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Abstract: Extensile fluidic artificial muscles (EFAMs) are soft actuators known for their large ranges
of extension, low weight, and blocked forces comparable to those of pneumatic cylinders. EFAMs
have yet to be studied in a way that thoroughly focuses on their manufacturing, experimental
characterization, and modeling. A fabrication method was developed for production of two EFAMs.
The quasi-static axial force response of EFAMs to varying displacement was measured by testing
two specimens under isobaric conditions over a pressure range of 103.4–517.1 kPa (15–75 psi) with
103.4 kPa (15 psi) increments. The muscles were characterized by a blocked force of 280 N and a
maximum stroke of 98% at 517.1 kPa (75 psi). A force-balance model was used to analyze EFAM
response. Prior work employing the force-balance approach used hyper-elastic constitutive models
based on polynomial expressions. In this study, these models are validated for EFAMs, and new
constitutive models are proposed that better represent the measured stress values of rubber as a
function of strain. These constitutive models are compared in terms of accuracy when estimating
pressure-dependent stress–strain relationships of the bladder material. The analysis demonstrates
that the new hyper-elastic stress models have an error 5% smaller than models previously employed
for EFAMs for the same number of coefficients. Finally, the analysis suggests that the new stress
functions have smaller errors than the polynomial stress model with the same number of coefficients,
guarantee material stability, and are more conservative about the stress values for strains outside of
the testing range.

Keywords: soft actuator; pneumatic; hydraulic; McKibben actuator; artificial muscle; extensile

1. Introduction

Fluidic artificial muscles (also known as pneumatic artificial muscles when they are
operated with air) are soft actuators shown to have high specific power and long fatigue
lifetimes [1–3]. With much greater elasticity and tolerance to large deformations than linear
or rotational electric actuators, fluidic artificial muscles (FAMs) can be categorized as a
subgroup of soft actuators. They are characterized by their simple design, no parts moving
through seals or bearings, and inherent compliance, which relaxes the requirements on
precise alignment.

FAMs were first patented by R.H. Gaylord (1958) [4] and later popularized by J.L.
McKibben in the 1960s. Initially, due to advances in electric motor miniaturization, FAMs
(also called McKibben muscles) started to lose their popularity in robotics and prosthetics
research. It was not until the late 1980s, when a Japanese tire manufacturer, Bridgestone,
patented its more powerful McKibben muscles and introduced the soft robotic manipulators
“soft-arms” for painting applications [5–7] that the FAMs regained popularity and a broad
research interest was revived. The range of applications has been expanding ever since.
However, due to their subtle physics and outstanding performance, FAMs remain an area
of active research.

A FAM is composed of four components: an elastomeric tube, a braided sleeve, and
two end fittings, as shown in Figure 1a. The elastomeric tube is fitted into the braided
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sleeve, and then joined together at both ends with pressure-tight sealed end fittings. One
of the end fittings has a channel for the fluid input and is typically fixed, while the other
serves as the force attachment point. When inflated, the muscle changes its length, and
contracts or extends depending on its resting braid angle. This braid angle describes
the angle between its radius and the fiber direction, as shown in Figure 1a. A FAM is
contractile if the braid angle is larger than 35.26◦, or extensile if the braid angle is smaller
than 35.26◦ [8]. The commonly modeled behavior of contractile and extensile FAMs is
shown in Figure 2a,b.

Contractile FAMs (CFAMs) are able to generate blocked forces that are ten times
greater than the force output of a pneumatic cylinder of comparable diameter and operating
pressure. As the braid angle approaches 0, Equation (1) becomes a simplified force equation
for a pneumatic cylinder. In Figure 3, it can be shown that the CFAM reaches a normalized
blocked force of 10 for a braid angle lower than 70◦ as compared to the value of 1 for a
braid angle of 0. The blocked force is here defined as the force generated by a FAM when its
length is fixed to its resting length. A resting length is the length of a FAM when there are
no external forces acting on the actuator and its internal pressure is zero. Unlike contractile
FAMs, which were reported to reach normalized length changes between 24% and 35% for
pressures of up to 690 kPa [9,10], extensile FAMs (EFAMs) can provide much larger strokes
that exceed their initial length. Theoretically, 200% extension can be achieved at a braid
angle of 22◦ [11], although in practice stroke values of up to 80% have been reported [9,12].

(a) (b)

Figure 1. (a) Overview of a fluidic artificial muscle. Top: exploded view; bottom: assembly. A fluidic artificial muscle (FAM)
is composed of three main components: braided sleeve, elastomeric bladder, and end fittings. End fittings fix the ends of the
sleeve and bladder together, and seal the FAM on both ends. The braid angle of the sleeve is dependent on the FAM’s length
and diameter. (b) Half cross-sectional view of a FAM with swaged end fittings. The elastomeric bladder is surrounded by a
braided sleeve. The bladder and the sleeve are fixed to the end fitting by “compressing” the bladder and the sleeve between
a swaged tube and the core of the end fitting. Pressurized fluid flows in and out through a threaded channel in the end
fitting. The end fitting can be attached to a load with a hollow and threaded stud fastened to the channel.

