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Abstract: Acoustic levitation forces can be used to manipulate small objects and liquids without
mechanical contact or contamination. This work presents analytical models based on which concepts
for the controlled insertion of objects into the acoustic field are developed. This is essential for
the use of acoustic levitators as contactless robotic grippers. Three prototypes of such grippers are
implemented and used to experimentally verify the lifting of objects into an acoustic pressure field.
Lifting of high-density objects (ρ > 7 g/cm3) from acoustically transparent surfaces is demonstrated
using a double-sided acoustic gripper that generates standing acoustic waves with dynamically
adjustable acoustic power. A combination of multiple acoustic traps is used to lift lower density
objects (ρ ≤ 0.25 g/cm3) from acoustically reflective surfaces using a single-sided arrangement.
Furthermore, a method that uses standing acoustic waves and thin reflectors to lift medium-density
objects (ρ ≤ 1 g/cm3) from acoustically reflective surfaces is presented. The provided results open
up new possibilities for using acoustic levitation in robotic grippers, which has the potential to be
applied in a variety of industrial use cases.

Keywords: acoustic forces; acoustic levitation; automation; grippers; robotics; ultrasound

1. Introduction

Trapping of objects by means of acoustic forces is used in various areas such as chem-
istry [1], bioreactors [2,3], blood analysis [4], the study of organisms in microgravity [2,5],
control of nanomaterial self-assembly [6], containerless processing [7–9], and to study
droplet dynamics [10,11].

The main advantage of acoustic levitation over other levitation methods is its in-
dependence from the material properties of the object. Magnetic levitation requires a
ferromagnetic or permanent magnet object [12] and electrostatic levitation requires an
electrically conductive or a charged object [13]. Optical levitation is only suitable for very
small objects and dissipates large amounts of energy into the object [14]. Furthermore,
acoustic levitation facilitates passively stable levitation.

It is known that standing acoustic waves generated by a single source can be used to
levitate objects [15–17]. Recently, new concepts have been developed that use transducer
arrays instead of a single or few transducers and can additionally manipulate levitated
objects [18,19]. To enable such manipulations, a system capable of adjusting the pressure
field by exciting the transducers individually is required [20,21].

Thus, objects of any material can be transported and positioned without mechanical
contact, i.e., with low stress on the object and without contamination. However, the
transport range is limited to the range of the acoustic field. To increase this range, the
device that generates the acoustic field can be mounted to a robot arm as a gripper, as
shown in Figures 1 and 2 [22].
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Double-Sided Gripper
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Figure 1. Double-sided gripper arrangement capable of picking objects with a density of >7 g/cm3

from acoustically transparent surfaces using a horizontal twin trap (HTT). The system is mounted to
a robot arm for long-range movements.

Robot Arm

Single-Sided 
Gripper

Levitating Object

Pressure Distribution
(VTT)

Figure 2. Single-sided gripper arrangement capable of picking objects from acoustically reflective
and transparent surfaces using standing waves and vertical twin traps (VTTs).

For implementing an acoustic gripper, it is necessary to automatically insert objects
into the acoustic field in a controlled manner [23]. This work demonstrates acoustic grippers
for different boundary conditions, namely, for high-density objects placed on acoustically
transparent surfaces and low- or medium-density objects placed on reflective surfaces.

2. Acoustic Levitation Using Transducer Arrays
2.1. Pressure and Force Generation

An array of piezoelectric transducers of type MSO-P1040H07T is used to generate the
acoustic field. An acoustic pressure acts on the surface of an object in the acoustic field and
is capable of counteracting the gravitational force, which results in levitation of the object.
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The acoustic pressure generated by the jth transducer of the array at a given point in space
is calculated as

pj = eiφVRMSP0
J0(kr sin θ)

d
eikd, (1)

