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Abstract: This paper proposes a simple but effective method for characterizing dielectric elastomer
actuators (DEAs), especially for thin stacked DEAs, which are promising for haptic devices but which
measure the dynamic elastic modulus with great difficulty. The difficulty of the measurement of
such a thin stacked DEA arises from the friction and local deformation of the surface between the
DEA and a contact, as shown in this paper. In the proposed method, a DEA is vertically suspended
and a weight is attached to it. The proposed method requires no contact with the surface of a DEA
and uses only a weighting mass. Experimental results demonstrated the proposed method can
estimate almost essential constants, such as the dynamic elastic modulus (Young’s modulus and
damping time constant), the electrical constants (permittivity and resistivity), and the coefficient of
electromechanical coupling, through the forced vibration induced by voltage actuation.

Keywords: soft actuator; dielectric elastomer; characterization; dynamic elastic modulus; electrome-
chanical coupling; frequency response

1. Introduction

Dielectric elastomer actuators (DEAs) are a type of electroactive polymer actuator,
and research on them has been progressing rapidly since the late 1990s [1–3]. A DEA is
made of a thin elastomer laminated with flexible electrodes and requires a higher actuation
voltage than other polymer actuators, but has the advantage of a fast response [3,4]. DEAs
are expected to have many applications, such as automation, robotics, biomedicine, optics,
and acoustic systems [4–7]. Among them, haptic devices are one of the most promising
applications [6,8]. There have been many studies on haptic devices using DEAs, e.g., [8–17].
Stacked DEAs [18,19] are suitable for haptic applications because it is possible to make a
device with a large generating force with a small volume. The studies on haptic devices
using stacked DEAs include, e.g., [20–22].

In haptic applications using stacked DEAs, it is especially important to characterize
and model the mechanical impedance that affects the sense of touch. See, e.g., ref. [23]
for characterization of DEAs. There exist many studies on modeling, for example, [24] for
theory, refs. [25–30] for electromechanical coupling, refs. [29,31–43] for linear and nonlinear
viscoelasticity of materials, and [28,29,33,34,36–39,41,44,45] for equivalent electrical circuits.
For use in applications where DEAs deform slowly and significantly, it is necessary to
employ models and characterizations of nonlinear elasticity and creep deformation.

For use in haptic device applications, on the other hand, our interests include relatively
fast and small deformation and vibration damping. Therefore, it may be sufficient to
employ the model of linear elasticity and vibration damping near the equilibrium point, in
haptic device applications. Haus et al. performed linear modeling of a stacked DEA for
haptic device applications and measured the characteristics of the mechanical impedance
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of the stacked DEA using a voice coil motor and an impedance head [29]. As a result,
Haus et al. succeeded in measuring the mechanical impedance of a relatively thick DEA
(30 layers, thickness of 1500 µm) at frequencies between 0.1 Hz and 10 kHz. However, it is
difficult to measure the mechanical impedance in the thickness direction for thin stacked
DEAs compared to thick stacked ones. In fact, as will be shown in the experimental section
in this paper, the deformation shape of the surface of a thin stacked DEA is not uniform but
localized. Therefore, it is sometimes hardly possible to measure the mechanical impedance
correctly depending on the contact position of the impedance head probe, as shown in
Figure 1.

(a) Small probe

DEA DEA

(b) Large probe

Figure 1. Schematic showing difficulty of surface contact between a probe and a locally deformed
thin stacked dielectric elastomer actuator (DEA). The appropriate contact cannot be achieved both
(a) when a small probe is used and (b) when a large probe is used.

This paper proposes a new and simple characterization method for thin stacked
DEAs that is not affected by friction or local deformation of the surface. In the proposed
method, a DEA with a weight attached is suspended and electrically actuated to measure
the characteristics. Because extra measurement devices like an impedance head are not
required, other than a weight, there is no effect such as friction, and the effect of local
deformation of DEA can be ignored. The proposed method can estimate the viscoelastic
constants, i.e., the dynamic modulus of elasticity, as well as the electromechanical coupling
coefficients and the relative permittivity and resistivity. Experiments using a thin stacked
DEA made of silicone elastomer demonstrated the effectiveness of the proposed method.