1.1. FAM Static Behavior

To understand FAMs (or McKibben muscles), let us first imagine an infinitely long
muscle in which the fibers are not angled, but rather go straight from one end fitting to
another. When a straight-fiber muscle is pressurized, the interior pressure acts radially on
its elastic bladder walls. The walls, surrounded by the braided sleeve, transfer this force
onto the fibers, which convert the radial force to an axial force. This axial force pulls in
on the muscle’s end fittings, forcing the system to find a new equilibrium with shorter
length and larger diameter. As the axial force contracts the muscle, the bladder strains both
axially and radially. Though this straight-fiber muscle generates much greater force than
the McKibben muscle, as highlighted by Ferraresi et al. (2001) [13], the resulting material
strain exceeds allowable values for rubber.
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The excess strain is not an issue with McKibben muscles, where the radial force is
not fully converted to the axial direction. The axial force drops as the muscle shortens
and the braid angle decreases (see Equation (1)). In extensile FAMs, a smaller braid
angle corresponds to a greater magnitude axial force, as opposed to contractile FAMs in
which larger braid angles correspond to larger magnitude axial forces (see Figure 3). In
EFAMs, when the pressure acting on the walls transfers the force onto the fibers, only
a small part of that force is converted into the pulling force as the braid now mostly
counteracts radial expansion. Since the pressure acting on the inner surface of the end
fittings produces a greater pushing force than pulling force in the fibers, the EFAM is forced
to a new equilibrium with a greater length, larger braid angle, and smaller outer diameter.
According to, Gaylord’s blocked force equation:

FBF =
PπD2

4cos2(θrest)
(3sin2(θrest)− 1) (1)

where FBF stands for the blocked force, P stands for the FAM internal pressure, θrest stands
for the resting braid angle, and D denotes the resting outer diameter. The equation was
further described in Section 4.

Note that for a braid angle of 35.26◦, the blocked force changes its sign. This boundary
separates the extensile FAM from the contractile FAM. To put things into perspective, a
pneumatic cylinder of some diameter, D, would generate a normalized force equal to 1. A
contractile FAM of the same diameter, D, would generate larger blocked forces than the
force output of the cylinder for braid angles greater than 45◦. An extensile FAM’s blocked
force reaches the force output of the pneumatic cylinder as the braid angle approaches 0.

(a) Contractile FAM
θc = 70◦, θ′c = 40◦

(b) Extensile FAM
θe = 13◦, θ′e = 30◦

Figure 2. The figure shows contractile and extensile FAMs in the undeformed and deformed states. Here, FAMs are
idealized as tubes of variable length and diameter with a geometric constraint imposed by an elliptical thread. Different
braid angles of the thread result in two directions of motion. (a) For braid angle θc > 35.26◦, the inner Rci and outer Rco

radii increase with pressure and the FAM length decreases together with the braid angle θc. Due to the length decrease, the
FAM is classified as contractile. (b) For θe < 35.26◦, the radii decrease with added pressure, and the FAM length increases
along with the braid angle θe to form an extensile FAM.
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Figure 3. The relationship between the absolute normalized blocked force of Gaylord’s model and
the resting braid angle. A FAM blocked force is non-linearly dependent on its resting braid angle.

1.2. Literature on FAM Modeling

FAMs offer the power and reliability of electric actuators that no other chemo- me-
chanical artificial muscles can provide [14,15], and have been widely used in robotic and
aerospace applications [1–3,11,16–18]. However, the applications of EFAMs, specifically,
have been rather limited. Primarily, their application has been found in continnum soft
robots and secondarily in power assistive devices and soft grippers. In continuum soft
robots, EFAMs can be parallelly bundled to create a flexible beam-like structure that bends
and extends when a differential pressure is applied to the muscles [19–24]. Another ap-
proach to achieve out-of-axis motion is to constrain an EFAM from extending on one side
or helically. This way FAMs with bending and helical motions were produced, and later
applied to a gripper [25] and a continuum robot [26]. Another application was also found
in an assistive exoskeleton glove where bending EFAMs were attached to the top of the
glove along human test subject’s major hand joint (metacarpophalangeal) and its fingers. It
was shown that the glove reduced subject’s effort in a grasping task [27–29].

