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Abstract: Due to their large working space and fast response, cable driven systems have been widely
applied in manufacturing, robotics and motion simulators, etc. However, the cable is flexible and
tends to resonate at high frequencies, which raises challenges for the motion control of the cable driven
system. To solve this problem, this paper proposes a singular-perturbation-based adaptive control
method with σ-modification. Taking advantage of the multi-time scale characteristics, the flexible
system is approximately decomposed into two subsystems, and then the damping compensation is
designed in the boundary layer subsystem to enhance the tension stability. In addition, estimated
parameters drift may occur for the reduced-order system. Thus, the σ-modification is proposed to
ensure that the tracking and estimation errors converge to a bounded residual set. The Lyapunov
stability theorem proves that the closed-loop system is stable and errors are ultimately uniformly
bounded. A research prototype of a twin-motor cable driven system is developed, and experimental
investigation is conducted on it. The experimental results show that the proposed control method can
effectively suppress cable resonance at high frequencies. Compared with the conventional adaptive
control method, it can significantly increase the system bandwidth.

Keywords: cable driven system; adaptive control; singular perturbation; σ-modification

1. Introduction

Cable driven systems have been widely used in lifting [1,2], telescopes [3], robotics [4,5],
motion simulators [6,7] and other fields [8,9]. Different from a rigid transmission system, it has
two inherent properties [5,10]: (1) the cable can only be pulled but not pressed, so redundant
actuation must be adopted to make the end effector fully controllable; (2) the cable is elastic. At
high frequencies, resonance often occurs, which severely affects the performance and stability
of the system and brings great challenges to the system control. In existing literature, internal
tension compensation is used to solve the problem of unidirectional force, and the motion
control is achieved by treating the cable driven system as a rigid system [11–13]. Typical
methods include the computed torque control method [14–16] and robust adaptive control
method [17–23].

Inspired by the feedback linearization theory, Alp et al. [24] proposed a computed
torque method based on the nominal model for the position control of a suspended robot,
and proved the stability of the system. However, due to the parameter uncertainty in the
system, the control performance is greatly compromised. To solve this problem, robust
adaptive control is one good solution. To reduce the negative effect of dynamic parameters
uncertainty, Li et al. [18] proposed a robust adaptive control, by adding online estimation
of dynamic parameters. Wang et al. [19] proposed a time-delay estimation method, and
combined it with terminal sliding mode control to achieve an adaptive integral terminal
sliding mode control for cable-driven manipulators. Moreover, Wang et al. [20] introduced
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the super-twisting algorithm into the adaptive control scheme to ensure that the system
can reach the sliding mode surface in limited time. Shang et al. [17] also conducted an
in-depth study on the sliding mode control of the cable driven system. They combined
the second-order sliding mode control with the synchronization control, and proposed
a compound robust control with high precision and robustness. To further improve the
control accuracy, Shang et al. [25] introduced the cross-coupled control and parameters
adaptive compensation to the synchronization control, and then proposed an adaptive
cross-coupled control scheme. Lamaury et al. [26] further extended the adaptive control to
the workspace and joint space, and proposed a dual-space adaptive control strategy. The
above studies are mainly on the motion control of systems in low dynamics. Because the
high frequency characteristics of the cable are filtered, these control methods based on the
rigid model can also perform well for the flexible systems.

However, for systems in high dynamic motion, the filtering effect weakens signifi-
cantly. Thus, it is not equivalent to a rigid system anymore. Specifically, by considering
the cable flexibility, the system is converted to a series-connected dual-mass system from a
single-mass system. The controller based on a rigid model cannot guarantee the full state
stability of a flexible system, especially the cable tension that easily becomes unstable due
to insufficient cable damping. This problem has aroused the attention of researchers [27].
Khosravi et al. proposed the cascade control method to keep the tension stable by employ-
ing the internal tension control of the cable to avoid tension drift [28–30]. Theoretically, this
method is feasible. However, it is difficult to collect high-quality tension signals, which
affects the tension control. Furthermore, the dual closed loops in the cascade control is
quite challenging. This method is poor to implement, especially for high-dynamics motion,
a simpler controller is better, and cascade control contradicts this requirement. To solve
this problem, the singular perturbation control was proposed [31,32]. The multi-time scales
of the flexible system are employed to decompose the system into two subsystems, i.e.,
the boundary layer and the reduced-order system, and the damping compensation is
designed in the boundary layer to keep the tension stable. Compared with the cascade
controller, this method is simpler and more practical, and force sensors are not required in
the system design.

However, so far the control algorithms of cable driven systems have not considered the
drift of estimation parameters, which unavoidably compromises the motion control perfor-
mance especially in high dynamics. Therefore, this paper proposed a singular-perturbation-
based adaptive control with σ-modification to avoid the parameter drift instability, and to
give the sufficient conditions for the system stability.

The main contributions of the paper are as follows.

(1) Based on the singular perturbation theory, an adaptive control method with σ-modified
adaptive law is proposed.

(2) The stability of the flexible system is proved theoretically, and sufficient conditions for
system stability are given.