2. Thin Stacked Dielectric Elastomer Actuator and Measurement of the Deformation
2.1. Thin Stacked Dielectric Elastomer Actuator

Figure 2 shows a photo of a thin stacked dielectric elastomer actuator (DEA) used in
this study. The dielectric material of the DEA is silicone elastomer (ELASTOSIL FILM 2030,
Wacker Asahikasei Silicone Co. Ltd., Tokyo, Japan) with a thickness of 50 µm per layer.
The electrode material consists of carbon black and elastomer, and has a thickness of 5 µm.
The number of the layers is 10, and the total thickness is about 600 µm. The width of the
DEA is 13 mm.

Figure 2. Photo of a thin stacked DEA.
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2.2. Preliminary Experiment with a DEA Placed Flat

This section shows that it is difficult to properly measure the deformation of a thin
stacked DEA placed in a flat position. The experimental method is as follows.

• A DEA is placed flat on a smooth insulated table (phenol formaldehyde resin, 10 mm
thick).

• A voltage of 750 V is applied to the DEA.
• The deformed shape is measured using a two-dimensional laser displacement sensor

(Keyence, LJ-X8000).

Figure 3 shows the results of measuring the surface shape of DEA using a two-
dimensional laser displacement sensor. The blue dashed line shows the shape in rest, and
the red solid line shows the deformed shape when the voltage of 750 V is applied. In
Figure 3, it is observed that both ends of the DEA are swollen and deformed. On the other
hand, the central part of the DEA is hardly deformed. The reason for such deformation is
thought to be that the friction with the lower table prevented the DEA from extending in
the longitudinal direction. It is also possible that the deformed shape was not uniform and
was localized because no extension was applied from the outside. In conclusion, it can be
seen that the surface shape of the thin stacked DEA placed horizontally without tension is
locally deformed, making it difficult to measure the mechanical impedance.

2D laser profiler

Terminal 
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Figure 3. Schematic of measuring the surface deformation by a 2D laser displacement sensor (left)
and experimentally measured surface deformation (right). The DEA was placed flat on a smooth
flat table. The central part did not become thinner than expected, but the part away from the center
became thicker. The electrode is located from about 4 mm to 20 mm.

2.3. Proposal of Mechanical Impedance Measurement Using a Weight Suspension

This paper proposes a new method for measuring the mechanical impedance of
a thin stacked DEA, which is difficult to measure when placed flat. In the proposed
method, additional weight is attached to a DEA for causing mechanical resonance. The
viscoelasticity of the DEA is estimated from the frequency response electrically excited.

Figure 4 shows a schematic and photo of a suspended DEA with additional weight.
Both ends of the stacked DEA are sandwiched with glass fiber reinforced epoxy polymer
(GFRP) plates. A weight is attached to the free end of the clamped sample. Regarding
the sample used in the experiment, the length of the moving part was 12 mm. Table 1
summarizes the size of the DEA.
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Attached weight

DEA

GFRP plates

Figure 4. The schematic (left) and photo (right) of a DEA sample attached to a weighting mass.

Table 1. Size of the DEA.

Deformable length l [m] 12× 10−3

Length of the electrode le [m] 16× 10−3

Width w [m] 13× 10−3

Width of the electrode we [m] 10× 10−3

Total thickness h [m] 600× 10−6

Thickness of the dielectric hd [m] 50× 10−6

Number of the layers N - 10

3. Modeling
3.1. Model Structure of a Dielectric Elastomer Actuator

We employ the model structure shown in Figure 5 to represent the responses of DEAs.
The input to the actuator is voltage, and the voltage is transformed into electrostatic force.
Since the electrostatic force, or the Maxwell stress to be more precise, is proportional to the
square of the electric field, the actuation force can be modeled as a force proportional to
the square of the voltage occurs. The deformation of the actuator is caused by the stress
generated by the electric field. On the other hand, the electrical admittance models the
system from the voltage input to the current output. A more detailed block diagram will
be shown at the end of this section.

Electromechanical 

coupling

Electrical

admittance
Current

Voltage

Mechanical 

compliance
DisplacementForce 

( Voltage 2 )

Figure 5. Structure of the model of a DEA.

3.2. Mechanical Impedance Model

Figure 6 shows the mechanical impedance model. M represents the mass of the
attached weight, and the other elements represent the DEA. If the mass of a DEA is
sufficiently small compared to the mass of the weight, then M can be assumed to be the
mass of the weight. The employed viscoelastic model is a combination of the Maxwell
and Voigt models, as employed in previous studies [23,29]. K1 represents the in-plane
longitudinal spring constant of the DEA, and C1 represents the damping coefficient for
relatively fast vibrations. C2 and K2 express slow creep characteristics (viscoelasticity),
and the creep can be ignored at relatively fast vibrations as described later. In usual cases,
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C1
K1
� C2

K2
holds. B represents the electromechanical coupling coefficient from the square of

the voltage to the generated force.
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DEA

Attached weight

Figure 6. Mechanical impedance model of a suspended DEA.

