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Abstract: This paper presents a tracking control method for pneumatic muscle actuators (PMAs).
Considering that the PMA platform only feedbacks position, and the velocity and disturbances
cannot be observed directly, we use the extended-state-observer (ESO) for simultaneously estimating
the system states and disturbances by using measurable variables. Integrated with the ESO, a super
twisting controller (STC) is design based on estimated states to realize the high-precision tracking.
According to the Lyapunov theorem, the stability of the closed-loop system is ensured. Simulation
and experimental studies are conducted, and the results show the convergence of the ESO and the
effectiveness of the proposed method.

Keywords: extended-state-observer; super twisting control; pneumatic muscle actuator

1. Introduction

In recent years, pneumatic muscle actuators (PMAs), a kind of bio-inspired actuator,
have gradually become an important research branch in the robotic field [1–3] because
soft actuators improve the system’s flexibility and further promote the safety and comfort
of human-computer interaction [4,5]. Remarkably, because of the advantages of simple
structure, light material, and high power-weight ratio, PMAs are widely used in the robot
field, such as robot arms [6], and exoskeletons [7–9] etc. However, the PMA’s elastic
deformation and friction lead to the features of nonlinearities, uncertainties, time-varying
parameters, and hysteresis etc. [10], causing the PMA challenging to be modeled and
controlled accurately.

Currently, PMA’s control approaches can be mainly divided into two categories:
model-based control methods and model-free ones. Model-free control algorithms include
the proportional-integral-derivative (PID) control [11–13], neural network control [14,15],
fuzzy control [16,17], model-free adaptive control [18], etc. However, PID control has
poor tracking performance when it handles the problem with strong nonlinearity. The
model-free adaptive control suffers from low tracking accuracy and poor robustness when
the adaptive gain is too large or too small. Besides, both neural networks and fuzzy control
belong to intelligent control methods whose global approximation capability makes them
very suitable for applications in nonlinear uncertain systems [19]. However, they may
bring a great computational burden to the system when they handle large scale neurons or
complex information. On the other hand, the model-based control algorithms can better
handle system uncertainties/disturbances and improve the robustness. One of the most
widely used model-based algorithms is the sliding mode control (SMC), which contains
a discontinuous function to force the system states always on the sliding surfaces [20,21].
It is remarkable that the sliding surfaces are independent of the plant parameters and
disturbances so that the SMC has strong robustness to parameter uncertainties and ex-
ternal disturbances. However, the bandwidths of sensors and actuators are limited in
physical applications, resulting in a severe chattering phenomenon. Several methods have
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been investigated to deal with this problem. Huang presented a high-order disturbance
observer-based SMC to alleviate the chattering phenomenon for underactuated robotic
systems [22,23]. Proxy-based robust control assumes a non-zero mass proxy between the
controlled object and the desired trajectory, improving tracking safety and eliminating the
chattering simultaneously [24,25]. Another branch methods are high-order SMC where
super twisting control (STC), a typical second-order SMC, is widely used. Since the discon-
tinuous term in STC proceeds on the second-order time derivative, the STC is capable of
effectively reducing the chattering and converge in finite-time [26]. At present, STC has
been widely used in the study of various applications, including four-rotor UAV track-
ing [27], mobile wheel inverted pendulum system [28]. Generally, the controller design
requires the PMA’s position and speed feedback. Nevertheless, the general PMA system
only feedbacks position, and the velocity cannot be observed directly. A standard method
is to use the state observer to realize speed observation, and such observers can estimate
system states and disturbances simultaneously so that the robustness of the system can
be significantly improved. The common observer is called extended-state-observer (ESO),
which regards all factors affecting the plant, including the nonlinear dynamics, uncer-
tainties, and the external disturbances as a total disturbance to be observed [29]. Thus, it
can estimate the uncertainties along with the states of the system, enabling disturbance
rejection or compensation. It is worth noting that although some studies have shown the
control of PMA by STC, it is often assumed that all system states, including displacement
and velocity, are observable. In fact, the velocity of the PMA cannot be directly observed.
Thus, we introduce an ESO to estimate the unobservable variables, including velocity
and disturbances. Although the ESO and STC have been widely used, to the best of our
knowledge, there were few studies combining these methods for the PMA system, and
there is no successful case in this aspect. Also, the related studies were often used to control
the electromechanical systems with fast response. However, unlike the motor, the response
of the PMA system is rather slow. It is still meaningful to carry out relevant research to
verify whether this method can be used to control PMAs.