(3) This method is the first time to be used for the control of a flexible system with high-
frequency motion.

(4) The effectiveness of the proposed method is validated by experiments.

The rest is organized as follows. In Section 2, the schematic structure of the twin-motor
cable driven system, a typical cable driven parallel mechanism, is introduced, and kinematics
and dynamics models are formulated analytically. In Section 3, based on the singular
perturbation theory, an adaptive composite control with σ-modification is proposed. In
Section 4, the stability of the closed-loop system is proved, and sufficient conditions for
the flexible system are given. In Section 5, the developed twin-motor cable driven system
is presented, and an experiments are conducted. The experimental results are utilized to
validate the proposed control method. Finally, the research work is concluded in Section 5.
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2. Analysis of Flexible System Kinematics and Dynamics
2.1. System Architecture

The studied twin-motor cable driven system is shown in Figure 1. It is composed of
motors, an arc guide rail, flexible cable, pulleys and the moving platform. Affected by the
unidirectional force property of the flexible cable, the moving platform can only reciprocate
along the arc guide under the cooperative traction of the motors on both sides. This system
is a typical redundant actuation system. To facilitate subsequent discussion, the fixed
coordinate system E: (xe, ye) on the base frame and the reference coordinate system R:
(xr, yr) on the moving platform are set, and their origins Oe and Or are coincident with the
arc center and the centroid of the moving platform, respectively.
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Figure 1. The schematics of the twin-motor cable driven system.

2.2. Analysis of System Kinematics

The vector of the ith cable is represented as

Eli = li Eni =
EBi − EX − ERR

R Ai, (i = 1, 2), (1)

where li denotes the cable length between points Ai and Bi, Eni the unit vector of cable tension,
R Ai the position vector of point Ai, EBi the position vector of point Bi, EX the position vector
of the origin Or and ERR the rotation matrix of frame {R} with respect to frame {E}.

From (1), the velocity mapping between the cable length and the end effector is

L̇ = −JT
ϕ ϕ̇, (2)

where L̇ = [l̇1, l̇2]T , ϕ denotes the angle between OeOr and the positive xe, and

Jϕ =
[
rasin(α1 − ϕ− βa) rasin(α2 − ϕ + βa)

]
, Jϕ ∈ R1×2, (3)

ra denotes the radius of the guide rail, αi the angle between the cable tension and the positive
xe and βa the structure parameter as shown in Figure 1.

It is worth noting that, affected by the elasticity of the cable, the speeds of the two ends
of the same cable are different, and they meet the following conditions

L̇a = − L̇ = JT
ϕ ϕ̇ = JT

q q̇, (4)

L̇m = θ̇rm, (5)
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where L̇a denotes the cable velocity at points Ai, L̇m the cable velocity at motor connection,
q = ra ϕ, θ the motor rotation angle and rm the radius of the winch,

Jq =
[
sin(α1 − ϕ− βa) sin(α2 − ϕ + βa)

]
, Jq ∈ R1×2. (6)

2.3. Analysis of System Dynamics
2.3.1. Dynamics Model

The force is shown in Figure 2. According to the theorem of momentum, the dynamics
of the moving platform is

rc ×mac + Ic · ω̇ = ∑ ra,i × Ti + ∑ ra,i × fi + rc ×mg, (7)

where rc denotes the vector of the centroid of platform, m the platform mass, ac the accelera-
tion vector of the center of mass, Ic the moment of inertia of the platform about the centroid
of mass, ω̇ the rotational acceleration, ra,i the position vector of point Ai, Ti the tension
vector, g the gravity acceleration, and fi the friction vector

fi = bv,i ϕ̇ + fc,isign(ϕ̇), (8)

bv,i is the viscosity coefficient and fc,i is the coulomb friction.

M1

M2

1T

2T

1nF

2nF

1A

2A 

a

1A

2A

mg
rx

ry
ry

rx

ey

ex

1B

2B

b

eO

( )rO C

( )rO C

1f

2f

Figure 2. Force exerted on the moving platform of the twin-motor cable driven system.

In (7), the cable tensions are

K(Lm − La) = T , (9)

where K denotes the cable stiffness, Lm and La the movement displacement of cables at
motor and points Ai, respectively. The dynamics of motors is

Imθ̈+ Trm = τ, (10)

where Im ∈ R2×2 denotes the inertia matrix, rm the radius of the winch, τ the motor torque.
Combining (7)–(10), the dynamics of the flexible system are

Mq̈ + Bp q̇ + Fsign(q̇) + G(q) = JqK(Lm − La), (11)

Imθ̈+ K(Lm − La)rm = τ, (12)
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where

M =
(

mr2
c + Ic

)
/r2

a , Bv = (bv,1 + bv,2)/ra,

F =( fc,1 + fc,2)/ra, G(q) = Gcos(q/ra), G = rcmg/ra.
(13)

2.3.2. Dynamics Model Analysis

In (11) and (12), the stiffness K is much larger than other parameters. To facilitate
analysis, define

