of B (B) can be taken as B = µ0H, so that (8)
can be written in terms of B as

wm =
∫ B

0

B′

µ0
dB′ =

B2

2µ0
. (9)

Thus, if the solution of (3) obtained by a magnetostatic solver refers to E, then (7)
according to (9) can be expressed in terms of the magnitude of E (E) as

Wm =
1

2µ0

∫∫∫
V

E2 dV (10)

and solved by an FEM solver such as FEMM [11]. The eddy current loss (Pec) in V is
defined by Joule’s law based on E and the eddy current density (Jec) or either of them via
the electrical conductivity of the sleeve (σsl) as

Pec =
∫∫∫

V
E · Jec dV =

∫∫∫
V

E ·
(
σslE

)
dV

=
∫∫∫

V
σslE2 dV. (11)

Assuming constant σsl the magnetostatic solution of (10) can be combined with (11),
yielding

Pec = 2µ0σslWm. (12)

The attenuation of the changing excitation field caused by the magnetic field created
by the induced eddy currents that opposes the changing excitation field is neglected, which
in turn limits the application of this method to a certain frequency range. This limitation is
demonstrated in the simulation results.

3. Simulation Methodology

The proposed method is implemented in SyMSpace for the geometry shown in
Figure 1. Although in Figure 1 it can be seen that the machine has 2 pole pairs (pz) and
36 slots, the remaining machine parameters including the sleeve parameters are listed in
Tables 1 and 2.

Table 1. Machine parameters for Variant 1–3.

Parameter Symbol Variant 1 Variant 2 Variant 3 Unit

Lamination Stack Axial Length lFe 40 80 120 mm
Sleeve Axial Length lsl 40 80 120 mm
Nominal Power Pn 2000 4000 6000 W
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Table 2. Machine parameters.

Parameter Symbol Value Unit

Stator Outer Diameter dso 145 mm
Stator Inner Diameter dsi 85 mm
Sleeve Outer Diameter dslo 85 mm
Sleeve Inner Diameter dsli 84 mm
Air Gap δ 1 mm
Rotor Outer Diameter dro 82 mm
Rotor Inner Diameter dri 45 mm
Nominal Mechanical Speed nn 4000 rpm
Permanent Magnet N38EH
Sleeve Material ST1.4571

Since the axial length of the lamination stack (lFe) determines the nominal power
of the machine (Pn), the three variants listed in Table 2 were analyzed to determine the
influence of the axial length of the sleeve (lsl) on Pec.

To calculate Pec, evaluation points shown in Figure 1 are defined in the SyMSpace
project as coordinates at the mid radius of the sleeve (r̄sl =

(
dslo + dsli

)
/4) along its

circumference. Each evaluation point (pk) is defined based on r̄sl, the total number of
evaluation points along the circumference of the sleeve (K) that needs to be specified, and
the number of each evaluation point (k) as

pk = (xk, yk) (13)

=

(
r̄sl cos

(
2πk

K

)
, r̄sl sin

(
2πk

K

))
.

After being defined, the evaluation points are evaluated in SyMSpace by means of
FEMM. From the obtained results for B in the x and the y direction (Bx and By), the radial
component of B (Brad) at each evaluation point is calculated as

Brad,k = Bx,k cos(atan2(yk, xk)) + By,k sin(atan2(yk, xk)), (14)

while the tangential component of B (Btan) is calculated as

Btan,k = By,k cos(atan2(yk, xk))− Bx,k sin(atan2(yk, xk)). (15)

Based on (14) and (15), variations in Brad and Btan along r̄sl at the specified evaluation
points can be visualized, which for different load points is shown in Figure 2, where the
direct and the quadrature components of the stator current (isd and isq) are expressed in
terms of the nominal stator phase current (isn). For lsl = 40 mm isn amounts to 6.65 A,
while for lsl = 80 mm it amounts to 13.34 A, and for lsl = 120 mm to 20.46 A. The slotting
effects can be seen as the peaks in both Brad and Btan at the beginning and the end of each
pole shoe. Harmonic spectra of the waveforms of Brad and Btan in Figure 2 are shown in
Figure 3, where ho denotes the harmonic order.