In this paper, we propose an ESO-based STC for high-precision tracking of PMAs.
Based on the dynamical model of the PMA, the ESO enables the system states and dis-
turbances to be estimated by using the measurable variables, and the stability analysis
of the ESO indicates that the estimated errors are ultimately uniformly bounded. Due to
the unobservable of the PMA’s motion speed and disturbances, the ESO is integrated into
the STC by defining the sliding manifold with state estimations. Based on the Lyapunov
theorem, the stability of the closed-loop system is guaranteed, and the simulation and ex-
perimental studies show the effectiveness and superiorities of the proposed ESO-STC. Since
the proposed method presents well in the PMA tracking control, it has a good prospect of
becoming an excellent pneumatic rehabilitation robot control approach.

The rest of this paper is organized as follows. In Section 2, the three-element-model of
the PMA with disturbances is presented. The STC with the ESO is designed in Section 3.
Section 4 performs numerical simulation shows the effectiveness of the proposed method,
and experiments studies compare the performance of the proposed controller with those
of the traditional STC and the PID controller. The final section provides some conclud-
ing comments.

2. Problem Formulation

The typical manufacture of the PMA is an elastic rubber tube wrapped in the braided
mesh shell. When the inner air pressure of the PMA increases, the rubber tube expands,
the diameter largens in the radial direction and the length decreases in the axial direction,
simultaneously. In this situation, the braided mesh shell limits the excessive expansion of
the rubber tube. While the PMA is deflated, it will return to its original length, due to the
elasticity of the rubber tube. Therefore, even if there is no load to pull, the PMA will return
to its original length after deflation. This means that without additional load, the internal
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air pressure of the PMA determines its displacement. In the case of additional load, the
displacement of the PMA is related to the resultant force exerted on the PMA.

The dynamics of a PMA is usually described by using the Three-element-model
which is comprised of a spring element, a damping element and a contractile element in
parallel [30]. Its dynamics is formulated by:

mẍ + b(P)ẋ + k(P)x = f (P)−mg
b(P) = b0 + b1P
k(P) = k0 + k1P
f (P) = f0 + f1P

(1)

where x is the PMA displacement. m is the load mass. g is the acceleration of gravity.
b(P), k(P) and f (P) are the damping element, the spring element and the contractile force,
respectively. b0, b1, k0, k1, f0 and f1 are model parameters. The inner pressure of a PMA
P can be dented as the control signal. Remarkably, the damping coefficients vary with
inflation and deflation, so the damping element is expressed as:{

b(P) = b0i + b1iP (in f lation)
b(P) = b0d + b1dP (de f lation)

(2)

Whereas the parameters of the Three-element-model are difficult to be identified
such that the system uncertainties, including unmodel dynamics, friction and inaccurate
parameters, etc., cannot avoid. The dynamics of the PMA can be rewritten with the
disturbances denoted as d. 

ẋ1 = x2
ẋ2 = g0u + d∗

d∗ = f (x1, x2) + ∆g · u + d
(3)

with {
f (x1, x2) =

1
m ( f0 −mg− b0x2 − k0x1)

g(x1, x2) = g0 + ∆g = 1
m ( f1 − b1x2 − k1x1)

where f (x1, x2) and g(x1, x2) are nonlinear terms. g0 is a constant and ∆g is the unknown
increment. u is the inner pressure. d∗ is the augmented disturbances that contain the
information of the lumped disturbances d and nonlinear terms.

Assumption 1. The unknown lumped disturbance d∗ is continuous and its derivative satisfies∣∣ḋ∗∣∣ ≤ εm (4)

where εm is an unknown positive constant.