K =
k1

ε2 E2, (14)

where ε is a small positive parameter, k1 is on the order of 1 and E2 is the unit matrix.
Substituting (9) and (14) into (12), the dynamics of the motor can be rewritten as

ε2r−1
m ImT̈ + k1Trm = k1(τ − r−1

m Im L̈a). (15)

Since ε is much smaller than other parameters, the changing rate of tension T in (15)
far exceeds that of q in (11). On the time scale, the variables T and q can be divided into
two types: fast and slow. When the fast variable T changes, the slow variable q can be
considered frozen. Therefore, in (15), the transfer function from the torque to the cable
tension can be approximated as a second-order system. At low frequencies, due to the
filtering of the system itself, the high-frequency part of the system response is filtered, and
the flexible system is equivalent to a rigid one. As the frequency increases, the system’s
ability to filter high-frequency response decreases, and the impact of the flexible cable
on the system gradually increases. When a certain frequency is reached, the impact of
the flexible cable cannot be ignored, and even damage the system stability. To solve this
problem, a composite adaptive control scheme based on singular perturbation is proposed.

3. Composite Control Scheme

Since the system has multiple time scales, the system can be divided into fast (bound-
ary layer) and slow (reduced-order) subsystems, and then the control laws are designed
for each subsystem to form the composite control law, i.e.,

τ = τs + τf , (16)

τf = rmKv(L̇a − L̇m), (17)

where τs denotes the slow control law, τf the fast control law and Kv the feedback gains. Define

Kv =
k2

ε
E2, (18)

where k2 is on the order of 1. Substituting (16) into (15), the system can be written as

ε2r−1
m ImT̈ + εk2rmṪ + k1Trm = k1(τs − r−1

m Im L̈a). (19)

Moreover, from (19), it can be seen that the stability of the fast variable T can be improved
by the compensation of fast control law without any impact on the reduced-order system.
When ε = 0, both (15) and (19) can be degenerated into the same reduced-order model as
the rigid model.

Me(q)q̈ + Ne(q, q̇)q̇ + Beq + Fesign(q̇) + Ge(q) = Jqτs, (20)

where

Me(q) = rm M + r−1
m Jq Im JT

q , Ne(q, q̇)q̇ = r−1
m Jq Im J̇T

q ,

Fe = rmF, Be = rmB, Ge(q) = rmG(q).
(21)
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Therefore, the control schemes for the rigid system still work for the reduced-order system.
Considering the uncertainty of dynamic parameters, the slow control law is designed as

τs = τex + τin, (22)

τex = J+q [M̂e(q)qa + N̂e(q, q̇)qv + B̂e q̇ + F̂esign(q̇) + Ĝe(q)− kbqr], (23)

τin = (E2 − J+q Jq)ξ, (24)

where τex and τin denote the effective force and internal force, respectively, (•̂) the esti-
mated parameter, J+q the pseudo-inverse and ξ any 2-dimensional column vector,

z = q− qd,

qv = q̇d − kaz,

qa = q̇v,

qr = q̇− qv = ż + kaz,

(25)

qd is the desired trajectory, ka and kb are the adjustable gains. Then combining (20) and
(22)–(25) gives the closed-loop dynamics of the reduced-order system

Me(q)q̇r + [Ne(q, q̇) + kb]qr = ΦT(q, q̇, q̇d, q̈d)θ̃, (26)

where

Φ(q, q̇, q̇d, q̈d) = [rm q̈d − ka(q̇− q̇d), rm q̇, rmsign(q̇), rmcos(q/ra)]
T , (27)

θ̃ = [M̃, B̃p, F̃, G̃]T . (28)

To prevent the estimated parameters from drifting, the adaptive law is designed as

˙̃θ = −ΓΦT(q, q̇, q̇d, q̈d)qr − σΓθ̂, (29)

where Γ is the gain matrix, σ a positive constant. According to the above, the designed
composite adaptive controller is shown in Figure 3.
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4. Stability Analysis

Based on the singular perturbation theory and Lyapunov’s stability theorem, the
stability of a close-loop system is analyzed. It includes four parts: singular perturbation
standardization, boundary layer stability analysis, reduced-order system stability analysis,
and overall system stability analysis.

4.1. Singular Perturbation Standardization

Define the slow, fast and intermediate variables as

x = [z, qr]
T , (30)

w = [rmTT , εrmṪT ]T , (31)

τ∗ = τs − r−1
m Im L̈a. (32)

Then from (11) and (19), the standard singular perturbation model of the closed loop is

ẋ = f (t, x, w, ε) = A1x + Ψθ̃+ A3w + B1τ∗, (33)

εẇ = g(t, x, w, ε) = A2w + B2τ∗, (34)

where

A1 =

[
−ka 1

0 −Me(q)−1[Ne(q, q̇) + kb]

]
, Ψ =

[
01×4

Me(q)−1ΦT

]
,

A2 =

[
02 E2

−k1r2
m I−1

m −k2r2
m I−1

m

]
, B1 =

[
01×2

−Me(q)−1 Jq

]
,

A3 =

[
01×2 01×2

Me(q)−1 Jq 01×2

]
, B2 =

[
02

k1r2
m I−1

m

]
.