where φ, VRMS, P0, J0, d, θ, r, and k = 2π f /c0 denote the phase of the transducer excitation
signal, the RMS value of the excitation signal, a factor depending on the transducer type,
the Bessel function of order zero, the distance of the considered point to the transducer,
the beam angle, the radius of the transducer, and the wave number, respectively [18].
In the formula for the wave number, f and c0 denote the excitation frequency and the
speed of sound in the considered medium (air), respectively. The Gor’kov potential is a
potential function that describes the acoustic forces exerted on a spherical particle with
radius a much smaller than the acoustic wavelength λ. It is calculated by the superposition
of an incident wave and a wave reflected from the surface of the levitated object [24,25].
According to the Gor’kov potential, the acoustic forces acting on a suspended particle scale
proportionally to the square of the pressure magnitude, which is in turn proportional to
the square of the transducer excitation voltage magnitude V, yielding

F ∝ |p|2 ∝ V2. (2)

2.2. Transducer Characterization

The peak pressure value generated by a piezoelectric transducer is proportional to the
deflection of its vibrating element. The deflection is measured in the x direction as shown in
Figure 3a and depends on the charge stored in the piezoelectric element [26]. Consequently,
the current flowing through the piezoelectric element is the relevant quantity regarding
pressure generation. The corresponding equivalent circuit based on a Butterworth-Van
Dyke (BVD) model [27] is shown in Figure 3b. It has no significant effect on the resulting
pressure whether a square wave or sinusoidal voltage signal is applied to the transducers,
since the frequency-dependent impedance of the transducers, which is shown in Figure 3c,
suppresses higher order harmonics.

The relation between the 40 kHz component of the applied voltage V40 and the result-
ing peak pressure p̂ is given by

p̂ ∝ v̂ ∝ x̂ ∝ Q̂ ∝ î =
V40

Z40
, (3)

where v, Q, i, and Z40 denote the particle velocity of the sound wave, the charge stored
in the transducer, the current flowing through the transducer, and the impedance of the
transducer at 40 kHz, respectively. The hat notation refers to the peak values of these
quantities. The phase and magnitude of the pressure are modified by adjusting the phase
and duty cycle of the transducer excitation signal, respectively. By providing an individual
excitation signal for each transducer, it is possible to adjust the acoustic power output and
phase of each transducer individually. The transducers are arranged in arrays of various
shapes [28–34] and held in place by means of a 3D-printed holder.

2.3. Acoustic Traps

To achieve a pressure distribution that facilitates levitation of an object in free space,
the phase for each transducer has to be chosen such that the pressures generated by the
individual transducers constructively superimpose at a focal point that coincides with the
desired levitation position. This is achieved by calculating the phases of the individual
excitation signals as

ϕ = −∠
(

P0

dd
ei 2π f dd

c0 + R
P0

dr
ei 2π f dr

c0

)
, (4)

where the reflection coefficient of an acoustically transparent surface in the acoustic field is
R = 0 [18]. The factor is P0 = 0.26 Pa ·m/VRMS for the transducers used in this work [35].
Further, dd and dr denote the distance between the transducer and the focal point for the
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direct and reflected acoustic wave (see Figure 4), respectively. An acoustic trap is generated
by adding a phase signature, which depends on the type of trap, to the phases that are
used to generate the focal point [18,36]. In this work, mainly twin traps are used to levitate
objects. These are generated by applying a phase shift of 180◦ to one half of the transducers
in an array. Separating the transducers of the array by a horizontal plane results in a trap
subsequently referred to as a horizontal twin trap (HTT). Separating the two halves by a
vertical plane accordingly results in a vertical twin trap (VTT).
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Figure 3. MSO-P1040H07T piezoelectric transducer: (a) Annotated rendering of the mechanical
structure. (b) Equivalent circuit diagram of the Butterworth-Van Dyke (BVD) model showing the
resonance paths at f0 = 40 kHz and f1 = 55 kHz. (c) Measured magnitude of the impedance and
fitted BVD model.
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p = pd + pr
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Re{p}

Im{p}
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ω

Figure 4. Direct (solid line) and reflected (dashed line) pressure components generated by a single
transducer that are superimposed depending on the position and orientation of the transducer
relative to the reflecting surface. The total pressure generated by the transducer is shown in green.