Due to the negligible radial thickness of the sleeve, Brad is the component mainly
responsible for Pec. Hence, the partial derivative of B with respect to time in (6) refers to
Brad, which needs to be observed as a function of the electrical angular position of the rotor
(ϕe), as shown in Figure 4.
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Figure 1. The radial cross section of the observed machine with key parameters and an example of evaluation points at the
mid radius of the sleeve.
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Figure 2. Variations in Brad and Btan observed along the sleeve at r̄sl for ϕe = 0◦ at different load
points.
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Figure 3. Harmonic spectra of Brad and Btan for a single period of θm and ϕe = 0◦ at different load
points.
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Figure 4. Variations in Brad observed by θm = 0◦ at r̄sl during a single electrical rotation of the rotor
at different load points.

Based on ϕe and the electrical angular speed (ωe), which corresponds to the electrical
frequency of the rotating magnetic flux density in the air gap, the partial derivative of Brad
with respect to time can be calculated as

∂Brad
∂t

=
∂Brad
∂ϕe

dϕe

dt
=

∂Brad
∂ϕe

ωe. (16)

With the total number of evaluation steps per electric period (M) the partial derivative
of Brad with respect to the rotor angle can be approximated by

∂Brad,k

∂ϕe
≈
(

Brad,k,m+1 − Brad,k,m
)

2π/M
. (17)

For each pk, (16) can be written in terms of Brad, pz, the mechanical speed (n) and the
number of each evaluation step (m) as

∂Brad,k

∂t
=

∂Brad,k

∂ϕe

πnpz

30
≈
(

Brad,k,m+1 − Brad,k,m
)npzM

60
. (18)

After obtaining the partial derivative of Brad with respect to time, a new 2D magneto-
static problem in FEMM, in which the sleeve is unrolled as shown in Figure 5, is used for
the calculation of Pec.

2πr̄sl

lsl

Figure 5. The unrolled sleeve during the calculation of Pec in FEMM.

The sleeve is split up into small surface areas, each with the circumferential width
of 2πr̄sl/K and the axial length of lsl, as it can be seen in Figure 5. The sleeve can be
axially positioned, and lsl and lFe do not have to be equal. The eddy current excitation at pk
(iec,k) for the calculation of Pec in the new 2D magnetostatic problem in FEMM is obtained
based on the corresponding magnitude of Jec (Jec,k) in the surface area (A) between two
neighboring evaluation points according to (6) and (18) as
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iec,k = Jec,k A =

(
− 1

µ0

∂Brad,k

∂t

)(
2πr̄sllsl

K

)

≈ −πr̄sllslnpzM
30µ0K

(
Brad,k,m+1 − Brad,k,m

)
. (19)

Finally, the average value of Pec that represents the average 2D magnetostatic solution
of FEMM (P̄ec,2D) is obtained from the value of Pec at each evaluation step during a full
electric period (Pec,m) as

P̄ec,2D =
1
M

M−1

∑
m=0

Pec,m, (20)

where each Pec,m is obtained according to (12).

4. Simulation Results

Simulations were performed for K = 180 (evaluation points) and M = 72 (evaluation
steps), which in the presented case seemed like a good tradeoff between the accuracy and
the calculation speed. The results of P̄ec,2D for lsl of 40 mm, 80 mm, and 120 mm, at the
same load points for which Brad is presented in Figures 2 and 4 are listed in Table 3. In
Table 3 it can be noticed that using only isq increases Pec, while negative values of isd reduce
Pec. The latter implies that topologies with embedded magnets, which are suitable for field
weakening to use the reluctance torque, might be better suited for these applications.

Table 3. Simulation results of P̄ec,2D at 4000 rpm.

lsl isd isq P̄ec,2D

mm A A W

40 0.00 0.00 111.76
40 0.00 6.65 142.82
40 −6.65 6.65 109.64
80 0.00 0.00 483.71
80 0.00 13.34 614.02
80 −13.34 13.34 421.72