(35)

See Appendix A for the detailed derivation. When ε = 0, the isolated root of w is

w̄ = h(t, x̄) = −A−1
2 B2τ∗, (36)

where w̄ is the quasi-steady state of w. However, due to the difference of the initial
conditions and perturbation of ε, w̄ deviates from the actual w. The deviation is defined as

y = w− h(t, x) = w + A−1
2 B2τ∗. (37)

Substituting (37) into (33) and (34), and combining with (29), the standard singular pertur-
bation model is rewritten as

S :


ẋ = f (t, x, y + h(t, x), ε) = A1x + Ψθ̃+ A3y,
˙̃θ = − ΓΞx− σΓθ̂,

εẏ = g(t, x, y + h(t, x), ε)− εḣ(t, x) = A2y + εA−1
2 B2τ̇∗,

(38)

where Ξ = [0, ΦT ].

4.2. Boundary Layer and Stability Analysis

Define the fast-time scale η = (t− t0)/ε, then (38)-3 can be represented as

dy
dη

= g(t, x, y + h(t, x), ε)− εḣ(t, x). (39)

From the above formula, the boundary layer is

Sb :
dy
dη

= g(t, x, y + h(t, x), ε = 0) = A2y, (40)
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where A2 is a Hurwitz matrix that can be achieved by adjusting the gains k1 and k2. Then
for any given positive definite matrix Q, there exists a unique positive definite matrix P
that satisfies

AT
2 P + PA2 = −Q. (41)

Then for the boundary layer, choose the Lyapunov function candidate as

Vb(y) = yTPy. (42)

Along the boundary layer system Sb, the fast-time derivative of Vb is

V′b =

[
∂Vb(y)

∂y

]T
g(t, x, y + h(t, x), ε = 0) = (A2y)TPy + yTPA2y = −yTQy

≤− λmin(Q)‖y‖2 = −γ1‖y‖2,

(43)

where λmin(Q) = γ1 denotes the smallest eigenvalue of matrix Q. Hence, as presented
in (42) and (43), for all y, Vb > 0 and V̇b < 0, i.e., when η → ∞, ‖y‖ → 0, and the boundary
layer is asymptotically stable.

4.3. Reduced-Order System and Stability Analysis

From (38), the reduced-order model of flexible system is obtained as

Sr :

{
ẋ = f (t, x, y + h(t, x), y = 0) = A1x + Ψθ̃,
˙̃θ = − ΓΞx− σΓθ̂.

(44)

Then for the reduced-order system, choose the Lyapunov function candidate as

Vr(x, θ̃) =
1
2

xT Hx +
1
2

θ̃TΓ−1θ̃, (45)

where H = diag(ka, Me(q)). Along the reduced-order system Sr, the time derivative of
Vr is

V̇r =

[
∂Vr

∂x

]T
f (t, x, y + h(t, x), y = 0) +

[
∂Vr

∂H

]T
Ḣ +

[
∂Vr

∂θ̃

]T
˙̃θ

=− xTΛx− σ

2
θ̃T θ̃− σ

2
(
θ̃+ θ

)T(
θ̃+ θ

)
+

σ

2
θTθ

≤− γ2‖x‖2 − σ

2
‖θ̃‖2 +

σ

2
θTθ

≤−
[
‖x‖, ‖θ̃‖

]
Qr

[
‖x‖
‖θ̃‖

]
+

σ

2
θ̂T

maxθ̂max,

(46)

where γ2 = λmin(Λ),

Λ =

[
k2

a −ka/2
−ka/2 kb

]
, Qr =

[
γ2 0
0 σ/2

]
, (47)

Λ can be kept positive definite by adjustment of ka and kb. Define the sets:

ΩVr
∆
=
{
(‖x‖, ‖θ̃‖) : xTΛx +

σ

2
θ̃T θ̃ ≤ σ

2
θ̂T

maxθ̂max

}
, (48)

ΩC
Vr

∆
=
{
(‖x‖, ‖θ̃‖) : xTΛx +

σ

2
θ̃T θ̃ >

σ

2
θ̂T

maxθ̂max

}
. (49)

Hence, as presented in (45) and (46), for all (‖x‖, ‖θ̃‖) ∈ ΩC
Vr

, Vr > 0 and V̇r < 0, i.e.,
(‖x‖, ‖θ̃‖) will convergence to the residual set ΩVr , and the reduced-order system is stable.