For its various applications, several analyses have been proposed to model the actuator,
with two prominent models being the energy balance model [6,30–32] and the force balance
model [13,33]. These models were later extended with a non-cylindrical shape at the ends
of the actuator [34], friction force [30], strain-stiffening effect [34], pressure-dependent
stress functions [9], and actuated pressure correction (or dead-band pressure) [16,30,34].
There is a fundamental difference between the basic energy balance model, and the force
balance model employed in this study. The standard energy balance model is defined using
the equation [6]:

F(ε, P) = (πR2
0)P
[
3/tan2(θ0)(1− ε)2 − 1/sin2(θ0)

]
where ε is the strain, F is the force generated by a FAM, P is the internal pressure, R0 is the
resting outer radius, L0 is the resting length, L is the length and θ0 is the resting braid angle.
As can be seen in Equation (2), the model does not take into account the forces generated
by the bladder material. As far as this might be a good approximation for a variety of
contractile FAMs, extensile FAMs generate smaller forces, and the force subtracted due to
bladder extension should not be neglected. Moreover, some finite element (FE) models
have been proposed for contractile FAMs [31,35]. FE modeling was, however, not employed
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in this paper because a model that provides direct physical insight was preferred. Thus,
the bladder effect was modeled with the force balance model.

To date, papers that employed the force balance approach modeled the hyper-elastic
bladder material using polynomial expressions [9,33,34]. Although the polynomial stress
model makes no assumptions about the bladder material besides hyper-elasticity, it is
typical for FAM bladders to be made out of rubber-like materials such as latex or sili-
cone. Knowledge of this common composition presents the opportunity for more targeted
modeling.

It was assumed that for rubber undergoing large deformations [36,37], a constitutive
equation can be employed that would account for the shape of an empirical stress trend
obtained for tensile properties of rubber [38,39]. If the shape of the stress function represents
bladder material properties well, then fewer coefficients would be needed. Thus, these
assumptions may allow for a more targeted function shape that minimizes the number of
coefficients and hopefully reduces error. A more representative function shape could also
improve predictions about stresses outside of the tested strain region and pressure values.

As the bladder is often treated as a tube of hyper-elastic material, its constitutive
relationship has theoretical constraints. An elastic body is reversible, non-dissipative and
time independent under isothermal conditions. In the sense of Drucker’s stability, the
modeled bladder is also considered a stable material. For an elastic material, this implies
that work done on the material is stored as strain energy, which can be recovered on
unloading. This means that a drop in stress with increase in strain must be ruled out. Even
if we modeled the bladder as an hyper-elastic-plastic material, the drop must be ruled out
explicitly as for a stable material: σ̇ε̇ > 0, where σ̇ is a time derivative of stress, and ε̇ is a
strain-rate [40].

Drucker’s material stability criterion was not explicitly considered by Pillsbury et al. [9]
and Hocking et al. [34] when modeling the FAM bladder hyper-elastic behavior with
polynomial terms. Although in their analyses the polynomial terms satisfied the stability
criterion, there was no guarantee that the stress function obtained through model fitting
would satisfy it. As will be shown in the sequel, the use of polynomial terms in the
constitutive equation can complicate evaluation of Drucker’s stability.

The literature on FAM modeling mostly focuses on contractile FAMs because they
produce more work per cycle, develop greater actuation force, and are more efficient than
extensile FAMs [9]. However, in the field of continuum robotics, large strokes are often
desired to enable the creation of a robot with greater ranges of motion [11,20,21,41,42].
Pillsbury et al. [9] showed that extensile FAMs of different sizes can be modeled with the
force-balance model to calculate axial force response to varying strain and pressure. In the
field of continuum robotics, the actuator alone has been typically tested for free extension
depending on applied pressure. This testing is sufficient when the robot does not carry
significant load, but experimental information is lacking in cases when the manipulator
encounters a more demanding load. To address this gap, experimental quasi-static axial
force response to varying strains over a set of pressures was shown in Section 3.

1.3. Content Overview

Differences in operation and fabrication of extensile and contractile FAMs, and a lack
of thorough analysis for EFAMs, motivated us to combine and re-validate the current state
of knowledge on extensile FAMs. Section 2 highlights the difference in the manufacturing
processes for CFAMs and EFAMs. A set of constants, required measurements, and parame-
ter estimation methods are proposed in order to later re-validate the modeling for extensile
FAMs. We analyzed the hypothesis that modeling the bladder’s material stress function
using a function that better represents the trend of the experimental data, such as by using
exponential functions, will reduce errors when predicting static axial force response as
compared to stress functions used in prior work. Use of such stress functions can lead to
additional physical insights as opposed to the parameters of polynomial stress functions.
This paper also aimed to address the gap between theoretical and practical considerations
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by providing more details about the design, testing, and modeling of EFAMs than are
presented in existing papers in which EFAMs are often viewed only as a means of actuation
for robotic applications. This study focused on practical modeling, while at the same time,
retaining sufficient accuracy for soft robotics applications.

2. Fabrication

In previous studies, the design and manufacturing processes of extensile FAMs
(Figure 1b) closely resembled those of contractile FAMs [3]. The main steps of the man-
ufacturing process were also the same. First, the end fittings were machined, and the
elastomeric tubing and braided sleeve were cut to desired lengths. Then, the sleeve was
slid onto the elastomeric bladder, and end fittings were inserted while epoxy was applied
to the ends of the sleeve for better bonding and sealing. Finally, the swage tubes were
swaged onto the fittings. The parts used for fabrication of an EFAM (Figures 1b and 4) are
listed in Table 1.