Lemma 1. [31] Given a differentiable continuous function Ψ(t) satisfying

σ1 ≤ |Ψ(t)| ≤ σ2 (5)

with positive constant σ1 and σ2. The derivative Ψ̇(t) is also bounded.

3. Extended-State-Observer-Based Super Twisting Control for PMAs
3.1. Extended-State-Observer

In the PMA plant, the state x1 is directly measured by a displacement sensor. However,
most of the controller needs the all state information, so first we reconstruct the other states
of the system by using the ESO in the following form:
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˙̂x1 = x̂2 + β1(x1 − x̂1) (6)
˙̂x2 = d̂∗ + β2(x1 − x̂1) + g0u (7)
˙̂d∗ = β3(x1 − x̂1) (8)

where x̂1 and x̂2 are the estimations of x1 and x2, respectively. d̂∗ is the estimation of d∗. β1,
β2 and β3 are selected to ensure the stability of the ESO.

Let x̃1 = x1 − x̂1, x̃2 = x2 − x̂2 and d̃∗ = d∗ − d̂∗ the state errors. From (3)–(8), the
system can be denoted as:

˙̃x1 = ẋ1 − ˙̂x1 = −β1 x̃1 + x̃2 (9)
˙̃x2 = ẋ2 − ˙̂x2 = −β2 x̃1 + d̃∗ (10)
˙̃d∗ = ḋ∗ − ˙̂d∗ = −β3 x̃1 + ḋ∗ (11)

The state error X̃ = [x̃1, x̃2, d̃∗]T is defined to rewrite (9)–(11) as:

˙̃X = A1X̃ + B1 (12)

A1 =

 −β1 1 0
−β2 0 1
−β3 0 0

, B1 =

 0
0
ḋ∗

 (13)

According to (12) and (13), it is always possible to select β1, β2 and β3 in such a way
that the eigenvalues of A1 are in the left hand plane, by which it is possible to find a positive
definite matrix P1 such that

AT
1 P1 + P1 A1 = −Q1 (14)

for any given positive definite matrix Q1. Defining a Lyapunov candidate

V(X̃) = X̃TP1X̃ (15)

and evaluating V̇(X̃) along (15)

V̇(X̃) = ˙̃X
T

P1X̃ + X̃TP1
˙̃X

= (A1X̃ + B1)
TP1X̃ + X̃TP1(A1X̃ + B1)

= X̃T AT
1 P1X̃ + X̃TP1 A1X̃ + 2BT

1 P1X̃

= −X̃TQ1X̃ + 2BT
1 P1X̃ (16)

≤ −λm(Q1)
∥∥X̃
∥∥2

+ 2εm‖P1‖
∥∥X̃
∥∥

= −
∥∥X̃
∥∥(λm(Q1)

∥∥X̃
∥∥− 2εm‖P1‖)

After a sufficiently long time, the norm of the state error X̃ is bounded by

∥∥X̃
∥∥ ≤ 2εm‖P1‖

λm(Q1)
(17)

where λm(·) is the smallest eigenvalue of a matrix. Therefore, the estimation error of the
disturbance d̃∗ is bounded, and according to Lemma 1, the derivative of d̃∗ is bounded by:∣∣∣ ˙̃d

∗∣∣∣ < L (18)

where L is a positive constant.
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3.2. Extended-State-Observer-Based Super Twisting Control

The control object of the PMA is to drive the displacement to track the desired trajec-
tory. In this paper, the STC is considered to realize this task. First, the sliding manifolds are
defined as:

s = c1e1 + ê2 = c1(x1 − x1d) + (x̂2 − x2d) (19)

where c1 is a positive constant. x1d is the desired trajectory, and x2d = ẋ1d. e1 = x1 − x1d is
the state error and ê2 = x̂2 − x2d is the error of the state estiamtion.

