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Abstract: Convolutional Neural Networks (CNNs) and Deep Learning (DL) revolutionized numer-
ous research fields including robotics, natural language processing, self-driving cars, healthcare,
and others. However, DL is still relatively under-researched in physics and engineering. Recent works
on DL-assisted analysis showed enormous potential of CNN applications in electrical engineering.
This paper explores the possibility of developing an end-to-end DL analysis method to match or
even surpass conventional analysis techniques such as finite element analysis (FEA) based on the
ability of CNNs to predict the performance characteristics of electric machines. The required depth
in CNN architecture is studied by comparing a simplistic CNN with three ResNet architectures.
Studied CNNs show over 90% accuracy for an analysis conducted under a minute, whereas a FEA of
comparable accuracy required 200 h. It is also shown that training CNNs to predict multidimensional
outputs can improve CNN performance. Multidimensional output prediction with data-driven
methods is further discussed in context of multiphysics analysis showing potential for developing
analysis methods that might surpass FEA capabilities.

Keywords: electric motor design; Deep Learning; Convolutional Neural Networks; finite ele-
ment analysis

1. Introduction

Convolutional Neural Networks (CNNs) and Deep Learning (DL) have revolution-
ized various research fields becoming indispensable for computer vision, natural language
processing, healthcare, robotics, and others real-life applications [1–3]. However, future sat-
uration in conventional research areas is expected along with the growth of DL applications
in areas where DL is currently underrepresented, including physics and various engi-
neering fields [4–7]. Recent engineering applications include fault detection and material
characterization along with DL-assisted analysis techniques [8–10].

DL methods allow making predictions for complex systems with various non-explicitly
connected parameters, making them also promising for high-accuracy, fast, low-cost elec-
tromagnetic analysis. The latter is extremely important for the design of high-density
high-efficiency electric machines that have various industrial applications. Interior per-
manent magnet synchronous motors (IPMSMs) are highly valued for high power density,
torque density, and energy efficiency owing to the properties of strong rare earth permanent
magnets (PMs) [11,12]. They are widely used as traction motors for transport vehicles
and in-wheel motors for electric vehicles [13]. Due to low-weight and compact size, IPMS
motors and generators have been gaining increasing attention for more electric aircraft
applications where compact lightweight high-torque machines are needed [14,15].

However, the design of IPMSMs involves geometry optimization for various output
parameters including average torque maximization, torque ripple minimization, harmonic
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quality of back electromotive force (emf), and others. Furthermore, there are other impor-
tant parameters such as overall efficiency, thermal stability, economic and environmental
effects, and other parameters that are hard to account for using conventional design tech-
niques [16]. Thus, for DL to be applied to electric motor design, an ability of a DL analysis
tool to accurately predict multidimensional outputs must be investigated [17].

Nowadays, finite element analysis (FEA) is the most widely applied method for the
analysis and design of electric machines due to its high accuracy. This method is also
remarkably versatile, being applied to electrical, mechanical, fluid dynamics, and other
analysis types. FEA uses numerical methods to find an approximate solution to field
problems guided by, for instance, Maxwell equations in electromagnetism that have no an-
alytical solution. However, the high accuracy comes at a price of enormous computational
time resulting in high computational costs.

Whereas FEA finds the solution by minimizing errors over numerous iterations,
the computation results are eventually dismissed and never used for future analyses.
Therefore, solving a problem for which a solution is known requires as much time as
solving it for the first time. However, if there existed a method that could take advantage
of previous computations to speed up future analyses, the prior data could be used to
develop a high-accuracy high-speed analysis tool.

DL can facilitate such tools because after a time-consuming training stage, the pre-
diction stage can be performed extremely fast. DL previously was applied to predict
the distribution of arterial stresses as mechanical FEA surrogate model [18]. This work
is computationally similar to electromagnetic field distribution prediction with DL [19].
In both cases, comprehensive information about the mechanical stress distribution or elec-
tromagnetic fields can be obtained. However, field distribution analysis approaches are
hardware-demanding due to extremely large size of input and output data vectors and
high complexity of DL models.

Recently, DL methods were applied to assist the optimization of high performance
electric motors for traction and in-wheel motors. A custom CNN named multi-layer
perceptron (MLP) was used to speed up the geometry parameter search for PMSM rotor
geometry optimization for EV applications in [17]. Sasaki and Igarashi [20] used DL to assist
the topology optimization using rotor RGB images as input data and optimizing for highest
average torque. Similar work was done by Doi et al. [21] and Asanuma et al. [22] who also
included torque ripple into DL predictor and achieved up to 30% faster optimization owing
to the minimization of the number of FEA subroutine calls. Remarkably, the datasets used
for DL training were about 5000 samples in size, showing the possibility of DL training on
modest datasets for engineering analysis purposes, unlike extremely large million sample
datasets commonly used in other research areas [23,24]. This is significant due to extremely
high cost and time demands associated with dataset collection in engineering fields.