Table 1. List of parts of the extensile FAM assembly.

Part Name Quantity Material Length, cm (in) Diameter, cm (in)

End fitting 2 Aluminium 2.54 (1) 2.133 (0.84)
Swage tube 2 Aluminium 2.54 (1) inner: 2.25 (0.884), outer: 2.54 (1)

Elastomeric tube 1 Soft latex rubber 17.78 (7) inner: 1.9 (3/4), outer: 2.22 (7/8)
Braided sleeve 1 Kevlar (aramid) biaxial 50.8 (20) at θ = 45◦ 2.22 (7/8) at θ = 45◦

Binder/seal N/A Epoxy/hardener N/A N/A

Figure 4. Manufactured and cycled extensile fluidic artificial muscle. The excess of the sleeve accumulated in arbitrary
regions along the actuator. The diameter was not uniform along the axis of the specimen.

The main difference between CFAM and EFAM fabrication was in the length of the
braided sleeve [3]. For a contractile FAMs, the sleeve can be pulled tightly around the
bladder. For an extensile FAM, a sleeve much longer than the FAM itself must be gathered
onto a short latex tube. Moreover, to minimize dead-band pressure, the sleeve must fit
tightly over the bladder. Additionally, the friction between the latex rubber bladder and the
kevlar braided sleeve is substantial. To resolve this issue, the kevlar sleeve was gathered
onto a plastic tube of the same diameter as the bladder. Then, the bladder circumference
was reduced by wrapping it with a small diameter thread, and the bladder was inserted
into the plastic tube. Once the bladder was in place, the plastic tube was slid out while the
braid and bladder were held together. Finally, the thread was removed so that the bladder
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returned to its undeformed state enveloped by the tightly fitting sleeve. The end fittings
were then inserted and the FAM was ready for the epoxy to be applied right before the
swaging process.

The braided sleeve was gathered on the bladder (Figure 4), so that accurate measure-
ment of sleeve length was problematic. As it was critical for modeling to fully define the
sleeve dimensions, a metal tube with an outer diameter of 2.22 cm (or 7/8 inches) was used
to spread the sleeve along. Based on the data provided by the manufacturer at the braid
angle of 45◦, the sleeve diameter was 2.22 cm. The desired length was then marked on the
sleeve, and trimmed with arbitrary margins that enabled easier manufacturing. Finally, a
fully-defined piece of sleeve was obtained with a marked length of 50.8 cm and braid angle
of 45◦ at a diameter of 2.22 cm. A formula to convert between sleeve lengths at different
braid angles was shown in Section 4.

There are several geometric constants that were tracked during the manufacturing
process that are useful for modeling in Section 4. The constants are summarized in Table 2.
Bladder volume was difficult to measure precisely once the FAM was manufactured and
cycled due to the deformations that it underwent. Resting length and thickness of the
latex tubing may change during manufacturing and cycling, and may also change with
time due to external factors such as temperature or humidity. If that happens, it is very
difficult (or impossible) to measure the thickness of the bladder correctly. This was why
bladder geometry were measured before assembly and swaging. With a priori knowledge
of the original bladder length, the bladder volume and bladder wall thickness for different
operating conditions could be calculated, as in Section 4.

Table 2. The table shows constants that were measured during manufacturing or provided by components’ distributors. All
the constants were later used for modeling.

Constant Used To Calculate Measure

LB—bladder length Working bladder volume Before assembly
DBIN —bladder inner diameter Working bladder volume Provided by manufacturer

DBOUT —bladder outer diameter Working bladder volume Provided by manufacturer
tTH—thread thickness Working bladder volume Before assembly

L45—braided sleeve length at θ = 45◦ Braid angle, braid length Before assembly
D45—braided sleeve diameter at θ = 45◦ Braid angle, blocked force Provided by manufacturer

Lrest—resting length Braid angle, blocked force When assembled and cycled
Drest—resting outer diameter Braid angle, blocked force When assembled and cycled

The resting length and resting outer diameter were measured once the FAM was
manufactured, and after the EFAM underwent cycling from minimum to maximum oper-
ating pressure (here 0–690 kPa). Although the thickness of the sleeve was relatively small
(0.279 mm), it was not neglected, as it was important when calculating cross-sectional areas.