The scale state variables ψ = [ψ1, ψ2]
T are defined as

ψ =

[
ψ1
ψ2

]
=

 |s|
1
2 sgn(s)

−
t∫

0
k2sgn(s)dτ + d̃∗

 (20)

The derivatives of ψ1 and ψ2 are given by:

ψ̇1 =
d|s|

1
2 sgn(s)
dt

=
d|s|

1
2

ds
ds
dt

sgn(s)

=
d|s|

1
2

d|s|
d|s|
ds

ds
dt

sgn(s)

=
d|s|

1
2

d|s|
d
√

s2

ds2
ds2

ds
ds
dt

sgn(s) (21)

= (
1
2
|s|−

1
2 )(

1
2
|s|−1)(2s)ṡsgn(s)

=
1
2
|s|−

1
2 ṡ =

1
2|ψ1|

ṡ

ψ̇2 = −k2sgn(s) + ˙̃d∗

= |s|−
1
2 (−k2|s|

1
2 sgn(s) + ˙̃d∗sgn(s)|s|

1
2 sgn(s)) (22)

=
1
|ψ1|

(−k2ψ1 +
˙̃d∗sgn(s)ψ1)

From (3) and (20)–(22), the controller is given by:

u =
1
g0

(ẋ2d − c1 ė1 − β2(x1 − x̂1)− k1|s|
1
2 sgn(s)−

t∫
0

k2sgn(s)dτ − d̂∗) (23)

Then, the derivatives of the scale state variables can be rewritten as:

ψ̇ =

[
ψ̇1
ψ̇2

]
=

[ 1
2|ψ1|

(−k1ψ1 + ψ2)
1
|ψ1|

(−k2ψ1 +
˙̃d∗sgn(s)ψ1)

]

= 1
|ψ1|

[
− 1

2 k1
1
2

−k2 +
˙̃d∗sgn(s) 0

][
ψ1
ψ2

]
= 1
|ψ1|

A2ψ

(24)

with

A2 =

[
− 1

2 k1
1
2

−k2 +
˙̃d∗sgn(s) 0

]

Theorem 1. Using the control (23) for the PMA system (3), the closed-loop system is asymptoti-
cally stable.
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Proof. The Lyapunov candidate is defined:

V = ψTPψ (25)

with

P =

[
p1 p2
p3 p4

]
where P is a positive matrix.

Remark 1. Due to the term ψ1 = |s|1/2sgn(s), the Lyapunov function V is not continuously
differentiable on the set D = {(ψ1, ψ2) ∈ R2|ψ1 = 0}. Actually, this problem has been addressed
in [26]. It proved that the Lyapunov function V is an absolutely continuous function of time on
the set D = {(ψ1, ψ2) ∈ R2|ψ1 = 0}, and V converges to zero in a finite time if and only if V̇
is negative definite almost everywhere [32]. This indicates that V can still be used as a Lyapunov
function that ensures the stability of the closed-loop system.

Evaluating the derivative of (25), it is given by

V̇ = ψ̇TPψ + ψTPψ̇

= (
1
|ψ1|

A2ψ)TPψ + ψTP(
1
|ψ1|

A2ψ) (26)

=
1
|ψ1|

ψT(AT
2 P + PA2)ψ

Let

Q2 = −(AT
2 P + PA2) (27)

When Q2 is positive definite, V̇ < 0 is satisfied.
To simplify the expression, P is assumed to be symmetric and the first element of P

equals 1, p2 = p3 and p1 = 1. Please note that Q2 is:

Q2 = −
[
− 1

2 k1 −k2 +
˙̃d∗sgn(s)

1
2 0

][
p1 p2

p3 p4

]
+

[
p1 p2

p3 p4

][
− 1

2 k1
1
2

−k2 +
˙̃d∗sgn(s) 0

]
(28)

= −
[

−k1 + 2(−k2 +
˙̃d∗sgn(s))p2

1
2 −

1
2 k1 p2 + (−k2 +

˙̃d∗sgn(s))p4
1
2 −

1
2 k1 p2 + (−k2 +

˙̃d∗sgn(s))p4 p2

]

It is remarkable that P and Q2 should be positive definite, thus the following inequalities
should hold:{

p4 > p2
2

−k1 p2 + 2(−k2 +
˙̃d∗sgn(s))p2

2 − ( 1
2 −

1
2 k1 p2 + (−k2 +

˙̃d∗sgn(s))p4)
2
> 0

(29)