In the aforementioned papers, DL CNNs were primarily used to assist the analysis
and the final results were still obtained using FEA. However, there is an enormous potential
in developing end-to-end DL methods [9,25–27]. In this paper, DL CNNs are used for
high-accuracy IPMSM output prediction. It is shown that training DL CNNs to predict
multidimensional outputs, e.g., torque curves in case of this study, improves the analysis
accuracy and allows for more comprehensive information about the IPMSM performance
to be obtained.

Predicting torque curves rather than average torque or torque ripple is advantageous
for electric machine performance analysis [28]. Several DL CNN architectures are studied to
determine the required architecture complexity, including a simplistic custom architecture
and ResNets of varying depth. A modest 4000 sample dataset collected using FEA is used
for training, and the difficulties associated with collecting large datasets are discussed.
Furthermore, different types of data normalization, dataset balancing, and potential errors
associate with CNN training are also discussed. Finally, the high accuracy of CNN torque
prediction is shown and the advantages over FEA are discussed along with future potential
of DL CNNs to exceed FEA capabilities.
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2. FEA Analysis of IPMSMs
2.1. IPMSM Rotor Geometries in JMAG Designer

In DL CNN training, typical IPMSM motor geometries were generated using JMAG
Designer [29]. This tool provides an initial geometry shown in Figure 1, and several
parameters that can be varied including stator and rotor diameters, numbers of poles and
slots, slot size, permanent magnet (PM) size, and size of rotor slits.

Figure 1. Initial interior permanent magnet synchronous motors (IPMSM) geometry in JMAG
Designer that includes the permanent magnet (PM) (1), rotor slits (2), rotor core (3), air gap (4), stator
back iron (5), stator slots (6), and stator teeth (7).

This study focuses exclusively on rotor geometry, so stator parameters remain un-
changed for all models. Furthermore, rotor outer diameter remains constant, leading to the
position and size of the PM, and size and geometry of air slits being the variables. Table 1
summarizes the FEA parameters and parameter variation ranges for studied IPMSMs
used to collect the training data. Stator current and PM grade remain unchanged for all
experiments. The same approach can be used to obtain reluctance motor rotor geometries
for DL studies [30]. Three-phase 60 Hz excitation is used in all models.

Table 1. Finite element analysis (FEA) design parameters of studied IPMSMs.

Parameter Value Parameter Value

Number of poles 4 Number of slots 24
PM grade N35 Coil current 3 A

Rotor inner diameter 13.6 mm Stator inner diameter 47.7 mm
Rotor outer diameter 46.7 mm Stator outer diameter 93.4 mm

PM position 10 ÷ 20 mm Slot depth 12 mm
PM thickness 1 ÷ 4 mm Slot opening width 0.85 mm

PM width 2 ÷ 8 mm Tooth width 2.8 mm
Slit depth 0.5 ÷ 3 mm Tooth depth 0.7 mm
Slit angle 30 ÷ 150 deg Back iron width 32 mm

As the purpose of electromagnetic analysis is to find the geometries that ensure high-
performance of the motor, it might be tempting to exclusively use such geometries for
DL model training. However, this might lead to DL developing bias towards predicting
high-torque outputs, potentially predicting good results for geometries for which extremely
low performance is realistically expected. To address this potential issue, an unbiased
approached to data collection is utilized in this study, resulting in both optimal and
suboptimal geometries shown in Figure 2 analyzed for DL training. This approach allows
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the features leading to both positive and negative results to be learned by the DL CNNs,
thus accurately analyzing a large variety of low- and high-torque IPMSM rotor geometries.

Figure 2. Example IPMSM rotor geometries for (a) high torque positive and (b) extremely low torque
negative examples.

For example, Figure 2a shows rotor designs with wide PMs positioned near the outer
diameter of the rotor and slits focusing the PM flux into the air gap. These topologies
produce high torque, and thus correspond to positive examples. On the contrary, Figure 2b
shows small PMs positioned deep inside the rotor with unrealistically large slits. These
topologies produce extremely low torque and are not realistically feasible. As mentioned
above, such negative examples are included to teach the DL CNNs the features that lead to
low torque, distinguishing them from the ones shown in Figure 2a.

2.2. FEA Model Parameters

FEA utilizes numerical methods, therefore its accuracy must be considered when
preparing the training data. To ensure low computational errors and reasonable analysis
time, a mesh study was conducted resulting in 6300 element (3700 nodes) mesh and analysis
time of 2 s per step, 91 steps per geometry to obtain smooth torque curves.

The analysis time was approximately 3 min per model. Torque curves can be used to
calculate the maximum torque, average torque, and torque ripple but provide additional
essential information about harmonic spectrum of the torque and its distribution, which
can be extremely valuable for IPMSM design.

It should be mentioned that unlike the models used in this study, an extremely high
accuracy analysis may require hours for a single model to converge [31]. However, even 3
min per model still yields 200 h needed to analyze the 4000 sample dataset used in this
study not including the FEA model setup time, loading time, exporting and interpreting
the results, and other ancillary but necessary operations. This illustrates the difficulties
associated with collecting large datasets for DL electrical engineering applications.