120 0.00 0.00 943.09
120 0.00 20.46 1196.63
120 −20.46 20.46 799.97

4.1. Verification of 2D Simulation Results by 3D Simulations

For a validation of the 2D simulation results obtained by the proposed method, the
2D model from SyMSpace was implemented as a 3D model in Ansys Electronics Desktop
2019 R3 (AED) [12] and used for 3D FEM transient simulations to obtain reference values
of Pec. Since it is sufficient to observe the no-load case, the AED model was simulated
without the stator windings by using both tangential and axial symmetry. That means
that a single pole over a half of the axial length of the machine was simulated, as shown
for lsl = 40 mm in Figure 6, to minimize the computation time. The distribution of Jec in
the sleeve (colored in teal in Figure 6) is shown for different values of lsl in Figure 7. The
transient 3D FEM simulation results of Pec (Pec,3D) obtained by AED at 4000 rpm for lsl of
40 mm, 80 mm, and 120 mm, are shown in Figure 8. To avoid the influence of the transient
character of Pec,3D in Figure 8, the mean average value of Pec,3D (P̄ec,3D) over the last half of
the electrical period of each characteristic was taken as the representative value of each
3D simulation. A comparison of the no-load results of P̄ec,2D listed in Table 3 with P̄ec,3D is
given in Table 4, where the average magnitude of Jec in V ( J̄ecV ) was obtained from AED,
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while the relative 2D percent error in Pec (ε2D) was calculated as

ε2D =
P̄ec,2D − P̄ec,3D

P̄ec,3D
· 100%. (21)

lsl/2lsl/2

r̄slr̄sl

Figure 6. The 3D AED model used for the calculation of P̄ec,3D in the sleeve.

The values of P̄ec,3D listed in Table 4 are smaller than P̄ec,2D because the transient solver
in AED takes into account the influence of the magnetic field created by the induced eddy
currents on the excitation field. From Table 4 can also be seen that by doubling lsl, J̄ecV
increases by about 50%, which in this case explains the quadratic behavior, since Pec is
defined by (11) where according to the microscopic form of Ohm’s law E = Jec/σsl.

Table 4. A comparison of 2D and 3D no-load simulation results at 4000 rpm.

lsl V J̄ecV σsl P̄ec,2D P̄ec,3D ε2D

mm mm3 A/mm2 S/mm W W %

40 663.60 4.24 1333.30 111.76 93.64 19.35
80 1327.21 6.93 1333.30 483.71 455.01 6.31

120 1990.81 8.10 1333.30 943.09 918.95 2.63

4.2. Valid Frequency Range of the Proposed Method

The application of the proposed method is limited due to the neglect of the attenuation
of the changing excitation field caused by the magnetic field created by the induced eddy
currents that opposes the changing excitation field. To demonstrate the frequency limitation
P̄ec,2D and P̄ec,3D were calculated for lsl of 40 mm at different frequencies in the range from
10 Hz to 10 kHz and presented in Figure 9.

In Figure 9 it can be seen that the magnetic field created by the induced eddy currents
in the sleeve begins to attenuate the changing excitation field more significantly as the
frequency increases above 2 kHz, which in turn reduces P̄ec,3D.
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Figure 7. The distribution of Jec in the sleeve in AED at 4000 rpm for three different values of lsl.
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Figure 8. Transient no-load simulation results of Pec,3D obtained by AED during a single electrical
period at 4000 rpm for three different values of lsl.
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Figure 9. A comparison of P̄ec,2D and P̄ec,3D in the frequency range from 10 Hz to 10 kHz in the worst
of the three analyzed cases regarding ε2D in which lsl is 40 mm.

The frequency range presented in Figure 9 corresponds in this case to the range from
300 rpm to 300 krpm, which is significantly above nn specified in Table 2 as well as the
upper limit of typical industrial applications. Hence, for a meaningful comparison, P̄ec,2D
and P̄ec,3D together with their difference (∆P̄ec = P̄ec,2D − P̄ec,3D) and ε2D are shown in
Figure 10 in the range from 300 rpm to nn for lsl of 40 mm, 80 mm, and 120 mm.

From the presented results it can be seen that the discrepancies between P̄ec,2D and
P̄ec,3D increase with a decrease in lsl. The main cause of that is presumably the inability of
the 2D FEM solver to calculate the axial stray magnetic field.