If an acoustically reflective surface is present within the acoustic field, the pressure
generated by a single transducer at a point contains an additional component caused by
the reflected wave (R 6= 0) [37,38]. The total pressure oscillation has the same frequency as
the pressure oscillation without the reflection, but the phase and magnitude are different.
This can be illustrated by a pointer diagram, as shown in Figure 4. If the direct pressure
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component pd is constructively superimposed with the reflected pressure component pr, a
higher pressure amplitude is achieved. Due to the change in phase, the control has to be
adjusted according to Equation (4) with R set to the appropriate value. If the transducer
arrangement is shifted relative to the reflecting surface, the influence of the reflected wave
on the phase of p changes, which has to be taken into account by the control.

Using the reflection of sound waves at a surface, a standing wave can be formed
between the transducers and the surface by focusing the acoustic pressure on the surface.
The distance between the oscillating elements of the transducers and the reflecting surface
should be a multiple of λ/2 to achieve a high pressure magnitude [39,40].

2.4. Distribution of the Maximum Attainable Pressure

A distribution of the maximum attainable pressure (DMAP) describes the distribution
that is based on the assumption of a constructive superposition of the pressure from all
acoustic sources at each point in space. It is calculated for each point by

M(x, y, z) = ∑
j

∣∣∣∣∣VRMSP0

(
J0(kr sin θd,j)

dd,j
+ R

J0(kr sin θr,j)

dr,j

)∣∣∣∣∣, (5)

where θd,j, θr,j, dd,j, and dr,j denote the beam angle of the direct path, the beam angle of
the reflected path, the distance of the direct path between the considered point in space
(x, y, z) and the transducer, and the distance of the reflected path between (x, y, z) and the
transducer for the jth transducer, respectively. In environments without reflective surfaces,
the DMAP is approximately constant, i.e., the attainable pressure is approximately the
same at each point in space, as shown in Figure 5a. This means that it is possible to focus
the pressure at each point.

(a) (c)(b)

λ/4

λ/2

z

6 7 8 9 10 11 12
p / kPa

Figure 5. Distribution of the maximum attainable pressure (DMAP) for (a) a single-sided array in free space, (b) the top
part of the single-sided array with an acoustically reflective surface (R = 1) at z = 0 exhibiting high gradients that prohibit
the generation of arbitrary focal points, and (c) the single-sided arrangement with an acoustically reflective surface at z = 0
with a gradient that allows manipulation at z ≥ λ/4.

3. Experimental Setup
3.1. Transducer Arrays

Three different transducer arrangements (arrays) are used in this work, namely, as follows:

• A double-sided array consisting of two pole caps of a sphere with a diameter d = 42 mm,
each equipped with 36 transducers arranged in three rings of 6, 12, and 18 transducers.
All transducers are oriented such that they point towards the center of the sphere.
This arrangement is shown in Figure 1.

• A cylindrical single-sided array with a height h = 40 mm, an inner diameter di = 70 mm,
and an outer diameter do = 88 mm, as depicted in Figure 2. Three rings of 6, 12,
and 18 vertically oriented transducers are located at the horizontal top face of the
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arrangement. On the side walls of the cylinder, three rings of 20 horizontally oriented
transducers each are located.

• A reflector array consisting of one half of the double-sided array and an additional
thin reflector, which can be moved relative to the transducers. Depending on the
application, a movable second half of the double-sided array is added.

The holders of the transducers and the reflector were 3D printed.

3.2. Control System

The position of the object is determined by open-loop control for all arrangements. The
phase and amplitude of the transducer excitation signals are calculated depending on the
orientation of the acoustic trap, the position of the levitating object relative to the gripper, and
the gripper environment, as described in Section 2.3. The corresponding logic signals are
generated by a field programmable gate array (FPGA). For the 72, 96, and 36 logic signals
required for the double-sided, single-sided, and reflector array, respectively, resolutions of
0.5◦ and ≈1% are achieved for the phase and duty cycle, respectively. The logic signals are
amplified by gate driver integrated circuits (ICs) and applied to the transducers. The duty
cycle and the phase are calculated on a PC for each transducer and transmitted to the FPGA
via a universal asynchronous receiver transmitter (UART) interface.