3. Preparing the Training Data
3.1. Arranging Rotor Images and Torque Curves for DL Training

DL CNNs take advantage of training on large datasets, and deep models are often
characterized by an extremely large number of parameters and layers making their im-
plementation computationally demanding. In this study, the experiments are conducted
with smaller input image size to reduce the hardware requirements and training time
while ensuring that the accuracy of input data representation is not compromised. Similar
approaches to data preparation were previously implemented by other researchers [22,30].

With JMAG Designer it is possible to export rotor geometries as RGB images with
default resolution of approximately 180 × 180 pixels. However, this resolution was found
suboptimal due to large size and no information carried by color channels. Thus, the input
images are resized to 56 × 56 pixel resolution and converted to grayscale as shown in
Figure 3. The resolution was also chosen to be a divisible of the default input of ResNets to
apply the latter without modifying the filters.
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Figure 3. Preparing rotor images for convolutional neural network (CNN) training by converting to
grayscale and resizing JMAG Designer exported rotor geometries.

Pytorch 1.4.0 is used in this study for DL CNN implementation, training, and data
preparation [32]. The grayscale rotor geometry images are first converted to numpy arrays
and paired with corresponding output torque data [33]. Data normalization and torque
clipping discussed in the next subsection are also performed on this stage. The dataset
is later converted to Pytorch tensors for DL model training. Numpy arrays and Pytorch
tensors with the dataset prepared for training can be exported and saved for later use by
various CNN models.

It should be stressed that a simplistic geometry presented in Section 2.1 is chosen
because the main purpose of this paper is to explore the possibility of predicting multi-
dimensional outputs with CNNs. When a successful method is developed it could be
applied to more complex geometries that might include flux barriers, Halbach array mag-
nets, and other novel flux-focusing techniques [34,35]. When figures are used as input
data, all relevant features are extracted by the DL model. This would not be the case
when a vector of predefined design parameters is used. Whereas the latter could lead to
smaller size of data vectors and potentially faster training, generalization of such method
would be impossible as adding new parameters would require retraining the DL model.
On the contrary, using figures does not define the parameters explicitly allowing for better
generalization.

3.2. Min-Max and Offset Torque Normalization Techniques

In electric machines, the output torque range can be extremely large, especially for
diverse datasets with negative examples contributing to very low torque values as well as
near-optimal geometries with high torques. This is drastically different from DL classifica-
tion where binary 0 or 1 outputs have to be predicted.

Predicting the exact numerical output values for electric machines is a regression
problem. Whereas it is in principle possible to predict any numerical value with CNNs,
they perform better when an arbitrary range of outputs is normalized using, for instance,
min-max normalization [36]:

τnormi =
τi − τmin

τmax − τmin
, (1)

where τnorm is normalized torque, and τmin and τmax are minimum and maximum torque
values in the dataset, respectively. This leads to τnorm being within the 0–1 range.

In case of torque calculation, the exact numerical values in output layers of CNN are
compared with dataset torques. It was noticed that predicting a large data range with high
precision was challenging, as shown in Section 5. This might be due to disproportional
contribution of smaller values to relative error metric.

However, accurately predicting extremely small torque values is not important be-
cause they are associated with negative examples. Furthermore, it is desired to predict
large outputs of optimal geometries with the highest possible accuracy. Thus, the use of a
different normalization that reduces the effect of low torque samples on DL training can be
proposed. An offset in normalization range can be introduced so that

τo.normi =
τi − τmin

τmax − τmin
+ an, (2)
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where an is normalization offset parameter so that τo.norm ∈ [an, 1 + an]. Using (2) essen-
tially leads to all torques τ < an being treated in exactly the same manner, hence removing
the strain of predicting their exact values accurately. The normalized outputs predicted by
DL CNN can be then recalculated into the real ones as

τreal i = (τo.normi − an)(τmax − τmin) + τmin. (3)

It was observed that training DL CNNs on the data normalized using (2) led to higher
prediction accuracy and faster convergence. It should be mentioned that using (2) results
in additional errors for values close to an when calculating real values using (3). Therefore,
an should be chosen so errors are large only in regions where high accuracy is not required.
Choosing a small an does not result in error increase for average and large torque samples.

Alternatively, the dataset can be clipped for low torques so that

τc.normi =

{
δc, i f τi < δc(τmax − τmin) + τmin

else τnormi
, (4)

where δc is a threshold parameter. The effect of δc is similar to the effect of an, so accuracy
at extremely low torques is disregarded to ease the training for the rest of data range.
However, no additional error is introduced for τc.normi > δc unlike in case of offset
normalization, making torque clipping a better option.

It should be noted that losing accuracy at low torques is acceptable in this study
because associated geometries are flawed and correspond to negative examples. However,
applying (2) may result in poor accuracy when only positive examples are used to train the
model, or the complete torque range needs to be predicted with the same accuracy.

3.3. Data Balancing for Training and Testing

DL CNNs can potentially overfit the training data leading to the model performing
well on the training set, but failing on any example outside the initial dataset. Thus,
the complete dataset is divided into training, validation, and test sets. The majority of
available data is usually allocated for training. In this study, 80% of the dataset is training
data. In case the training data is limited, the validation and training sets can be merged,
which applies to 4000 sample dataset used in this study. Thus, 20% of dataset is allocated
for validation and validation accuracy is used to calculate the accuracy metrics.