The equation of motion of the system is derived based on the model shown in Figure 6.{
Mÿ + C1ẏ + K1y + C2(ẏ− ẏ2) = BV2

K2y2 + C2(ẏ2 − ẏ) = 0
(1)

where y denotes the displacement of the mass M and y2 denotes the displacement of the
stiffness K2. Here, to derive the transfer function, we replace V2 with a new variable u
defined as follows.

u := V2 (2)

The transfer function from u to y is defined as G. The transfer function G is obtained by the
Laplace transform of the equation of motion, Equation (1).

G(s) =
B

Ms2 + sZmech(s)
(3)

where s denotes the Laplace variable and Zmech denotes the mechanical impedance.

Zmech(s) = C1 +
K2C2

C2s + K2
+

K1

s
(4)

We approximate the mechanical impedance model Equation (4) by considering that the
time constant (period) of vibration is much smaller than that of the creep. In Equation (4),
the second term including C2 is related to creep deformation. The creep deformation is
usually slow, and the creep time constant is about several seconds to several tens of seconds.
The creep time constant is defined as:

τ2 :=
C2

K2
. (5)

Since the time constant of this creep deformation is sufficiently large compared to the
vibration period (less than 0.1 s), we can neglect the creep dynamics. If we consider
the frequency ranges ω � τ−1

2 rad/s where the creep deformation can be ignored, the
mechanical impedance can be approximated as:

Zmech(s) ≈ C1 +
K1 + K2

s

(
s = jω, ω � τ−1

2

)
(6)

where j =
√
−1. Substituting Equation (6) into Equation (3), we obtain the approximated

G as:
G(s) ≈ B

Ms2 + C1s + K

(
s = jω, ω � τ−1

2

)
(7)
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where
K := K1 + K2. (8)

The mechanical impedance parameters K and C1 and the electromechanical coupling
coefficient B can be estimated from the curve fitting of the frequency response if one
obtains the frequency response of G.

It is useful to find the material constants, which do not depend on the shape or size
of a DEA, once one obtains the constants of the actuator. The Young’s modulus E (Pa) is
derived from the estimated spring constant K.

E =
Kl
hw

(9)

where h, l, and w denote the thickness, effective length, and width of the actuator, respec-
tively. The conversion of C1 and B to the corresponding equivalent material constants is
also shown below. The damping time constant τ1 is defined as:

τ1 :=
C1

K
. (10)

The dynamic modulus, denoted by E∗ (Pa), can be consequently expressed as follows using
E, τ1, and the angular frequency ω.

E∗ ≈ (1 + jωτ1)E
(

ω � τ−1
2

)
(11)

3.3. Electrical Impedance Model

The model of the electrical impedance of a DEA is shown in Figure 7. Rs is the
equivalent series resistance corresponding to the electrode resistance, C is the capacitance,
and Rp is the equivalent parallel resistance corresponding to the electrical resistivity of
the dielectric material. The model consists of three elements, as employed in previous
studies [23,29]. From Figure 7, the circuit equation is obtained as:{

Va(t) = Rsi(t) + V(t)
i(t) = R−1

p V(t) + CV̇(t). (12)

The transfer function from the current I to the voltage Va, that is, the electrical impedance
Zelec, can be obtained from the Laplace transform of Equation (12).

Zelec(s) =
RsCs + RsR−1

p + 1

Cs + R−1
p

(13)

The frequency response of the electrical impedance Zelec can be approximated depending
on the frequency band.

Zelec(jω) ≈


Rs + Rp (ω � R−1

p C−1)
1

jωC (R−1
p C−1 � ω � (R−1

s + R−1
p )C−1)

Rs (ω � (R−1
s + R−1

p )C−1)

(14)

At the low frequency of ω � R−1
p C−1, the influence of the leakage current becomes

dominant, and the frequency response of impedance is asymptotic to that of Rp (and
Rs). In the range of (R−1

p C−1 � ω � (R−1
s + R−1

p )C−1), the frequency response is
asymptotic to that of a capacitor with a capacitance of C. At the high frequency of ω �
(R−1

s + R−1
p )C−1, the influence of the electrode resistance becomes dominant, and the

impedance asymptotically approaches Rs.
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Equivalent series resistance

Equivalent parallel resistance
Capacitance

Figure 7. Electrical impedance model of a DEA.