3. Experimental Characterization

Two extensile FAMs were manufactured using the materials listed in Table 1 and the
manufacturing process described in Section 2. The testing procedure was adopted from
previous contractile FAM force response testing [10,34]. The same testing machine as in
the previous studies (22 kip MTS servo-hydraulic test machine) was used. With the setup
shown in Figure 5, the EFAMs were slowly stroked at 5.1 mm/s starting from their resting
length, and stopping at the maximum stroke of the MTS machine under five pressure
levels of range 0–517.107 kPa (0–75 psi) with 103.4 kPa (15 psi) increments. The test was
conducted under a small number of 5 internal pressure levels. Based on the trends for a
comparable extensile FAM in Pillsbury et al. (2017) [9], it was assumed that the relationship
of force to internal pressure is mostly linear, and that no significant insight would be gained
with testing at a larger number of pressure conditions. The maximum stroke of the MTS
machine turned out to be at 198% of EFAMs’ resting length. Unlike Hocking et al. [34], in a
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FAM was deformed up to its maximum contraction, in this paper, the EFAMs were stroked
up to the end of the displacement range of the MTS machine. The procedure was adapted
in order to observe how much force EFAMs provide for pulling motions and how the force
is affected by varying pressure values. This experiment was repeated for each of the two
fabricated EFAMs.

(a) (b)

Figure 5. (a) Test setup schematic. Dashed lines represent electric signals. Solid lines represent pneumatic connections.
Pressurized air is supplied by the air compressor and then regulated to 827.4 kPa (120 psi) by the pressure regulator. The
proportional valve directs and tunes the air flow in or out of the FAM. FAM inflation pressure is read by the pressure
transducer and split to be recorded by both the MTS control unit and the Arduino board. The Arduino board runs a
proportional-integral (PI) controller that is fed the error between user-set pressure value and the FAM’s pressure. The PI
controller sets the control signal for the proportional valve, which in turn increases or decreases the pressure with varying air
flow. The EFAM generates compression on the load cell, which depends on both EFAM internal pressure and displacement
(or stroke) of the MTS machine. Time, compressive force, pressure, and displacement are recorded by the MTS control unit
to form a dataset for a given experiment. (b) The extensile fluidic artificial muscle (EFAM) being tested.

3.1. Experimental Setup

For quasi-static force response testing, a 97.9 kN MTS servo-hydraulic test machine
was used in order to achieve desired stroke profiles, and to acquire data from displacement,
pressure, and force sensors. The MTS controller recorded time, displacement, force and
pressure data. An external load cell, Honeywell Model 31-CV, rated for 1000 lbs was used
to achieve higher resolution force readings. Pressure values were obtained with a nominal
1380 kPa (200 psi) rated pressure transducer, Omega PC209-200G5V, and were recorded by
both the MTS and pressure control systems as shown in Figure 5.

If we assume that for the blocked force condition, the FAMs would produce forces
similar to a pneumatic cylinder (see Figure 3), then for a pressure of 517 kPa (75 psi),
nominal force of 262 N would be recorded under the condition that the bladder would
deform after cycling to a diameter of 2.54 cm. This procedure provided an estimate on
what load range should be used for the load cell.

As soft actuators feature much lower stiffness than traditional actuators, extensile
FAMs buckle under relatively small loads. For our axial testing, the EFAM was placed in a
transparent plastic tube to prevent buckling (see Tube in Figure 5). As seen in the static



Actuators 2021, 10, 26 9 of 25

force response (Figure 6), friction between the tube and the EFAMs might be the reason for
the hysteresis at higher pressure tests and small length changes.

(a) FAM1 (b) FAM2

Figure 6. Quasi-static axial force response plot under isobaric conditions of FAM1 and FAM2. The data show hysteresis
between parts of testing cycles with increasing and decreasing length change.

Maintaining isobaric conditions for each test is required to obtain accurate experi-
mental data. Chambers and Wereley (2019) [10] observed errors when using off-the-shelf
pressure regulators for FAM testing. A custom pressure regulation system was developed
in order to maintain isobaric conditions during tests. A custom controller provides flexibil-
ity in selecting dynamic responses of FAM-driven systems, accuracy, and re-usability for a
range of experiments. For the experiment presented in this study, an off-the-shelf pressure
regulator that cancels a steady-state error might also have been sufficient.

The system, as shown in Figure 5, was composed of an Arduino Due board running a
proportional-integral (PI) controller, 12 V and 24 V power supplies, an active low pass filter
(with 3.3 V PWM to 5 V Analog conversion), a signal splitter, a pressure transducer (Omega
PC209-200G5V), a high speed proportional pneumatic valve (Enfield M2d), a pressure
regulator (Exceleon R73G), an air compressor (DeWalt D55146), and a laptop computer
to remotely supervise the pressure readings and change the desired pressure value. The
filter and splitter were simple custom-made circuits based on Texas Instruments’ LM358N
op-amps. The active filter was implemented to convert the PWM signal into a smooth
signal. A passive double RC circuit was implemented on the op-amp input with a cut-off
frequency of 159 Hz. Then, the output voltage level was set with potentiometer-tuned
voltage divider on the output. The signal splitter was used for buffering and splitting the
pressure voltage signal to the Arduino Due Board and the MTS data acquisition unit.