4. Automated Insertion

The procedure for automatically inserting an object into the acoustic field depends
on the properties of the object and its environment. The higher the density of the object
and the lower the transmission coefficient of the surface on which the object is located, the
more difficult it is to lift the object off the surface.

For a sufficiently large transmission coefficient T of the surface (T > 0.5) and sufficient
space on both sides of the surface, the double-sided arrangement, capable of generating
high forces in the vertical direction, can be used. Such surfaces are subsequently referred
to as acoustically transparent. If the transmission coefficient is low (T < 0.5), the surface is
referred to as acoustically reflective and the single-sided or reflector array has to be used.
Procedures that facilitate stable and smooth lifting of objects from acoustically transparent
and reflective surfaces are presented below.

4.1. Acoustically Transparent Surface

If the object is located on an acoustically transparent surface, the double-sided array
is moved close to the object to be picked in the turned-off state. The transducers are then
controlled such that the object is located in an acoustic trap. Subsequently, the acoustic
power is increased.

The control is identical to that used for levitating the object at the position of the
acoustic trap. The influence of the surface on the control can be neglected. By adjusting
the control, the pressure field is manipulated such that the object moves in the vertical
direction and, afterwards, the arrangement is moved away from the surface. Alternatively,
if there are no objects that restrict the vertical movement of the gripper, the arrangement
can be moved vertically without prior adjustment of the control.

With this method, picking objects with a density of ρ > 7 g/cm3 has been demonstrated. In
order to improve the repeatability of the process, the acoustic power can be increased continu-
ously during the power-on process, such that no sudden forces are exerted on the object.

4.2. Acoustically Reflective Surface

Picking an object from an acoustically reflective surface is more challenging than picking
it from an acoustically transparent surface. The reflection of a wave at a surface does not cause
a phase shift. If the incident wave arrives perpendicular to the surface, the superposition
between the incident wave pi and the reflected wave pr causes a pressure minimum to be
formed at a distance of λ/4 from the surface, as outlined by Equations (6)–(8) [39,40].
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pi(t, z) = A sin
(

ωt− 2π
z
λ

)
. (6)

pr(t, z) = A sin
(

ωt + 2π
z
λ

)
. (7)

pi(t, λ/4) + pr(t, λ/4) = A sin(ωt− π/2) + A sin(ωt + π/2) = 0. (8)

If the acoustic sources are located far away from the surface, the acoustic waves are
perpendicularly incident upon the surface. The DMAP for the transducers arranged at the
horizontal top of the single-sided arrangement, which are placed at a distance of 3.5λ from
the reflective surface, is shown in Figure 5b. Due to the pressure minimum being formed
at z = λ/4 above the reflective surface, it is impossible to focus the pressure around this
location, which would be necessary to generate a twin trap.

If the transducers are located closer to the surface, the distance at which destructive
superposition occurs deviates from λ/4 and the minimum of the DMAP is attenuated.
This is shown for the single-sided arrangement in Figure 5c. With this arrangement, it is
possible to focus the pressure for z ≥ λ/2. Therefore, a VTT can be generated at z = λ/2,
as shown in Figure 6b. The generated forces pull the object into this trap, if their vertical
component exceeds the gravitational force. This is the case at z = λ/4 for all objects that
can be lifted with this arrangement, as shown in Figure 7.

By forming a standing wave between the transducers and the reflective surface, it is
possible to levitate objects in a stable manner at z ≈ λ/4, however, without the possibility to
move the object vertically due to the minimum of the DMAP at this location. Nevertheless,
it is possible to switch from a standing wave to a VTT located at z = λ/2 that pulls the object
upwards. Taking the reflections at the surface into account, the control can be adjusted
such that the object is moved away from the surface until reflections become negligible and
the array can be moved away from the surface without further adjustments of the control.
An array that is capable of generating the corresponding pressure distributions requires
vertically oriented transducers to generate a standing wave and horizontally oriented
transducers to generate a VTT. The resulting forces and force potentials during the process
are shown in Figures 6 and 7 for the single-sided array.