The transfer function from Va to V, denoted by GVVa , may be useful for considering
voltage attenuation or electrode-resistance loss in high frequencies.

GVVa(s) =
1

RsCs + RsR−1
p + 1

(15)

However the difference of V and Va is negligible in the model. GVVa(jω) ≈ 1 if the
frequency ω is sufficiently small such that the effect of Rs is negligible, i.e., ω � (R−1

s +
R−1

p )C−1. Therefore, V ≈ Va, that is, the effective voltage V applied to the dielectric, is well
approximated by the terminal voltage Va, for ω � (R−1

s + R−1
p )C−1. As shown in the later

experimental section, the cut-off frequency (over 1 kHz in the experiment) is sufficiently
higher than the natural frequency (about 23 Hz in the experiment) of the mechanical
vibration, therefore the approximation V ≈ Va holds in the experiment in this paper.

Regarding the material constants estimated from the equivalent circuit parameters,
the equivalent relative permittivity of the dielectric material is estimated from the capaci-
tance C.

εr =
Chd

ε0leweN
(16)

where ε0 is the permittivity of vacuum and lewe represents the effective electrode area. The
electrical resistivity (or volume resistivity), denoted by ρp, is estimated from the equivalent
parallel resistance Rp.

ρp =
leweNRp

hd
(17)

3.4. Electromechanical Coupling Coefficient

It is useful to define the “material” electromechanical coupling coefficient, as well
as the electromechanical coupling coefficient B. The material electromechanical coupling
coefficient may be defined as the stress generated for the squared applied electric field. For
an ideal dielectric elastomer with simple boundary conditions, the actuation pressure is
given by εrε0(V/hd)

2 [23]. Therefore, in ideal cases, the permittivity corresponds to the
material electromechanical coupling coefficient. Let βl be the electromechanical coupling
ratio representing the ratio relative to the ideal electrostatic stress in the longitudinal
direction when the voltage is applied in the thickness direction.

σl = βlεrε0

(
V
hd

)2
(18)

where σl denotes the actuation stress and hd denotes the thickness of the single dielectric
layer. Note that βl = 1 for ideal DEAs. The actuation force in the longitudinal direction is
derived from σl and is therefore modeled as BV2 = Nσlhdwe. Thus, from Equations (16)
and (18), βl is calculated as

βl =
Bh2

d
εrε0Nhdwe

=
Ble
C

. (19)



Actuators 2021, 10, 40 8 of 14

3.5. Overall Model

We can obtain the overall model with the input as V and the output as y and I by
combining all the electromechanical coupling, mechanical system, and electrical system
models. Figure 8 shows the block diagram of the overall model. Note that the model
assumes a linear system except for the non-linearity of u = V2.

Electrical admittance

Current

Applied voltage

Mechanical impedance

Mass of the weight

Displacement

Force

Electromechanical coupling

Electrode resistance loss

Figure 8. Block diagram of the overall model.

4. Experiment
4.1. Experimental Setup and Method

Figure 9 shows a schematic of the wiring of the experimental setup. The displacement
of the suspended DEA is measured at the upper surface of the stainless steel weight
attached to the actuator with an eddy current displacement sensor (Keyence, EX-305). A
high-voltage amplifier (Matsusada, HEOPS-5B6-L1) is used for applying voltages to the
DEA. The detail of the stacked dielectric elastomer actuator used in the experiment has
been shown in Section 2.1.

Eddy current 

displacement sensor

DEA

Function generator

Data logger

High-voltage amp.

V
-m

o
n

i Vin

Vout
GND

I
-m

o
n

i

High voltage

Signal

Figure 9. Schematic of the wiring of the experimental setup.

The experimental procedure is as follows.

1. A weight is attached to the DEA and let hang. Two types of weights (M = 52.8 g or
M = 34.9 g) are used to investigate the effect of different prestress.

2. Swept sinusoidal voltage is applied to the DEA. The applied voltage is 0 V to 750 V,
the frequency range is 0.02 to 5000 Hz divided into five, and the swept sine wave is
output from a function generator. The divided ranges are shown in Table 2.

3. The displacement of the weight is measured and recorded in a data logger together
with the voltage and current. Experiments are performed three times for averaging.

4. The frequency response is calculated based on the recorded voltage, current, and
displacement. The tfestimate function (MATLAB, MathWorks) can estimate the
frequency response based on the averaged spectra, and the influence of noise can be
reduced. Besides, estimation is performed for each frequency range shown in Table 2,
and the estimated frequency responses are concatenated together.