The laptop sends desired pressure values to the control board and periodically acquires
pressure data, and the control board reads the voltage from the pressure transducer. The
signal is sampled at a frequency of 20 kHz with 12-bit resolution. Constant sampling
frequency is assured by the use of the processor’s general purpose timers. A PI feedback
controller with an anti-windup scheme runs its loop at 50 Hz, and uses an average pressure
value calculated from last 400 samples. The proportional and integral gains of the controller
were found through iterative testing. The Arduino board translates a floating point control
signal into a 3.3 V pulse width modulation (PWM) signal with 5 kHz frequency and 0–100%
duty cycle of 13-bit resolution. Then, the 3.3 V PWM signal goes through an active low-pass
filter that outputs a 0–5 V analog signal to control the valve’s inner driver. Pressure data
acquired by MTS control unit was characterized with a standard deviation smaller than
0.7 kPa.
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3.2. Measurements

After manufacturing and cycling, resting lengths were measured using a set of calipers,
with a standard precision of 0.02 mm, and measured to the same accuracy. The measured
resting lengths for the FAMs were 17.018 cm for FAM1 and 17.292 cm for FAM2. The resting
outer diameter slightly varied along the length, and therefore several measurements were
conducted to obtain a range of values for modeling. In the axial direction, air pressure
generates force based on the total area perpendicular to the axis, hence, it was expected
that the measured values from the upper limit of the range were valid for modeling as they
represent the largest cross-sectional area of a FAM. For the first FAM, its diameter spanned
from 2.654 to 2.896 cm. For the second FAM, the range of diameter values spanned from
2.616 to 2.87 cm.

The obtained static force responses are plotted in Figure 6. FAMs produce blocked
forces that linearly increase with pressure, which is the same trend that was observed for
CFAMs [9,33,34]. The forces are approximately ten times smaller than those of contractile
FAMs with a similar resting diameter, which agrees with Pillsbury et al. (2017) [9]. The
EFAMs tested here have slightly larger blocked forces than those previously tested in [9].
The higher blocked forces are likely a result of the manufacturing method which keeps
the braided sleeve tight on the bladder (as compared to the method with excess braid,
which results in a gap between the bladder and the sleeve). The fabrication method
described in Section 2 also resulted in improved free extension. For a comparable pressure
value of 413.7 kPa, the free extension is more than two times larger than that reported
by Pillsbury [9] and 1.5 times larger than that reported by Trivedi et al. [43]. The EFAM
design used here improves blocked force and free extension, and may feature good fatigue
properties similar to those of the CFAMs [3].

4. Modeling

In this section, the EFAM static force response is modeled together with estimation
of the bladder’s hyper-elastic behavior. The analysis performed in this section validates
an existing modeling technique for use with EFAMs, gives insights about estimation of
variables and constants that appear in the model, and proposes a new modeling approach
to account for bladder elasticity.

The literature on FAM modeling is extensive, focusing on two main modeling ap-
proaches: energy [30] and force balance models [13,33,34]. The force-balance model
(Equation (2)) was employed here, as it was shown that this model makes no assump-
tion on the value of FAM’s resting braid angle. Thus, Equation (2) can be used to model
contractile and extensile FAMs [9].

F =
P− Pdb
4πN2 (3L2 − B2) + σz

Vb
L
− σc

tBL2

2πRo N2 (2)

The variables in the equation are FAM’s axial force, F, internal pressure, P, dead-band
pressure, Pdb, number of braid thread turns, N, specimen length, L, length of a braid thread,
B, longitudinal and circumferential stress, σz and σc, bladder material volume, Vb, bladder
thickness, tB(L), and the FAM’s outer radius Ro(L). With tB(L) and Ro(L) being functions
of FAM’s length, and stresses σz and σc being typically functions of L and P [9], we get an
equation fully defined by force, pressure, length, and constants.

In the force-balance model, FAM geometry is constrained by its design and by as-
sumptions that simplify the analysis. The thread of the braided sleeve is assumed to be
constant length and inextensible with a negligibly small diameter. The bladder is modeled
as a thick-walled cylinder (Figure 2b) with a constant volume by the assumption that the
bladder material is incompressible. Although the authors find this model sufficient for the
performed analysis, there are improvements that can be implemented such as: relaxing
assumptions on the braid thread inextensibility and bladder incompressibility, introducing
a non-cylindrical FAM shape at the ends [34], extending the model with braid-bladder
friction [30], or including temperature and time-dependent mechanical effects in σz and σc.
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4.1. Resting Braid Angle Estimation from Geometric Properties

The assumptions and resulting geometric constraints introduce a set of constants that
are needed for modeling. In Equation (2), B is the length of the inextensible braid threads.
Its value can be calculated from measurable quantities when the FAM is in its resting state:

B =
Lrest

sin(θrest)
(3)

where Lrest is the resting working length of the FAM and θrest is the resting braid angle. As
direct measurement of the angle is problematic (Section 2), the braid angle was obtained
with the following calculation. The number of turns N is always constant and given by the
equation [34]:

N =
L

πD tan(θ)
(4)

which leads us to a formula for the resting braid angle:

θrest = atan
(

D45 tan(45◦)Lrest

L45Drest

)
(5)

that uses constants that were obtained during the fabrication process such as the braided
sleeve diameter, D45, the braided sleeve length measured, L45 (where the subscript indicates
that both variables should be measured at the braid angle of 45 degrees), EFAM resting
length, Lrest, and EFAM outer resting diameter, Drest. For an EFAM with a rolled-up sleeve,
this value is theoretical, as the excessive amount of sleeve gives the braid angle lots of
freedom to change over the length of the sleeve (see Figure 4). The braid angle is then used
to compute the number of turns, N.