Before dividing into training and validation, the dataset is shuffled to avoid clustering
of similar examples. Both training and validation sets are checked for balance, meaning
that all types of data (low, average, and high torque samples) are equally represented to
ensure unbiased training and validation.

4. DL CNN Architectures and Training Parameters

Electric machine researchers previously used very deep architectures such as GoogLeNet [21,37],
and even VGG 16 that has 138 m parameters [22,38]. However, smaller custom architectures were
also used successfully [30]. Thus, it is currently hard to determine the optimal CNN architecture
required for electric machine design projects.

To address this problem, a custom simplistic low-demand CNN is compared with
different ResNet architectures. The torque prediction accuracies are compared along with
size, complexity, and hardware requirements of the architectures.

4.1. Custom Simplistic Architecture

In this study, a simplistic CNN shown in Figure 4 is used to evaluate the possibility
of training shallow networks for electric machine design projects. Table 2 shows that this
CNN consists of three convolutional and two fully connected (linear) layers and has less
than 1 million parameters. The ratio of the number of channels in convolutional and linear
layers mimics the intermediate layers of AlexNet [39]. This architecture was inspired by
the success of shallow networks on image classification tasks.
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Figure 4. Architecture of the 5 layer Simplistic CNN with less than 1 million parameters.

Table 2. Comparison of parameters of studied DL CNN architectures.

Characteristic Simplistic CNN ResNet-10 ResNet-18 ResNet-50

ResNet blocks - Basic,
[1,1,1,1]

Basic,
[2,2,2,2]

Bottleneck,
[3,3,4,6]

Conv. layers 3 9 17 49
Total layers 5 10 18 50

Num. param. 0.89 m 5.8 m 11.4 m 23.9 m

The advantage of using shallow CNNs is fast training and low memory demands.
A small size of this architecture allows training to be performed reasonably fast even on
CPU, unlike deeper architectures for which CPU training takes unreasonably long and
GPU training is strongly recommended.

4.2. ResNets

ResNets [40] are deep residual CNNs that were developed to explore the relation
between the depth and image classification accuracy inspired by the evidence of accuracy
degradation for extremely deep architectures [41]. ResNets introduced bypass connections
and trained network to learn desired change of activations instead of activations themselves.
The architectures consist of blocks of convolutional layers with block types and their
number specifying particular architectures. All ResNets have one initial convolutional
layer and one linear output layer, with aforementioned blocks of convolutional layers
allocated between them. The softmax operation on the output layer used by classifiers is
removed for regression problems.

ResNet-50 and more complex architectures utilize four bottleneck-type blocks with
two identity mappings surrounding a 3 × 3 convolution. The ResNet-50 parameters can be
encoded as [3, 4, 6, 3] with each number corresponding to the number of blocks of each
type. Table 2 shows that ResNet-50 has 50 layers, of which 49 are convolutional. This is the
deepest architecture among the architectures studied in this paper with almost 24 million
parameters.

Less deep ResNet architectures use basic blocks with two 3× 3 convolutions per block.
Table 2 shows that ResNet-18 utilizes two blocks of each type and has roughly half the
ResNet-50 parameters. In addition, an even shallower architecture is considered with only
one block per type, resulting in the total of 10 layers, labeled ResNet-10.

4.3. DL CNN Training Parameters

CNN training, as training of any artificial neural network, is an optimization process
where errors calculated during forward pass are backpropagated to update the network
weights and minimize errors. Adam optimizer is used for all experiments in this study [42].

There are several important hyperparameters that affect the training. First, learning
rate determines the step size in optimization process. On one hand, large learning rate
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facilitates faster training but may result in oscillations and divergence leading to unstable
training. On the other hand, small learning rate may lead to very slow training or solutions
stuck at saddle points. Thus, it is often recommended to monitor variation in training and
validation losses and update the learning rate, respectively. This can be done manually or
automated using learning rate decay [43].

For most experiments on ResNets, a common 0.01 initial learning rate and 0.1 learning
rate multiplier were found effective. However, for the Simplistic CNN, the latter settings
often resulted in poor convergence. A 0.5 initial learning rate and 0.2 learning rate multiplier
were empirically found to perform better.

Second, a loss function is used for error computation and CNN parameter adjustment
during training. For regression problems, least absolute deviation (L1) and least square
error (L2) loss functions are primarily used. In this study, nearly no difference was observed
after comparing the two loss functions. However, L2 loss can be recommended because
errors for high torques gain more weight compared to L1 loss, which is desired for accurate
prediction in high-torque region.

Training CNNs can be very computationally expensive and requires high-end hard-
ware. However, recent improvements in GPU training allowed fast training on affordable
machines, or on GPU clusters for extremely large datasets. This is particularly relevant
for CUDA-accelerated GPUs [44]. In this study, a NVIDIA GeForce GTX 1660 Ti GPU and
CUDA 11.0 were used for all experiment.