(a) (b)

(c) (d)

λ/4 λ/2

7 mm
9 mm

10 mm

x

z

-1 -0.5 0 0.5 1 1.5
U / µJ

-1 -0.5 0 0.5 1 1.5
U / µJ

-1 -0.5 0 0.5 1 1.5
U / µJ

-1 -0.6 -0.2 0.2 0.6
U / µJ

Figure 6. Force potential for (a) a standing wave with a minimum at z = λ/4, and VTTs at (b) z = λ/2,
(c) z = 7 mm, and (d) z = 9 mm. The potentials are obtained for an acoustically reflective surface
(R = 1) at z = 0.
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To perform the picking process in a continuous fashion, the power of the vertically
oriented transducers is first increased continuously, raising the object smoothly to z = λ/4.
Subsequently, using stepwise phase changes, the standing wave is altered to a VTT. Finally,
by using small steps to shift the location of the trap in the vertical direction, the object is
moved further away from the surface while the stress on the object is minimized.

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

z (mm)

F z
 (m

N
)

Standing Wave
VTT λ/2
VTT 7 mm
VTT 9 mm

Figure 7. Vertical forces for a standing wave with a minimum at z = λ/4 and VTTs at z = λ/2,
z = 7 mm, and z = 9 mm. The forces are obtained for an acoustically reflective surface (R = 1) at
z = 0.

5. Gripper Using an Additional Reflector

The grippers described so far operate without additional reflectors. As shown in
Figure 7, the forces resulting from standing acoustic waves that are formed between the
transducers and an acoustically reflective surface are significantly larger compared to those
resulting from VTTs. The low vertical forces resulting from VTTs limit the density of the ob-
jects that can be lifted. It is not possible to move an object located at the pressure minimum
formed at λ/4 above a reflective surface in the vertical direction without using VTTs.

5.1. Single-Sided Reflector Gripper

By inserting a thin, movable reflector directly above a reflective surface, an object
levitating in the lowest pressure minimum of a standing acoustic wave at z = λ/4, as
shown in Figure 8a, is moved upwards by the thickness of the reflector, as shown in
Figure 8b. Afterwards, the entire gripper including the reflector can be moved away from
the surface and the object levitates at λ/4 above the reflector in a standing wave formed
between the transducers and the reflector, as illustrated in Figure 8c. However, this is
only possible if the surroundings of the gripped object allow moving the reflector. All
arrangements of transducers that are capable of forming a standing wave can be used to
grip objects from acoustically reflective surfaces using this method. It is possible to grip
objects from reflective surfaces with a significantly larger density compared to the method
that uses VTTs. Gripping of a plastic sphere with a radius of a = 1 mm and a density of
ρ = 1 g/cm3 has been demonstrated. The maximum density is about four times larger
compared to that achievable with the method using VTTs.
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Force Potential
Levitating

Object

Reflective
Surface

Thin
Reflector

Transducer
Array

(a) (b) (c)

Figure 8. Gripping process of an object resting on an acoustically reflective surface using a thin reflector. (a) A standing
wave between the transducer arrangement and an acoustically reflective surface is formed that traps the object at the first
pressure minimum of the standing wave. (b) A thin reflector is inserted directly above the reflective surface and (c) the
arrangement, reflector, and levitating object can be moved away from the reflective surface.