4.2. Working Volume Estimation

The next constant is the bladder volume, Vb, which was estimated based on the pre-
assembly geometrics of the elastomeric bladder. The bladder length, fixed by the end fitting,
will not equal its mounting channel length because the channel has different dimensions
than the elastomeric tube. The bladder was assumed to be incompressible, and therefore
the excess volume of a part of the elastomer would be pushed outside of the end fitting
channel. By considering the volume of the channel, the amount of the working bladder
length that is lost in the swaged end fittings can be calculated.

VFIX = π
(
(RFIXOUT − tTH)

2 − R2
FIXIN

)
LFIX (6)

∆LBFIX =
VFIX

π(R2
BOUT

− R2
BIN

)
(7)

where VFIX is the volume of the bladder clamping channel modeled as a thick-walled
cylinder, which is defined by its length, LFIX , (times two for both end fittings) and radius,
RFIX . The sub-subscript ()IN denotes the inner radius of the channel, and ()OUT denotes
the outer radius of the channel. The braid thickness is denoted as tTH . VFIX , can be used to
calculate how much of working bladder length ∆LBFIX was lost to fix the bladder in the
end fitting. Then, the working bladder volume can be calculated as follows:

VB = π(R2
BOUT

− R2
BIN

)(LB − ∆LBFIX ) (8)

where the inner radius of the bladder is denoted as RBIN , the outer radius of the bladder
is denoted as RBOUT and the original bladder length is denoted as LB. In the case of the
studied extensile FAMs, where ∆LBFIX = 1.372 cm, if there were no deformations, the
working bladder length would be 16.408 cm. The deformations during fabrication and
cycling change the resting length and outer diameter. For FAM1 the resting length is 3.7%
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larger and for FAM2, 5.39% larger. The resting diameter was 29% larger for both FAMs
than that of off-the-shelf latex tubes. The working bladder volume for the tested FAMs was
found to be 0.01692 liters.

4.3. Dead-Band Pressure Estimation

Dead-band pressure, Pdb, is the pressure required for the bladder to make substantial
contact with the surrounding braid and initiate inflation of the FAM [16,30,34,44,45]. The
dead-band pressure was measured experimentally. According to the Gaylord model, the
blocked force is linearly proportional to FAM’s internal pressure, and equals zero when
pressure is not applied. This is not the case with the experimental data. A linear fit to
the experimental data in Figure 7a would yield a pressure value greater than zero for the
blocked force of zero—a pressure level above which a FAM starts to generate force. This
pressure difference between the Gaylord model and the experimental data is the estimated
value of the dead-band pressure.

(a) Blocked force as a function of pressure. (b) Free extension as a function of pressure.

Figure 7. For the two extensile FAMs, the blocked force trend is strongly linear, and increases with pressure. Free extension
also increases with pressure to reach saturation above 517.1 kPa (75 psi). The blue and orange lines correspond to FAM1 and
FAM2, respectively.

The Gaylord force model [4] considerably overestimates the force of contractile FAMs;
however it was found to be accurate for estimation of FAM blocked forces [9,33], which
makes it also useful for dead-band pressure and resting braid angle estimation. Addition-
ally, it can also be shown that the Equation (2) for blocked force conditions is equivalent to
Gaylord’s equation:

FBF =
(P− Pdb)πD2

rest
4cos2(θrest)

(3sin2(θrest)− 1) (9)

where the resting braid angle was denoted as θrest, the resting outer diameter as Drest, the
FAM internal pressure as P, and the dead-band pressure as Pdb. The blocked force, FBF,
in the experimental data was observed to have a strong linear trend (Figure 7a), which
is justified by Equation (9). With a linear fit, dead-band pressure, Pdb, is obtained where
FBF = 0. For the two FAMs, the estimated dead-band pressures are 33.62 kPa and 34.47 kPa,
as compared to 75.84 kPa that was used by Pillsbury et al. (2017) [9] where the bladder
material was also latex, the bladder had the same thickness and the same or even larger
diameter. It is worth noting that larger dead-band pressure probably led to a smaller
blocked force observed in their study for extensile FAMs.