5. The transfer function is identified from the estimated frequency response. For the
mechanical model, use Equation (7), and for the electrical model, use the inverse of
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Equation (13). The invfreqs function (MATLAB, MathWorks) is used to identify the
transfer function.

Table 2. Segmented frequency range of the swept sinusoidal input.

Input Frequency [Hz] Sampling Frequency fs [Hz] Length of the Record T [s]

(1) 0.02 to 0.2 20 500
(2) 0.1 to 5 20 500
(3) 1 to 50 200 50
(4) 10 to 500 2000 5
(5) 100 to 5000 20,000 0.5

4.2. Results and Discussions: Identification of the Mechanical Model

Figure 10 shows a typical example of the time response of displacement when a sweep
sinusoidal voltage of 1 to 50 Hz is applied. Figure 10 shows the case of weight M = 52.8 g.
The upper figure shows the time series of the voltage, and the lower side is the time series
of the displacement. We can observe a large resonance around 28 s.

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

V
o
lt

ag
e 

[V
]

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-1

0

1

D
is

p
la

ce
m

en
t 

[m
]

10
-4

Figure 10. Measured time history of the swept voltage input and the displacement. In this case the
frequency range is selected as 1 to 50 Hz. The graph shows the case of weight M = 52.8 g.

Based on the obtained time response data, the frequency response from U to Y was
estimated by spectral analysis. Figure 11 shows the coherence, gain, and phase in order
from the top. The solid blue line is the estimated frequency response. Figure 11 shows the
case of weight M = 52.8 g. When the mass of the weight was M = 34.9 g, similar results
were observed except that the resonance frequency was high. The frequency response
shows good agreement with the typical characteristics of the second-order transfer function
shown in Equation (7). A resonance peak of 23 Hz is clearly confirmed from the gain
graph in Figure 11. Moreover, as shown in the phase graph in Figure 11, the phase changes
smoothly from 0 degrees to 180 degrees near the resonance.
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Figure 11. Coherence (top), gain (middle), and phase (bottom) of the experimental frequency
response (blue solid line) of the mechanical compliance. The identified model G (red dashed line) is
also shown. The graph shows the case of weight M = 52.8 g.

On the quality of the frequency response data, the coherence is almost 1 between
0.03 Hz and 100 Hz and the data reproducibility is high except for some frequencies (around
2 Hz and around 12 Hz), as shown in the coherence graph in Figure 11. The noise around
2 Hz corresponds to the natural frequency of the pendulum motion, and the noise around
12 Hz corresponds to that of the laboratory table. The low coherence at frequencies over
100 Hz due to the vibration displacement was too small to measure.

It should be noted that the pendulum vibration, around 2 Hz noise in this experiment,
may occur as undesirable motion in the proposed method. Figure 12 is a side view of
the suspended DEA that measures displacement, and the figure on the left shows the
vertical motion assumed in the model. The figure on the right side of Figure 12 shows
the undesirable pendulum motion by the influence of disturbance. However, because the
weight is selected so that the natural frequency of the vertical vibration mode is not close to
that of the pendulum vibration mode, we expect that the coefficient of the transfer function
identified by the fitting will not be affected.

~23Hz

~2Hz

Figure 12. Dominant vertical vibration mode (left) and minor pendulum vibration mode (right).

The identified transfer function is overlaid with red dashed lines. The identified model
(dashed red line) and the estimated frequency response (solid blue line) agree very well
between 0.03 Hz and 100 Hz. Table 3 shows the constants estimated from the identified
transfer functions. The estimated Young’s modulus is in good agreement with that of the
datasheet of Elastosil (E = 0.5 to 2 [MPa]) [46]. Further, the damping time constant τ1 and
the electromechanical coupling ratio βl are also obtained.
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Lastly, the effects of weights or prestress should be addressed. It is known that the
characteristics of DE are greatly affected by the magnitude of prestress (e.g., [47]). The
difference between K and E is considered to be due to nonlinear elasticity. Moreover, the
differences in the electrical coupling B and βl are thought to have been affected by the
magnitude of prestress. However, further investigation of the effect of prestress will be
required as the future direction of this study.

Table 3. Estimated parameters of the mechanical model and the electromechanical coupling.