A thin reflector can also be used to achieve a distance between the levitating object and
the reflective surface that is larger than λ/4. When the thin reflector is inserted below the
levitating object, as shown in Figure 9b, it can be moved vertically until the levitating object
reaches the position of the second pressure minimum of a standing wave formed between
the transducer arrangement and the reflective surface, as shown in Figure 9c. Afterwards,
by removing the reflector, the distance between the object and the reflective surface is
increased to z ≈ 3λ/4, as shown in Figure 9d. By reinserting the thin reflector directly
above the reflective surface, the gripper and the thin reflector can be moved away with
a distance >λ/4 between the reflector and the levitating object. The same procedure can
be applied for all levitation heights at which a pressure minimum is formed between the
transducer arrangement and the reflective surface. An arrangement of transducers that can
form a standing wave with more than one stable levitation point is required. If the reflector
arrangement used in this work is positioned such that the focus point of the transducers is
located at the distance of the reflective surface, only two stable levitation positions exist, as
shown in Figure 8. To form additional stable levitation points, the distance between the
arrangement and the reflective surface has to be increased.

A similar method can be used to grip multiple objects simultaneously. By forming
a standing wave between the gripper and the reflective surface, inserting a thin reflector,
moving the thin reflector vertically until the levitated object reaches the height of the second
pressure minimum of the standing wave formed between the transducers and the reflective
surface, and removing the thin reflector, the first object is levitated at ≈3λ/4 above the
reflective surface, as shown in Figure 9a–d. A second object can be trapped in the lowest
pressure minimum by moving the gripper to an object located on the reflective surface.
This process can be repeated in order to insert more objects into the gripper. The maximum
number of objects that can be gripped depends on the transducer arrangement. The larger
the distance between the gripper and the reflective surface, the more objects can be gripped,
but the increased distance reduces the trapping forces and, therefore, the maximum density
of the gripped objects. Furthermore, the levitating objects influence the pressure field and
may cause unstable traps.
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(a) (b) (c) (d)

/4
/4

Figure 9. Process of lifting an object located at the lowest pressure minimum in a standing acoustic wave. (a) A standing
wave between the transducer arrangement and an acoustically reflective surface is formed. The object is trapped in the
lowest pressure minimum of the standing wave. (b) A thin reflector is inserted directly above the reflective surface. (c) The
reflector is moved upwards until the levitating object reaches the levitation height of the second pressure minimum of the
standing wave between the transducers and the reflective surface; (d) the reflector is removed and the object is located at
the second pressure minimum. The shown elements correspond to those annotated in Figure 8.

5.2. Double-Sided Reflector Gripper

The method demonstrated before can also be used to insert objects from acoustically
reflective surfaces into double-sided arrangements. For this purpose, one half of the
double-sided arrangement can be used to generate a standing acoustic wave between the
transducers and the reflective surface. The object located on the reflective surface is then
lifted to a levitation height of z = λ/4, as shown in Figure 10a. After the thin reflector is
inserted just above the reflective surface and the arrangement including the reflector are
moved away from the reflective surface, the second half of the double-sided arrangement
is added to the gripper, as shown in Figure 10b. Subsequently, the reflector can be removed
while a HTT is generated at z = λ/4, as shown in Figure 10c. A levitation point of z = λ/4
is achieved by exciting all transducers with the same phase. Finally, the HTT is moved to
the center of the double-sided arrangement in order the trap the object as stable as possible
(Figure 10d). This movement can be achieved by applying a phase shift between the upper
and lower half of the double-sided arrangement, which is increased in small steps from 0◦

to 180◦.
The problem arising from the pressure minimum formed at z = λ/4 for perpen-

dicularly arriving acoustic waves, as illustrated in Figure 5b, can therefore be solved by
adjusting the position at which the reflection occurs. Therefore, thin reflectors facilitate
vertical movements of the levitating object as required for processes in which the original
and target positions are located on different surfaces.
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(a) (b) (c) (d)

/4

/4

Figure 10. Insertion process of an object located on a acoustically reflective surface into a double-sided acoustic gripper.
(a) The arrangement, the inserted reflector, and the levitating object are moved away from the reflective surface. (b) The
second half of the double-sided arrangement is moved to the other side of the inserted reflector and the double-sided
gripper is controlled such that a HTT is generated at z = λ/4. (c) The reflector can be removed and (d) the trap is moved to
the center of the double-sided gripper. The shown elements correspond to those annotated in Figure 8.