Actuators 2021, 10, 45 9 of 18

4.4. Stability Analysis of the Flexible System

According to the above two Lyapunov functions, the following composite Lyapunov
function candidate for the flexible system is chosen as

V = (1− d)Vr(x, θ̃) + dVb(y), 0 < d < 1, (50)

where d is constant parameter. Then along the original flexible system S, the time derivate
of V is

V̇ =(1− d)

{[
∂Vr

∂x

]T
f (t, x, y + h(t, x)) +

[
∂Vr

∂H

]T
Ḣ +

[
∂Vr

∂θ̃

]T
˙̃θ

}

+
d
ε

[
∂Vb
∂y

]T{
g(t, x, y + h(t, x), ε)− εḣ(t, x)

}
=(1− d)

{[
∂Vr

∂x

]T
f (t, x, y + h(t, x), y = 0) +

[
∂Vr

∂H

]T
Ḣ +

[
∂Vr

∂θ̃

]T
˙̃θ

}

+
d
ε

[
∂Vb
∂y

]T
{g(t, x, y + h(t, x), ε), ε = 0}

+ (1− d)
[

∂Vr

∂x

]T
{ f (t, x, y + h(t, x))− f (t, x, y + h(t, x), y = 0)}

+
d
ε

[
∂Vb
∂y

]T{
g(t, x, y + h(t, x), ε)− εḣ(t, x)− g(t, x, y + h(t, x), ε = 0)

}
.

(51)

Note that the first two terms in (51) are the time derivatives of Vr and Vb with respect
to the reduced-order system and the boundary layer, respectively. From (43) and (46) we
know that they are stable. The remaining two items are the interconnection between the
slow/fast subsystem and the original system. Combining (38), (44) and (45) gives[

∂Vr

∂x

]T
{ f (t, x, y + h(t, x))− f (t, x, y + h(t, x), y = 0)}

= xT H A3y = xT
[

0 0
Jq 0

]
y ≤ ‖x‖‖Jq‖‖y‖ ≤ µ0‖x‖‖y‖,

(52)

where µ0 = sup‖Jq‖. Combining (38), (40) and (42) gives[
∂Vb
∂y

]T{
g(t, x, y + h(t, x), ε)− εḣ(t, x)− g(t, x, y + h(t, x), ε = 0)

}
= 2yTPεA−1

2 B2τ̇∗ = 2εyTP
[
−E2

0

]
τ̇∗ ≤ 2ε‖y‖‖P‖‖τ̇∗‖,

(53)

where P is defined in (41).

Theorem 1. For continuous and bounded qd, q̇d, q̈d,
...
q d, there exists positive constants κ1, κ2, κ3

and positive function κ4(t) satisfying

‖τ̇∗‖ ≤ (κ3 +
1
ε

κ2)‖y‖+ κ1‖x‖+ κ4(t). (54)

Proof of Theorem 1. See Appendix B.
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Substituting (54) into (53), we get

2ε‖y‖‖P‖‖τ̇∗‖ ≤ 2ε‖y‖‖P‖
{
(κ3 +

1
ε

κ2)‖y‖+ κ1‖x‖+ κ4(t)
}

= ε(µ3 +
1

µ2
)‖y‖2 + εµ1‖x‖‖y‖+ εµ4(t)‖y‖ (55)

≤ ε(µ3 +
1

µ2
)‖y‖2 + εµ1‖x‖‖y‖+ µ2

4(t) +
1
4
‖y‖2,

where, µ3 = 2κ3‖P‖, µ2 = 2κ2‖P‖, µ1 = 2κ1‖P‖, µ4(t) = 2κ4(t)‖P‖. Hence, substituting
(43), (46), (52) and (55) into (51), we get

V̇ ≤ −[‖x‖, ‖y‖]Q
[
‖x‖
‖y‖

]
− (1− d)

σ

2
‖θ̃‖2 + dµ2

4(t) + (1− d)
σ

2
θ̂T

maxθ̂max, (56)

where,

Q =

[
(1− d)γ2 − 1

2 [(1− d)µ0 + dµ1]

− 1
2 [(1− d)µ0 + dµ1]

d
ε γ1 − d(µ3 +

1
ε µ2)− 1

4 d

]
. (57)

When

ε <
d(γ1 − µ2)

1
4
[(1− d)µ0 + dµ1]

2

(1− d)γ2
+ dµ3 +

1
4

d

= εu, (58)

Q is a positive definite matrix, which can be easily achieved by adjusting d in this system.
Then define the following sets

ΩV
∆
=

{
Θ : [‖x‖, ‖y‖]Q

[
‖x‖
‖y‖

]
+ (1− d)

σ

2
‖θ̃‖2 ≤ dµ̄2

4(t) + (1− d)
σ

2
θ̂T

maxθ̂max

}
, (59)

ΩC
V

∆
=

{
Θ : [‖x‖, ‖y‖]Q

[
‖x‖
‖y‖

]
+ (1− d)

σ

2
‖θ̃‖2 > dµ̄2

4(t) + (1− d)
σ

2
θ̂T

maxθ̂max

}
, (60)

where Θ = (‖x‖, ‖y‖, ‖θ̃‖), µ̄4(t) = supµ4(t).
Therefore, according to (56), for all (‖x‖, ‖y‖, ‖θ̃‖) ∈ ΩV , V̇ can be positive or negative,

but for all (‖x‖, ‖y‖, ‖θ̃‖) ∈ ΩC
V , V̇ < 0 definitely. It means that for all (‖x‖, ‖y‖, ‖θ̃‖) ∈ ΩV ,

they either converge or diverge, but once they exceed the set ΩV , (‖x‖, ‖y‖, ‖θ̃‖) will remove
towards the origin and converge to the set ΩV again. The singular-perturbation-based
adaptive control with σ-modification method avoids the drift of estimated parameters, and
enables all errors to converge to a residual set. The closed-loop of the flexible system is stable.