Attached mass M kg 52.8× 10−3 34.9× 10−3

(Equivalent prestress) σl0 Pa 66.4× 103 43.9× 103

Spring constant K [N/m] 1.11× 103 1.45× 103

Damping coefficient C1 [Ns/m] 0.54 0.45
Electromechanical coupling coefficient B [N/V2] 25.3× 10−9 18.1× 10−9

Young’s modulus E Pa 1.71× 106 2.23× 106

Damping time constant τ1 [s] 0.482× 10−3 0.311× 10−3

Electromechanical coupling ratio βl - 0.722 0.630

4.3. Results and Discussions: Identification of the Electrical Model

Figure 13 shows the coherence, gain, and phase of the frequency response from the
applied voltage to the flowing current. Figure 13 shows the case of weight M = 52.8 g.
When the mass of the weight was M = 34.9 g, similar results were observed except for
the gain difference corresponding to the difference of the capacitance. In Figure 13, the
coherence is high from 5 Hz to 5 kHz and the quality of the frequency response data is
good. The graph shows a typical capacitive response in the frequencies from 5 Hz to 1 kHz
since the gain increases linearly and the phase remains about 90 degrees. At frequencies
lower than 5 Hz, the coherence is low, and the gain and phase are also disturbed. This is
because there are almost no current flows and adequate measurement is not possible. At
frequencies higher than 3 kHz, the phase is below 0 degrees. This is probably due to the
effect of the noise filter on the monitor terminals of the amplifier.

The red dashed line in Figure 13 shows the transfer function identified using the
inverse of Zelec in Equation (13). Table 4 shows the estimated electrical constants obtained
by the identification. The identified model and the frequency response are in good agree-
ment from 1 Hz to 1 kHz. The frequency range from 1 Hz to 1 kHz corresponds to that of
capacitive impedance as shown in Equation (14); therefore, the estimated value of C is con-
sidered to be valid. However the estimated relative permittivity (εr = 1.98 for M = 52.8 g
and εr = 1.63 for M = 34.9 g) deviates from the datasheet value (εr = 2.8) [46]. This is
probably due to the differences of the voltage amplitudes used in the proposed method
and in the typical electrical measurement. The proposed method uses large-amplitude
voltages but typically the permittivity can be measured using an impedance analyzer with
small-amplitude voltage.

The estimated values of Rp and Rs are not very reliable because of the current measure-
ment limit at low frequencies below 1 Hz and the unmodeled phase lag at high frequencies
above 1 kHz. The estimated relative resistivity ρp is less than the one shown in the datasheet
(ρp = 1012 Ωm) [46]; however, it is difficult to precisely measure such high resistivity by
the current monitor of the amplifier used in the experiment. The estimation errors of Rp
and Rs are also not expected to have a significant impact on the model of haptic devices in
the practical frequency range.

The effects of the weights or prestress in the electrical characterization should be
addressed as was similarly discussed in Section 4.2. The difference in the capacitance
can be clearly explained because the heavier weight causes larger deformation and larger
capacitance. The difference in the permittivity εr is thought to have been affected by the
magnitude of prestress.
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Figure 13. Coherence (top), gain (middle), and phase (bottom) of the experimental frequency
response (blue solid line) of the electrical admittance. The identified model Z−1

elec (red dashed line) is
also shown. The graph shows the case of weight M = 52.8 g.

Table 4. Estimated parameters of the electrical model.

Attached mass M kg 52.8× 10−3 34.9× 10−3

(Equivalent prestress) σl0 Pa 66.4× 103 43.9× 103

Capacitance C F 0.561× 10−9 0.461× 10−9

Equivalent parallel resistance Rp Ω >6.10× 109 >17.6× 109

Equivalent series resistance Rs Ω <202× 103 82.5× 103

Relative permittivity εr - 1.98 1.63
Resistivity ρp Ωm >0.195× 1012 >0.562× 1012

5. Conclusions

This paper proposed a new method of characterization of DEAs. The proposed method
is particularly suitable for estimating the dynamic elastic modulus, which characterizes the
vibration damping of thin stacked DEAs, because it is not almost affected by friction and
local deformation, and it can also estimate the electromechanical coupling and electrical
constants. The experiment is very simple since the proposed method requires only a weight
attached to the DEA and a displacement (or velocity or acceleration) sensor, other than
a high-voltage amplifier and a data acquisition device. It is expected that the proposed
method will be widely employed as a simple method for the characterization of DEAs.

The future direction of this paper includes the investigation of the effect of the choice of
weight or prestress. Moreover, another direction may include the estimation of viscoelastic
constants associated with slow creep deformation using similar experimental methods.
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The following abbreviations are used in this manuscript:

DE Dielectric elastomer
DEA Dielectric elastomer actuator
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