The GPU memory should still be carefully managed when working with large datasets.
Thus, training data is passed to the CNN using mini-batches, and mini-batch size is the
third important hyperparameter. In Pytorch, a dataloader can also be used to automate
the dataset splitting. In this study, a mini-batch size of 64 was used for all experiments.
Whereas more shallow architectures allow mini-batch size to be increased, it was kept
constant for clarity of comparison. To ensure that relatively small batch size did not result
in added errors for shallow architectures, experiments on the Simplistic CNN were also
conducted using batch sizes up to 256 which showed no significant deviation.

All CNNs were trained over 100÷ 180 epochs monitoring both training and validation
losses with the termination point determined by the decay in the learning rate. As might
be expected, training deeper CNNs took longer, with ResNet-50 training taking almost
6 times longer than the training of the Simplistic CNN.

4.4. Accuracy Metrics for Regression Models

Because training and validation losses are hard to interpret, the accuracy is calculated
for final result interpretation using specific accuracy metrics. For classification problems,
the percentage of correct predictions is the most commonly used accuracy metric. However,
this is different for regression problems where purpose-driven metrics are needed. Whereas
a single comprehensive accuracy metric for electric machine design problems is hard to
propose, analyzing multiple metrics simultaneously can provide vital information about
DL CNN performance.

First, mean average percentage error (MAPE) can be used [30,45] so that

M =
1
n

n

∑
i=1

∣∣∣∣τexpi − τpredi

τexpi

∣∣∣∣, (5)

where n is dataset size, and τexp and τpred are expected and predicted torque values,
respectively. The accuracy is calculated using (5) as

A1 = 1−M. (6)

Second, the accuracy of predicting the results within an error margin can be calculated as

A2 =
∑n

i=1 Ci

n
, (7)
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where

Ci =

{
1, i f

∣∣∣ τexpi− τpredi
τexpi

∣∣∣ < δm

else 0
, (8)

and δm is error margin.
The A1 gives a more general overview and is often used to analyse the accuracy of

conventional modeling techniques. However, for a large dataset it can give misleading
results when errors are localized in a particular part of the dataset.

5. DL CNN Torque Prediction Results
5.1. Comparison of Accuracy of Average Torque and Torque Curve Prediction by Different CNNs

In order to determine how dimensions of the output affect the CNN training, the Sim-
plistic CNN along with ResNet-10 and ResNet-50 were trained to predict torque curves
and average torques. For the latter experiment, the dimension of output layer was reduced
from 91 to 1. The effects of the min-max and offset normalization were also studied by
training the CNNs on differently normalized datasets.

The analysis results are summarized in Table 3 with accuracy calculated using (6).
The experiments conducted on conventional (min-max) normalized datasets are labeled
“conv.” in Table 3. It should be noted that the offset normalization and torque clipping
discussed in Section 3 had nearly identical effects on CNN training, so “cust.” results in
Table 3 are relevant for both techniques.

Table 3. A1 average torque and torque curve prediction accuracy using conventional and custom
normalization.

CNN
Architecture Average τ, conv. AVERAGE τ,

cust. τ Curve, conv. τ Curve, cust.

Simplistic 20 29 34 64
ResNet-10 29 58 59 89
ResNet-50 36 60 62 93

Table 3 shows that all CNNs performed better when trained to predict torque curves
rather than average torques which might be not an intuitive finding. This can be explained
by the multidimensionality of torque curves that provides CNNs with more information
to learn the features from. This aligns with multi-task learning approach where training
on several similar tasks in some cases provides better performance than training for a
single task [46–48], or a single torque as in case of this study. Thus, training CNNs to
predict output curves, or any type of distributed parameters potentially including different
parameters types, is easier compared to predicting average values.

Furthermore, all models performed better when offset normalization or torque clip-
ping were used. This can be attributed to the reduction in the variations in output torque.
On one hand, Table 3 shows that accuracy of min-max normalized data prediction was
gradually increasing with CNN depth, and it might be expected that deeper architectures
with more parameters could perform better on such datasets. However, the accuracy
exhibits saturation for extremely deep networks [40]. Furthermore, deeper networks are
associated with more computational demands, longer training and higher costs. Therefore,
introducing a meaningful threshold in the torque range can reduce the analysis costs by
making CNN training faster and less dependent on the architecture depth.

5.2. Accuracy of Torque Curve Prediction

The accuracy of different CNNs predicting torques curves is summarized in Table 4.
Accuracy metrics are applied to the complete dataset, and also exclusively to the high-
torque samples. The latter allows the CNN performance in the region of interest to be
evaluated with higher precision.
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Table 4. Torque curve prediction accuracy by different DL models.

Accuracy Metric Simplistic CNN ResNet-10 ResNet-18 ResNet-50

A1
1 64 88 90 93

A1
2 30 86 92 96

A2, 20% marg. 1 24 82 89 92.5
A2, 20% marg. 2 10 67 74 86
A2, 10% marg. 1 0 63 81 90
A2, 10% marg. 2 0 57 66 77

1 Complete dataset, 2 High torques only.

First, Table 4 shows that the Simplistic CNN could not provide sufficient prediction
accuracy. Whereas its overall MAPE accuracy is over 60%, it performs extremely poorly in
mid- and high-torque ranges, as illustrated by other metrics. Figure 5 shows all models
performing similarly on a low-torque sample, implying that the Simplistic CNN could
successfully identify negative examples by predicting low torques and distinguishing such
geometries from average-torque ones. This can be illustrated by Figure 6. However, Figure 7
shows that sometimes the Simplistic CNN was giving completely incorrect predictions.
On the other hand, Figure 8 shows reasonable accuracy similar to Figure 6. So, whereas
some success in identifying positive and negative examples qualitatively is shown by this
architecture, it cannot be recommended for a quantitative analysis.