5. Experimental Validation
5.1. Experimental Setup

One research prototype of the twin-motor cable driven system is developed as shown
in Figure 4. It is mainly composed of two parts: the transmission system and the control
system. The transmission system includes motors, cables, an arranging mechanism, a
guide rail and sensors. Cables are connected between the motors and the moving platform.
To prevent cables from winding irregularly, the cable arrangement mechanism is also
designed and installed on each motor, so that the cables can be arranged on the rotating
shaft regularly.

The measurement and control system is shown in Figure 5, the hardware includes the
host and slave computers, A/D and D/A boards, drivers, motors and sensors. Based on the
Labview software, the control program is designed with functions of command input, status
detection, data processing and storage. All data in the slave computer will be processed
within 1 ms. Therefore, the applicability of the control method should be considered.
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Figure 4. Component of the flexible cable driven system.
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Figure 5. Framework of the control system.

Experiments are conducted on the test bed to validate the proposed composite adap-
tive control with σ-modification (σ-CAC), and compare with the traditional adaptive
control algorithm (TAC). Specifically, it is to verify that the proposed method helps to
improve the bandwidth of the cable driven system. The parameters of the two controllers
are listed in Table 1.

Table 1. Parameters of two controllers.

Symbol Specification σ-CAC TAC

M̂0 Initial Value of M̂ 20 kg 20 kg
B̂p0 Initial Value of B̂p 10 N/m/s 10 N/m/s
F̂0 Initial Value of F̂ 100 N 100 N
Ĝ0 Initial Value of Ĝ 200 N 200 N
kΓ1 Gain of ˙̂M 0.2 0.2
kΓ2 Gain of ˙̂Bp 1 1
kΓ3 Gain of ˙̂F 0.4 0.4
kΓ4 Gain of ˙̂G 0.2 0.2
ka Feedback gain 15 15
kb Feedback gain 100 100
k1 Coefficient 10 –
k2 Coefficient 10 –

σ
Constant positive

value 0.1 –
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5.2. Experimental Results and Discussion

The tracking command is

qd = Ad[1− exp(−0.1t3)]sin(2π fdt), (61)

where Ad denotes the amplitude, and fd the frequency. The amplitude is fixed at 10 mm,
and experiments with frequencies of fd =2∼9 Hz have been done, respectively. As shown
in Figure 6, both TAC and σ-CAC perform well at 3 Hz, except for the start-up phase. They
both can keep the tracking error within ±1mm. However, because of the compensation of
the fast control law in the σ-TCT, it has a stronger control effect and further reduces the
error within ±0.5 mm. The high-frequency characteristics of the flexible cable show little
effect at 3 Hz.
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Figure 6. Comparison results at 3 Hz. (a) Trajectory tracking of σ-CAC; (b) position error of σ-CAC; (c) trajectory tracking
of TAC; (d) position error of traditional adaptive control (TAC).

The frequency is further increased to 5 Hz, as shown in Figure 7. Compared with 3 Hz,
the performance of the TAC deteriorates. Specifically, the tracking error increases from
±1 to ±1.5 mm, and the phase lags obviously. While the σ-CAC continues to maintain
high accuracy, its error is kept within ±0.5 mm, and phase follows closely. The σ-CAC
shows advantage at 5 Hz.

The frequency is increased to 7 Hz again, as shown in Figure 8. Compared with 3
and 5 Hz, the performance of the TAC gets worse as the frequency increases. The tracking
error increases from the initial ±1 to ±3 mm, and there is a serious phase lag. The σ-CAC
showed consistency in 3, 5, and 7 Hz experiments. This consistency is the evidence that
the σ-CAC can make the flexible system more stable. Compared with TAC, the σ-CAC
significantly improves the performance at 7 Hz.
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Figure 7. Comparison results at 5 Hz. (a) Trajectory tracking of σ-CAC; (b) position error of σ-CAC; (c) trajectory tracking
of TAC; (d) position error of TAC.
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Figure 8. Comparison results at 7 Hz. (a) Trajectory tracking of σ-CAC; (b) position error of σ-CAC; (c) trajectory tracking
of TAC; (d) position error of TAC.

The detailed comparison results of the two controllers in the frequency domain are
recorded in Table 2. It shows that as the frequency increases, their performance deteriorates.
However, the deterioration rate of the σ-CAC is much slower than the TAC. At 9 Hz, the σ-
CAC can still ensure that the phase lag of system is less than 10 degrees and the amplitude
error does not exceed 10%, while, the TAC is already worse than this performance at 6 Hz.
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The σ-CAC successfully increases the system bandwidth from 5 to 9 Hz. As shown in
Figure 9, at 9 Hz, the σ-CAC can still work stably, and the phase lag is about −9.2 degrees.
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Figure 9. Results of σ-CAC at 9 Hz. (a) Trajectory tracking of σ-CAC; (b) position error of σ-CAC.