The preference for axially long sleeves in 2D calculations of Pec is also implied by the
axial-to-radial ratio ($h) presented per harmonic (h = ho/pz) in [13] as

$h =
hpzlFe

2r̄sl
, (22)



Actuators 2021, 10, 78 12 of 14

which is a part of a relatively accurate analytical description of Pec (Pec,h) for all harmonics
of Brad presented in the form of

Pec,h =

(
dslo − dsli

)
σsllFeπr̄3

sl
2

∞

∑
h=1

kξ,h
(
hωeBrad,h

)2(
hpz
)2

=

(
dslo − dsli

)
σsllFen2(πr̄sl

)3

1800

∞

∑
h=1

kξ,hB2
rad,h, (23)

where the overhang correction factor (kξ,h) is defined in terms of $h and the overhang factor
(ξ) as

kξ,h = 1− tanh($h)

$h
(
1 + tanh($h) tanh(ξ$h)

) , (24)

in which ξ defines the relationship between lsl and lFe as

ξ =
lsl
lFe
− 1. (25)

From (23) it can be seen that Pec increases with the square of ωe and Brad that often
cannot be reduced. More importantly, Pec increases with the cube of r̄sl, what should be
considered in the design.

An additional comparison of no-load simulation results of P̄ec,2D, P̄ec,3D, and Pec,h
obtained by (23) from the harmonic spectra of Brad shown in Figure 3 is shown in Figure 11
for lsl in the range from 40 mm to 200 mm at 4000 rpm together with ε2D and the relative
analytical percent error in Pec (εh). The lack of smoothness in ε2D and εh in Figure 11 is
primarily caused by the coarseness of the mesh of the 3D FEM solver that creates noise in
the simulation results, which can also be seen in Figure 8. Nevertheless, it is clearly visible
that the relative error decreases with increasing sleeve length due to the decreasing impact
of the neglected end effects.

From the tendency of ε2D and εh it can be seen that the discrepancies between Pec,h and
P̄ec,3D for values of lsl smaller than approximately 70 mm are greater than those between
P̄ec,2D and P̄ec,3D in the same range. For lsl greater than approximately 160 mm, the share of
the axial stray magnetic field in the total excitation field is relatively small, which results in
the absolute value of ε2D below 0.25%.
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Figure 10. P̄ec,2D, P̄ec,3D, ∆P̄ec, and ε2D in the speed range from 300 rpm to 4000 rpm for lsl of 40 mm,
80 mm, and 120 mm.
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Figure 11. A no-load comparison of P̄ec,2D, P̄ec,3D, and Pec,h for lsl in the range from 40 mm to 200 mm
with ε2D and εh at 4000 rpm.

5. Conclusions

This paper has successfully demonstrated that a 2D FEA solver for magnetostatic
problems can be used for eddy current loss calculation. The method is based on the
similarity between the differential forms of Faraday’s law of induction and Ampère’s
circuital law for magnetostatics. By reassigning the field quantities, the numerical solution
of B refers to E. Therefore Pec can be evaluated efficiently for a thin sleeve situated in the
air gap of a sealless pump.

According to the simulation results listed in Table 3, using only isq increases Pec in the
sleeve primarily due to the increase in the fundamental harmonic but also because of the
increased harmonic content of Brad introduced by the stator magnetic flux density, as it
can be seen in Figure 3. In contrast, field weakening reduces Pec in the sleeve due to the
drop in the fundamental harmonic of Brad mainly produced by the rotor magnets, which
can as well be seen in Figure 3. This also suggests that rotor topologies with embedded
magnets that exhibit reluctance torque might be better suited for these applications when a
control strategy that uses field weakening is being employed. However, increasing isd and
isq increases the harmonic content of Btan, which can be seen in Figure 3.

For the frequency range of typical industrial applications in which our proposed
method is intended to be applied, the reaction field can be neglected. Furthermore, it
is derived in (12) and (23) that the relationship between eddy current loss and sleeve
conductivity σsl is linear. Combined with the fact that the reaction field is negligible it can
be concluded that the eddy current loss increases linear with the sleeve conductivity.

The comparison of 2D and 3D no-load simulation results listed in Table 4 shows that
ε2D increases as lsl decreases. That is mainly caused by the inability of the 2D FEM solver
to correctly calculate the share of the axial stray magnetic field of the sleeve in the total
excitation field. For smaller values of lsl these end effects have a higher fraction relative
to the actual total excitation field, thereby making Pec seemingly higher. From (23) it can
also be seen that Pec increases with the square of ωe and Brad and with the cube of r̄sl.
Since ωe and Brad may not be easily reduced, r̄sl is an important parameter for an efficient
pump design.
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