Figure 5. Example of CNN outputs in low-torque region. All architectures show similar accuracy.

Figure 6. Example of CNN outputs in low-mid torque region.
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Figure 7. Example of CNN outputs in mid-torque region.

Figure 8. Example of CNN outputs in high-torque region.

All ResNet architectures performed well on the dataset, showing MAPE accuracy of
88% or higher. However, some deviations illustrated by Figures 6–8 were observed. It can
be noticed that ResNet-10 tends to predict the torque magnitude reasonably well, but does
not capture the shapes of the torque curves. This implies that the ResNet-10 parameters
are not sufficient to capture all torque variations in the dataset, yet those are crucial for
electric machine torque harmonic spectrum analysis. Low performance of ResNet-10 on
error margin accuracy metrics also suggests that it tends to predict average values over
groups of input samples, without further refinement into special features of particular
geometries and their effects on the output torque.

On the contrary, ResNet-18 and ResNet-50 showed good agreement with FEA by
capturing magnitudes and shapes of torque curves. As might be expected, ResNet-50
outperformed ResNet 18, but the latter still shows almost 90% accuracy on 20% error
margin metric on the complete dataset, and about 80% accuracy on the 10% one.

It thus can be concluded that deep CNNs are capable of predicting output torque
curves with high accuracy. The accuracy is proportional to CNN depth, and for sufficiently
deep CNNs the number of CNN parameters correlates with the accuracy of curve shape
prediction. However, this effect exhibits saturation as shown by the similar performance of
ResNet-18 and ResNet-50.
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5.3. Analysis Time of CNNs and FEA

Whereas ResNets show accuracy comparable to FEA, the analysis (torque prediction)
time is significantly reduced when using CNNs, as shown by Table 5. Evaluating the
complete dataset even with ResNet-50 takes less than 1 min, whereas FEA requires 200 h of
computations. Furthermore, the FEA models used in this study were relatively compact,
whereas extremely high-accuracy FEA may take up to 1 h per model or even longer, further
escalating the difference between FEA and CNN prediction times. However, CNNs can
be trained on the data obtained using high-accuracy FEA models, and then reused taking
advantage of extremely fast CNN prediction speeds.

Table 5. Analysis time of FEA and different CNN architectures.

Architectures Single Sample Complete Dataset

JMAG FEA 180 s 200 h
Simplistic CNN 1.2 ms 5 s

ResNet-10 6.2 ms 25 s
ResNet-18 10.5 ms 42 s
ResNet-50 14.5 ms 58 s

Because of high speed of CNN analysis, IPMSM rotor geometry optimization can be
performed extremely fast when FEA is substituted for a DL tool and optimization algo-
rithms are applied. Whereas DL CNNs were previously used to speed up the optimization
while final results were obtained using FEA [20,22], this paper shows the possibility of
accurately evaluating rotor geometries using DL CNNs. Thus, the previously reported
DL-accelerated optimization results can be further improved by developing a complete
FEA-free end-to-end DL analysis method.

6. Discussion
6.1. Comparison of the Proposed End-to-End Method with Existing DL-Assisted Methods

DL-assisted design has gained popularity in recent years. As right now the field
is rapidly progressing, it is worth comparing this paper’s results with the previously
published ones. In some of previous works, namely, those in [20–22], DL classifiers were
used instead of DL regression algorithms. However, using a classifier allows only a torque
range to which a particular design correspond to rather than the exact torque values to be
predicted, thus compromising the prediction accuracy. Using classifiers in those papers
was possible because final results were still computed using FEA, and the role of DL was to
reduce the number of steps in optimization algorithm rather than predicting final output
values. In [20–22], the reduction in the analysis time was found to be 10–33% depending
on a particular study. However, Table 5 shows that the analysis can be accelerated much
more when DL-exclusive analysis methods are used and no additional calls to FEA are
required. Furthermore, the works in [20–22] as well as in [30] focused on predicting only
average torque and torque ripple values, so only two output parameters were predicted by
CNNs. On the contrary, CNNs in this study predict torque curves constituted of 91 data
points per curve. This result is also very important not only for torque curve prediction,
but for multiparameter prediction in general, as discussed in detail in the next subsection.

Regarding CNN complexity, the works in [20–22] used extremely deep networks like
VGG16. However, Sections 4 and 5 show that more shallow networks are sufficient for
analysis and design projects because prediction accuracy exhibits saturation. Using more
shallow CNNs speeds up the analysis, as shown in Table 5. This result is also supported by
the findings in [30] where an average depth custom CNN was found sufficient for high
accuracy prediction that also sped up the analysis by almost 20 times.