We define auxiliary variables χ, α, β, γ to satisfy the following equations:

k1 = χ

√
2γ

(1− β)α

√
L, k2 =

(β + 1)
(1− β)

L (30)

p1 = 1, p4 =
(1− β)α

2L
, p2 = p3 = −

√
(1− β)α

2γL
= −

√
p4

γ
(31)

From (18), the following inequality holds.

k2 − L ≤ k2 − ˙̃d∗sgn(s) ≤ k2 + L (32)
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Bringing (30)–(32) into (29), (29) will hold when the auxiliary variables satisfy{
γ > 1, χ > 0, 0 < β < 1, α > 0

χ− 2
γ α > α2 − β(1 + χ)α + 1

4 (1 + χ)2 (33)

Hence, it is easy to find a set of auxiliary variables to ensure that (29) holds. Consequently,
V̇ < 0.

This completes the proof.

4. Simulation Studies

In this section, the proposed control method drives the PMA to track the desired
trajectory. All the simulations were programmed with MATLAB, version 2013b, and were
run on a PC with a clock speed of 3.6 GHz and 8-GB RAM in a Microsoft Windows 10
environment.

The desired trajectory is set as a sinusoidal trajectory, as shown:

x1d = A sin(2πwt) + B (34)

where w = 0.25, A = 0.015 m and B = 0.015 m are the parameters set accordingly. The
control parameters of the ESO-STC are selected as: β1 = 113.4, β2 = 1.4 × 105, β3 =
1.0× 106, c1 = 173.9, k1 = 7.97, k2 = 193.6, g0 = 100.4.

The performance of the proposed method depends on the ESO, since the controller
contains the information of the estimated states x̂1, x̂2 and d̂∗. In Figure 1, the estimated
state x̂1 tracks the PMA trajectory x1, which indicates the effectiveness of the ESO. It is
remarkable that the tracking error is X̃ ultimately uniformly bounded, referring to (17), such
that the tracking error between x1 and x̂1 is determined by the ESO’s parameters β1, β2 and
β3. These parameters should be carefully selected to ensure the smallest eigenvalue of Q1
sufficiently large, then the tracking error X̃ is small enough to guarantee the high-accuracy
convergence of the ESO. The tracking results of the proposed method are shown in Figure 2.
The results show that the proposed method can make the PMA track the desired trajectory
with relatively high accuracy. Because the STC is a second-order sliding mode control
strategy, the controller will not produce serious chattering. This is especially suitable for
such slow response systems.

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

Time (s)

x
1
(m

)

 

 
x1
x̂1

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

x 10
−4

Time (s)

x
1
−

x̂
1
(m

)

Figure 1. The performance of the ESO.
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1
(m

)

 

 
x1d
x1

0 2 4 6 8 10 12 14 16 18 20

0

5

10
x 10

−4

Time (s)

x
1
d
−

x
1
(m

)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

Time (s)

u
(b
a
r)

Figure 2. The tracking performance of the proposed method.

In conclusion, the proposed method effectively estimates the system states and drives
the PMA to track the desired trajectory.

5. Experimental Studies

The experimental platform is comprised of a PMA, a PMA displacement sensor, an air
pressure sensor, an electromagnetic valve, an air compressor, and an acquisition card, as
shown in Figure 3. Also, a component called xPC target from Mathworks Inc. is used to
establish the software environment in which a host computer and a target computer are
required. The MATLAB/SIMULINK and C language compiler are installed in the host
computer to generate executable codes, while the target computer directly invokes the
hardware resource to run applications in real-time.

Figure 3. The PMA platform.

In the physical system, the board (NI-PCI 6052E) collects the sensory data and trans-
mits the control signal to the electromagnetic proportional valve. The air compressor
(Denair, DW35) provides compressed air and is connected to the PMA through the electro-
magnetic proportional valve. Consequently, the displacement of the PMA can be controlled
by the displacement signals. The PMA is Festo DMSP-20-200N-RM-RM fluidic muscle
with an internal diameter of 20 mm, nominal length of 200 mm, and an operating pressure
range from 0 to 6 bar. The Festo VPPM-6L-L-1-G18-0L10H-V1P proportional valve is
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used to regulate the pressure inside the PMA. The displacement sensor is GA-75 whose
measurement range is 0–150 mm.