Table 2. Comparison results of the two control methods.

Frequency (Hz)
σ-CAC TAC

Magnitude Phase (deg) Magnitude Phase (deg)

2 3.65% −2.4 −0.72% 3.6
3 0.39% −3.24 −1.38% −4.32
4 −2.09% −1.44 1.09% −6.91
5 −1.39% −2.16 −6.54% −9.1
6 −0.99% 0.864 −4.64% −12.96
7 −1.17% −1.8 −2.55% −16.13
8 −2.58% −5.78 - -
9 −2.01% −9.2 - -

The above comparative results consistently show that with the increase of the fre-
quency, the influence of the flexible characteristics of the cable on the system control
increases. At low frequencies that far away from the cable characteristics, TAC and σ-CAC
both perform well. However, at high frequencies, the TAC performs poorly for the cable
flexibility. While, the σ-CAC, due to the fast control law compensation, can effectively
weaken the flexible cable influence. Hence, the σ-CAC shows obvious advantages in the
high-frequency experiments. Figures 6–8 and Table 2 directly show that the σ-CAC is
significantly effective for increasing the bandwidth of the flexible system.

6. Conclusions

Based on the singular perturbation theory, a σ-modified adaptive control algorithm has
been proposed to solve the control of a twin-motor cable driven system. The special feature
of this method is that it uses the multi-time scale characteristics of the system to design a
composite control law, which can be divided into fast and slow parts. In addition, to prevent
instability of estimated parameters drift, a σ-modification was applied to the adaptive law.
Then, stability was proved by the Lyapunov stability theorem. Results show that the closed-
loop of the flexible system is stable, and all errors converge into a residual set. One research
prototype of the twin-motor cable driven system has been developed, and experimental
investigation was conducted on both the proposed σ-modified adaptive control method and
conventional adaptive control method. The comparison of experimental results show that
the proposed σ-modified adaptive control method can improve the tracking performance
well, especially for high-frequency motion control, the fast control law compensation
effectively reduces the risk of internal tension instability and enables the system to be stable
with large control gains. The proposed σ-modified adaptive control algorithm successfully
increases the system bandwidth from 5 Hz in the traditional adaptive control algorithm to
9 Hz.



Actuators 2021, 10, 45 15 of 18

Author Contributions: Conceptualization, B.L. and L.Y.; methodology, B.L. and L.Y.; software, B.L.;
validation, B.L. and L.Y.; formal analysis, B.L.; investigation, B.L.; resources, B.L.; data curation,
B.L.; writing—original draft preparation, B.L.; writing—review and editing, B.L., L.Y. and C.G.;
visualization, B.L.; supervision, L.Y.; project administration, L.Y.; funding acquisition, L.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC)
under grant 51875013, the Major Project of Ningbo Science and Technology Innovation 2025 Program
under grant 2019B10071, the Major Project of the New Generation of Artificial Intelligence under
grant 2018AAA0102900, the National Key R&D Program of China under grant 2017YFB1300400, and
Fundamental Research Funds for the Central Universities.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions eg privacy or ethical.

Acknowledgments: The authors are thankful for the support of the Science and Technology on
Aircraft Control Laboratory and Research Institute for Frontier Science, Beihang University, Beijing
100191, China.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

σ-CAC composite adaptive control with σ-modification
TAC traditional adaptive control

Appendix A

Recall (11), the equation can be rewritten as

rm Mq̈ + rmBp q̇ + rmFsign(q̇) + rmG(q) = rm JqT + Jqτ∗ − Jqτ∗. (A1)

Then combining (4), (32) and (A1), we get

Me(q)q̈ + Ne(q, q̇)q̇ + Beq + Fesign(q̇) + Ge(q) = rm JqT + Jqτs − Jqτ∗. (A2)

Substituting the slow control law (22) into (A2) gives

Me(q)q̇r + [Ne(q, q̇) + kd]qr = ΦT(q, q̇, q̇d, q̈d)θ̃+ rm JqT − Jqτ∗. (A3)

Then replace the variables in (A3) with the fast and slow variables defined in (30) and (31)
to get [

ż
q̇r

]
=

[
−ka 1

0 −Me(q)−1[Ne(q, q̇) + kb]

][
z
qr

]
+

[
01×4

Me(q)−1ΦT

]
θ̃

+

[
0 0

Me(q)−1 Jq 0

][
rmT
εrmṪ

]
+

[
0

Me(q)−1 Jq

]
τ∗, (A4)

ẋ =A1x + Ψθ̃+ A3w + B1τ∗. (A5)

Substituting (30) and (31) into (19) gives

ε

[
rmṪ
εrmT̈

]
=

[
0 E

−k1r2
m I−1

m −k2r2
m I−1

m

][
rmT
εrmṪ

]
+

[
0

k1r2
m I−1

m

]
τ∗, (A6)

εẇ =A2w + B2τ∗. (A7)
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Appendix B

Recall the τ∗ defined in (32) and expand it as

τ∗ = τs − r−1
m Im( J̇T

q q̇ + JT
q q̈). (A8)

Combining (11) and (A8) gives

τ∗ + [r−2
m M−1 Im JT

q Jq, 0]w

= τ∗ + [r−2
m M−1 Im JT

q Jq, 0](y− A−1
2 B2τ∗)

= τs − r−1
m Im J̇T

q q̇ + r−1
m Im JT

q M−1[Bp q̇ + Fsign(q̇) + G(q)
]
.