It is interesting that the authors of [22] reported that the analysis accuracy improved
when different rotor geometries, those with D- and V-shaped magnets, were included into
the same training dataset. Therefore, the prediction accuracy of DL methods increases for
datasets with various rotor geometries. It also increases with more output parameters,
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as shown in Section 5 of this paper. Therefore, DL methods are extremely promising when
analyzing different machine types with a variety of output parameters.

It is important that the authors of [9,17,20–22,30] showed that DL methods can be
seamlessly combined with optimization algorithms, implying that the method proposed
in this paper would have such property, too. Indeed, full advantage of rapid output
parameter prediction using CNNs will be taken when it is combined with optimization
algorithms. Whereas optimizers are inherently fast, the requirement of conventional
methods to make calls to FEA slows down the analysis due to high computational costs
of the latter. Therefore, fast DL predictors combined with rapid optimization could be
the key for extremely low computational cost analyses. However, predicting distribution
of output parameters discussed in this paper is essential for developing comprehensive
DL predictors. Ultimately, multiparameter predictors that can be easily combined with
optimization algorithms are desired. The capability of the results presented in Section 5 to
be extended to multiparameter analysis is discussed in the next subsection.

6.2. Potential Application of DL Tools to Multiparameter Multiphysics Analysis

Whereas up to this point CNN training to predict a single output type, namely, torque
values and torque curves, was discussed, there are many more parameters of interest in
machine design, including efficiency, reliability, potential overheating, mechanical loads,
and others. For instance, efficiency map prediction with CNNs was reported in [9].

DL techniques inherently do not have restrictions on types of data they are trained
to predict. In case of image recognition, every point in the output vector corresponds to
a different class of objects being recognized requiring no correlation between the classes.
For machine design, this implies that the output vector could include all meaningful
information about the machine. As it was shown in Section 5 that multidimensional
outputs could be predicted with high accuracy for machine performance evaluation projects,
this indicates a possibility of conducting multiparameter multiphysics analyses potentially
surpassing the capabilities of conventional analysis methods.

In case of FEA, the possibility of solving multiphysics problems is limited by the
availability of mathematical correlations between parameters. On one hand, this limits the
number of physical processes that could be analyzed in a single model. On the other hand,
this also typically prevents combining quantitative parameters with the qualitative ones.
This makes the topics of reliability and economic or ecological aspects hard to incorporate
with conventional methodologies requiring techniques different from the ones dedicated to
machine performance evaluation. However, with DL even the data types with no apparent
correlation could be combined, assuming the required datasets are available.

For quantitative multiparameter multiphysics analysis, the above discussion can be
illustrated by the following example. When output torque is calculated using FEA as
discussed in Section 3, another important parameter that can be extracted is back emf V
curve. In this case, V and τ would have different magnitudes, but the same time step
between points in the output vector due to the correlation between rotor angular position
and time.

However, when thermal analysis of IPMSM motor is considered, the time over which
the results should be collected must be increased significantly because thermal processes
take longer than the electromagnetic ones. Conducting the analysis over one electrical
period is insufficient to show the temperature change. Therefore, adding thermal analysis
to the previously discussed experiment would be suboptimal either from electromagnetic or
thermal analysis perspective. A similar problem can be encountered in case of mechanical
strength analysis where, for instance, a mechanical stress on the rotor is analyzed. For the
discussed experiment the mechanical stress is independent of time and can be represented
by a single value.

However, the abovementioned parameters can be conveniently combined into a
single predictor vector η for CNN training as shown in Figure 9. In this case, the time,
or other parameter over which the results are obtained, is represented by the position i in
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η. By normalizing every parameter in η independently, their values become unitless and
restricted to the [0, 1] region. For the above experiment, η can be constructed from different
physical parameters as

i =


τni, i = 0 . . . iV − 1

Vni, i = iV . . . iT − 1
Tni, i = iT . . . iσ − 1

σni, i = iσ

, (9)

where τn, Vn, Tn, and σn are normalized values of torque, back emf, temperature, and
mechanical stress, respectively. It should be stressed that each of the above parameters is
normalized independently relative to, for instance, min-max values in their own datasets
using (1). iU , iT , and iσ indicate the beginning of a new parameter in η. CNN is then trained
to predict η, which in general might contain data other than mentioned in this example.
Real parameter values can be calculated from the predicted ones using an operation g
converting normalized values to real ones as

τi = gτ(ηi), i = 0 . . . iV − 1
Vi = gU(ηi), i = iU . . . iT − 1
Ti = gT(ηi), i = iT . . . iσ − 1

σi = gσ(ηi), i = iσ

. (10)

Figure 9. Forming a single predictor vector η using normalized data corresponding to torque, back
emf, temperature, and mechanical stress.

Function g would depend on normalization method for every parameter. Equation (3)
is an example of gτ .

It should be stressed that for CNNs the task of predicting η which encodes different
types of data is computationally no different from predicting only the torque τ. When
the data forming η is appropriately normalized (e.g., using Equation (9)), CNNs treat
every point in η equally regardless of its physical meaning before normalization. This is
an advantage of data-driven methods that allows the limitations related to mathematical
formulations of couples analyses to be avoided. Thus, the fast high-accuracy prediction
results in Section 5 could potentially be relevant for complex multiphysics analysis.