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

Time (s)

x 1 (
m

)

 

 Reference STC PID ESO−STC

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

x 10
−3

Time (s)

x 1d
−

x 1 (
m

)

 

 

Figure 4. The comparisons of different control methods.

The desired trajectory is the same as the simulation, as shown:

x1d = A sin(2πwt) + B (35)

where w = 0.25, A = 0.015 m and B = 0.015 m. The integral of absolute error (Errora)
and the maximum absolute error (Errorb) can measure the tracking performance from two
different perspectives:

Errora =
1
n

n

∑
t=1
|x1d(t)− x1(t)| (36)

Errorb = max(
n

∑
t=1
|x1d(t)− x1(t)|nt=1) (37)

where n is the total sample of the experiment.
In the physical experimental studies, a PID controller and a STC controller are imple-

mented to compare with the proposed ESO-STC under the same experimental conditions.
We tried our best to tune the control parameters of all the strategies to demonstrate the
superiorities of the proposed method.

The experimental results are shown in Figure 4 and Table 1. It is shown that all the
control strategies can drive the PMA to track the desired trajectory. The PID controller
behaves the worst performance because this approach is seriously dependent on the proper
control parameters. However, we can just tune the parameters by the trial-and-error
method. Therefore, despite our best efforts, its control effect is still poor. On the other hand,
it is remarkable that the STC is the fundamental of the ESO-STC in which the ESO is used
to estimate x2 = ẋ1, since x2 cannot be directly measured. When the error between ẋ1 and
x̂2 is small enough, the STC and the ESO-STC have similar performance. This is because
there is no load imposed on the PMA in this experiment. Moreover, the ESO-STC estimates
the lumped disturbances of the PMA plant, so that it has better robustness than that of
the STC.

To verify the robustness of the proposed method, we conducted an experiment where
loads of different masses are suspended at one end of the PMA, m = {0 kg, 1.5 kg, 2.5 kg}.
The result shows that with the increase of the load, the maximum tracking error of the
PMA increases gradually, and the controller can deal with the disturbances in a certain
range, as shown in Figure 5. When the load is overlarge, the tracking performance of the
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system decreases rapidly. The main reason is that when the disturbances caused by load
exceeds the limit, the system stability conditions may be violated and the system becomes
unstable. In this case, the parameters of the control method need to be re-tuned.

Table 1. Tracking performance of different control strategies.

Errora Errorb

ESO-STC 4.63 × 10−4 (m) 1.6 × 10−3 (m)

STC 4.63 × 10−4 (m) 1.6 × 10−3 (m)
PID 1.3 × 10−3 (m) 2.6 × 10−3 (m)

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

Time (s)

x 1 (
m

)

 

 Reference 0kg−load 1.5kg−load 2.5kg−load

0 2 4 6 8 10 12 14 16 18 20

−2

−1

0

1

2

x 10
−3

Time (s)

x 1d
 −

 x
1 (

m
)

Figure 5. Different loads are suspended to verify the robustness of the ESO-STC.

6. Conclusions

Due to the advantages of simple structure, light material, and high power-weight ratio,
the PMA has become a widely used actuator in the robotic field. However, its intrinsically
soft characteristics make its precise control still a challenge. Traditional methods often as-
sume that all system states, including displacement and velocity, are observable. However,
the velocity of the PMA cannot be directly observed, and the system uncertainties need to
be handled in physical applications. In this paper, the ESO is introduced to simultaneously
estimate the unobservable states and disturbances, and integrated with the STC to realize
disturbance rejection or compensation. The stability of the closed-loop system is ensured,
and simulations and experiments are conducted. The results show that the proposed
method is a chattering-free algorithm, and it can realize the high-precision tracking of the
PMA and improve the system robustness.
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