(A9)

Then define
Π(q) = E2 + r−2

m M−1 Im JT
q Jq, (A10)

Equation (A9) can be rewritten as

Π(q)τ∗ =τs − r−1
m Im J̇T

q q̇ + r−1
m Im JT

q M−1[Bp q̇ + Fsign(q̇) + G(q)
]

(A11)

− [r−2
m M−1 Im JT

q Jq, 0]y.

Substituting the slow control law (22) into (A11) gives

Π(q)τ∗ =J+q [M̂e(q)qa + N̂e(q, q̇)qv + B̂e q̇ + F̂esign(q̇) + Ĝe(q)− kbqr]

+ (E2 − J+q Jq)ξ − r−1
m Im J̇T

q q̇ + r−1
m Im JT

q M−1[Bp q̇ + Fsign(q̇) + G(q)
]

(A12)

− [r−2
m M−1 Im JT

q Jq, 0]y,

that is,
τ∗ = τ∗(x, y, θ̃, qd, q̇d, q̈d). (A13)

Hence the time derivative of τ∗ is

τ̇∗ =
∂τ∗

∂x
ẋ +

∂τ∗

∂y
ẏ +

∂τ∗

∂θ̃
˙̃θ+ ρ(t), (A14)

where
ρ(t) =

∂τ∗

∂qd
q̇d +

∂τ∗

∂q̇d
q̈d +

∂τ∗

∂q̈d

...
qd. (A15)

Combining (A14) with (38) gives

τ̇∗ = Π
∂τ∗

∂x
(A1x + Ψθ̃+ A3y) + Π

1
ε

∂τ∗

∂y
A2y + Π

∂τ∗

∂θ̃
(−ΓΞx− σΓθ̂) + Πρ(t). (A16)

From (A16), there exist corollaries satisfying

• Corollary 1

‖Π ∂τ∗

∂x
A3y + Π

1
ε

∂τ∗

∂y
A2y‖ ≤

(
κ3 +

1
ε

κ2

)
‖y‖, (A17)

where

κ2 = sup‖Π ∂τ∗

∂x
A2‖ = sup‖[r−2

m M−1 Im JT
q Jq, 0]A2‖,

κ3 = sup‖Π ∂τ∗

∂x
A3‖.

(A18)
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• Corollary 2

‖(Π ∂τ∗

∂x
A1 −Π

∂τ∗

∂θ̃
ΓΞ)x−Π

∂τ∗

∂θ̃
σΓθ̂+ Π

∂τ∗

∂x
Ψθ̃‖ ≤κ1‖x‖+ σκ6(t) + κ7(t) + κ8(t), (A19)

‖Π ∂τ∗

∂x
Ψθ̃‖ =‖Π ∂τ∗

∂x

[
01×r

Me(q)−1Φθ̃

]
‖ ≤ κ1,3‖x‖+ κ7(t) + κ8(t), (A20)

where

κ1,1 = sup‖Π ∂τ∗

∂x
A1‖, κ1,2 = sup‖Π ∂τ∗

∂θ̃
ΓΞ‖,

κ1,3 = sup‖Π ∂τ∗

∂x

[
01×r

Me(q)−1Y1(q, q̇)

]
‖,

κ1 = κ1,1 + κ1,2 + κ1,3,

κ6(t) = sup‖Π ∂τ∗

∂θ̃
Γθ̂‖,

κ7(t) = sup‖Π ∂τ∗

∂x

[
01×r

Me(q)−1Y2(q, q̇, q̇d, q̈d)

]
‖, (A21)

κ8(t) = sup‖Π ∂τ∗

∂x

[
01×r

Me(q)−1Y3(q, q̇)

]
‖,

Y1(q, q̇) = [M̃e(q)k2
a − Ñe(q, q̇)ka + B̃e,−M̃e(q)ka],

Y2(q, q̇, q̇d, q̈d) = M̃e(q)q̈d + Ñe(q, q̇)q̇d + B̃e q̇d,

Y3(q, q̇) = F̃esign(q̇) + G̃e(q).

• Corollary 3

κ9(t) = sup‖Πρ(t)‖. (A22)

Hence, combining (A17), (A19) and (A22) gives

‖τ̇∗‖ ≤
(

κ3 +
1
ε

κ2

)
‖y‖+ κ1‖x‖+ κ4(t), (A23)

where,
κ4(t) = σκ6(t) + κ7(t) + κ8(t) + κ9(t). (A24)
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