Similar methodology can be used to train CNN on datasets obtained by means other
than FEA. The advantage of data-driven methods like DL methods is that accuracy does
not depend on the type of data used for training. DL methods excel at finding correlation
between input and output data regardless of its kind. Thus, when experimental datasets
are used to train CNNs, the same >90% accuracy reported in this paper can be expected.
Therefore, the method will perform well on experimental data, as it has been shown for
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other DL methods in the material study fields where experimental data is more readily
available [25–27].

The main problem with training CNNs on experimental data is the current lack of
suitable datasets. It was previously mentioned that in other research fields large datasets
were collected and freely shared to facilitate the research. Therefore, the community effort is
also required in engineering fields because collecting thousands to hundreds of thousands
experimental and computational data samples is not feasible for a single research group.
The success of DL multiphysics analysis tools strongly depends on the availability of
suitable training data. Whereas it is possible to combine multiple data types into a single
DL predictor, the initial data to train CNNs is still needed. Thus, collecting comprehensive
datasets is essential for the successful development of generalized DL analysis tools in
the future.

6.3. Current Limitations of DL Analysis Methods

However, there are several limitations that should be addressed for successful de-
velopment of comprehensive DL design tools. First, in this paper, as well as in similar
works on this topic, only the geometry serves as input data for CNN training. Table 1
shows that electrical current and material properties are constant, but different material
combinations and operating regimes must also be considered for realistic design tasks.
Thus, it is important to incorporate this information into the training data.

It can be recommended to use image channels to store this data. For conventional
images the information in channels translates into colors. However, channels can be used to
store any data, including additional machine or regime parameters. To avoid encountering
associated increase in data loading time, data tensors with additional channels should be
exported for future analyses as recommended in Section 3.1.

Second, a key to evaluating the real dimensions of the machine should also be stored
in the channels when DL analysis is conducted on large datasets with different machine
types, sizes, and power levels. As training is done on figures, there is a possibility that
geometries that could be converted one into another via scaling become indistinguishable.
Having an estimate of real machine size would allow this issue to be avoided.

Third, DL methods provide statistical accuracy. Section 5 shows that whereas the
average prediction accuracy is high, the accuracy distribution could vary significantly
throughout the dataset. Therefore, it is important to understand the degree of confidence
towards particular predictions. It was recently proposed to provide an uncertainty measure
in the CNN outputs providing a quantitative estimate of possible prediction errors [9].

Finally, as DL methods are data-driven, they would inherit errors associated with the
training data collection method. In case of training on FEA data, this translates to inheriting
computational errors inevitably associated with numerical methods. One potential solution
is using extremely high-accuracy FEA to obtain high quality training data. Alternatively,
training can be done on data obtained by other means, for instance, experimentally. How-
ever, conducting thousands of experiments on different machines is extremely expensive
and time-consuming. Nevertheless, it should be considered that with the emersion of
novel analysis methods new data acquisition techniques might provide the key to solving
currently unresolved problems.

7. Conclusions

This paper investigates the possibility of predicting multidimensional outputs of
electric machines with a DL CNNs. Four DL CNNs were trained to predict output torque
curves of IPMSM showing over 90% prediction accuracy. It was shown that training CNNs
to predict curves rather than single values (e.g., average torque and torque ripple) improves
the prediction accuracy by providing more data for a CNN to extract the features from.
The comparison of DL architectures investigates the required CNN depth for accurate
torque prediction showing saturation for extremely deep CNNs. A custom normalization
technique and an approach to dataset balancing are proposed showing positive effects
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on CNN training and torque prediction accuracy. In addition to high prediction accuracy,
CNNs were evaluating torque curves 10,000 times faster compared to FEA.

The full advantage of the proposed method can be taken when it is combined with
optimization algorithms. Furthermore, whereas the method is developed for IPMSM
motors, it can also be used for other types of electric machines and other electromagnetic
actuators. High-accuracy fast low-cost electromagnetic analysis is extremely important for
the design of high-density high-efficiency electric machines that have various industrial
applications. These include traction motors for transport vehicles, in-wheel motors for
EV, low-weight compact high power density motors and generators used in more electric
aircraft and ships. The method can also be applied to other types of electromagnetic
actuators, such as stepping motors used in robotics, and high-precision linear actuators
used in biomedical applications, assuming that relevant training data is used for CNN
training.

Currently a great problem associated with the development of a comprehensive DL
design tools is the lack of datasets for training. In other fields, where DL methods are
already well-established, the research community efforts were undertaken to collect large
datasets using which state-of-art DL CNNs were developed and tested. Thus, researchers
in engineering fields are also encouraged to share their data so the same becomes possi-
ble for engineering design tasks. This paper shows that DL analysis tools are naturally
capable of multiparameter multiphysics analysis and can include parameters that have
no explicit mathematical correlation having potential to become major next generation
analysis method for electric machines and other engineering applications.
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