6. Conclusions

Based on the presented results, acoustic grippers can be used for the automation
of processes that involve small and fragile objects and/or require contamination-free
handling of small objects. The shown concepts are applicable for different environments
of the gripped object and facilitate the minimization of the stress by an object-dependent
adjustment of the acoustic power. The flexibility of the presented systems can be extended
further by sensors that detect the position of the object.

Gripping of objects with densities of up to ρ = 7.8 g/cm3 for the double-sided and
ρ = 0.25 g/cm3 for the single-sided array from acoustically transparent surfaces has
been demonstrated. A gripped steel washer with a diameter of 5 mm and a density of
ρ = 7.8 g/cm3 is shown in Figure 1. For objects that were picked from acoustically reflective
surfaces, the density was limited to ρ = 0.25 g/cm3 for the single-sided arrangements
due to the small vertical forces generated by VTTs and ρ = 1 g/cm3 for the reflector
arrangement. In order to grip an object with the double-sided arrangement, the transparent
surface has to be accessible from both sides. In order to grip an object with the reflector
arrangement, the movement of the reflector in the surroundings of the object has to be
possible. The double-sided gripper can therefore be used for gripping high-density objects
located on transparent surfaces, while the single-sided gripper is used for low-density
objects located on either transparent or reflective surfaces. The reflector gripper is used for
gripping medium-density objects from reflective surfaces, for gripping multiple objects,
and for inserting objects located on a reflective surface into a double-sided gripper. These
results are summarized in Table 1.
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Table 1. Comparison of the maximum density of an object located on an acoustically transparent surface ρt; the maximum
density of an object located on an acoustically reflective surface ρr; requirements to the environment; and applications of the
double-sided, single-sided, and reflector arrangement.

ρt
g/cm3

ρr
g/cm3

Environment Applications

Double-Sided 7.8 - Accessible from both sides Gripping of high-density objects

Single-Sided 0.25 0.25 - Gripping low-density objects from reflective
and transparent surfaces

Reflector - 1 Sufficient space for moving
the reflector

Gripping medium-density objects from reflec-
tive surfaces, gripping multiple objects, inser-
tion of objects located on reflective surfaces into
double-sided grippers

The size of the gripped object is limited to approximately 5 mm for all arrangements.
The presented grippers are capable of picking objects of any material and shape. The best
stability is achieved if the shape of the object is similar to that of the acoustic trap.

Author Contributions: Conceptualization and methodology, M.R. and L.K.; investigation and vali-
dation, M.R.; writing—original draft preparation, M.R. and M.S.; writing—review and editing, M.R.
and M.S.; supervision and project administration, J.W.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Arbeitsgemeinschaft Prof. Hugel and the ETH Zurich
Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

List of Symbols

A amplitude of the pressure wave
a radius of the levitating particle
c0 speed of sound in air
d distance of a considered point to the transducer
di inner diameter of the single-sided arrangement
do outer diameter of the single-sided arrangement
dd distance between the transducer and focal point for the direct acoustic wave
dr distance between the transducer and focal point for the reflected acoustic wave
F acoustic force
h cylinder height of the single-sided arrangement
i current flowing through the transducer
J0 Bessel function of order zero
k wave number
M distribution of maximum attainable pressure (DMAP)
p pressure
P0 factor depending on the transducer type
pi incident pressure wave
pr reflected pressure wave
Q charge stored in the transducer
R reflection coefficient
r radius of the transducer
T transmission coefficient
t time
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V excitation voltage
v particle velocity
Z impedance of the transducer
φ phase of the transducer excitation signal
λ acoustic wavelength
ρ density
θ beam angle
ω angular frequency

Abbreviations
The following abbreviations are used in this manuscript:

VTT Vertical Twin Trap
HTT Horizontal Twin Trap
DMAP Distribution of Maximum Attainable Pressure
FPGA Field Programmable Gate Array
UART Universal Asynchronous Receiver Transmitter
IC Integrated Circuit
PC Personal Computer
BVD Butterworth-Van Dyke
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