4.4. Resting Braid Angle Estimation from Experimental Data

The previous method for estimation of the resting braid angle used only geometric
properties of the bladder, the braided sleeve and the end fittings. This allowed for calcu-
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lation of the braid angle prior to experimental characterization. To validate the previous
method, another method based on the experimental blocked force data is introduced to
validate the previous one. For the experimental method, blocked forces and dead-band
pressure values can be used to estimate resting braid angle, θrest. The method is very
sensitive to the measured resting diameter as the blocked force is proportional to the square
of the outer diameter, Do. Since there is a variation in the measured resting outer diameter,
the authors decided to pick a value from the range that would give a reasonable fit. For
both FAMs, the resting outer diameter, Drest, of 2.87 cm was found to agree well both with
the experimental data and the previously estimated braid angle. This resting diameter
value is therefore used throughout the rest of this work.

A mean squared error function can be devised and used with a non-linear program-
ming solver such as MATLAB®’s fminsearch to find a braid angle that matches the blocked
force data with Gaylord’s force model (Figure 8). The experimental values that do not
follow the linear trend of Gaylord’s model are treated as outliers. Alternatively, an average
value of the tangent of resting braid angle tan(θrest) can also be obtained from data when
one isolates tan(θrest) from Gaylord’s model. It was found that the first experimental
method was simpler to implement, and chose it because it directly minimizes the error,
that depends on the braid angle, between Gaylord’s model and the experimental data on
blocked forces. Blocked force value for FAM2 at a test pressure of 413.7 kPa does not follow
the trend and was treated as an outlier.

The changes for the braid angles found through minimization of the error between the
model and the data, compared to the values from the geometric method for the resting braid
angle, θrest, of 12.54◦ and 12.73◦, were 2.47% and 8.96% for FAM1 and FAM2 accordingly.
The small differences in the estimated resting braid angles, and the small error between
the blocked force values shown in Figure 8a,b validate both methods for braid angle
estimation. The method based on geometric measurements gives the advantage of blocked
force estimation prior to the experiment. Thus, it allows for accurate predictions of EFAM
braid angle with simple measurements. With additional studies of differently sized FAMs,
one could show bounds on the bladder’s resting length and diameter change due to
manufacturing and cycling. This would allow for even more precise blocked force estimates
at the design stage. Braid angles based on geometric properties of 12.54◦ and 12.73◦, were
used for later analysis.

(a) Blocked force as a function of pressure of FAM1. (b) Blocked force as a function of pressure of FAM2.

Figure 8. For the two extensile FAMs, blocked force was plotted based on the Gaylord’s force model, Equation (9). Braid
angle was found based on geometric properties of fabricated FAMs, and with error minimization with respect to the
experimental data.
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4.5. Calculation of FAM Outer Radius and Bladder Thickness

Variables such as generated force, F, FAM length, L, and internal pressure, P, were
assumed to be given or measured by the testing system. Since B, L, and N are known and
the assumed thick-walled-cylinder shape of the FAM fully defines the geometry, the FAM
outer radius Ro (which is here assumed to be equivalent to the braided sleeve radius) can
be calculated as follows [33,34]:

Ro(L) =

√
B2 − L2

2πN
(10)

where the length of a sleeve thread is denoted as B, FAM length as L, and number of thread
turns as N. The bladder thickness, tB, may be then obtained with [33,34]:

tB(L) = Ro −
√

R2
o −

VB
πL

(11)

4.6. Numerical Estimation of Bladder Material Stress Function

Modeling the stress as if the bladder were a thick-walled tube of linearly elastic mate-
rial yields good results (the blocked force was predicted within 10% of the experimental
measurements) [33]; however, the hyper-elastic model using a polynomial form allowed
for a practical model with smaller error. Originally, the proposed hyper-elastic model by
Hocking was composed by fitting coefficients to each force response curve at different
pressures [34]. The studied axial force responses revealed that the material stress was
moderately linear to the operating pressure—an observation used in this study. Unlike
Hocking, who studied contractile FAMs, this study covers extensile FAMs, and so modeling
methods and observations previously used for CFAMs should be re-validated for EFAMs.

So far, all of the variables and constants in Equation (2) were covered besides ma-
terial stresses. The two stress terms: longitudinal bladder stress, σz, and circumferential
bladder stress, σc are functions of strain, ε, and, since the material behavior changes with
pressure [37], internal pressure P. The longitudinal stress is dependent on longitudinal
strain, εz:

εz =
L

Lrest
− 1 (12)

and the circumferential stress is dependent on circumferential strain, εc, that is calculated
with the cross-sectional center of the bladder to includes the variation of the bladder
thickness [33]:

εc =
Ro − tB/2

Rorest − tBrest/2
− 1 (13)

The final component to the Equation (2) is the bladder stress function σ(P, ε). If a form
of such a function was known and it had some coefficients defining the properties of the
bladder material, then it would be possible to search for the coefficient values, comparing
the axial force of the force-balance model (Equation (2)) with the axial-force experimental
data. Then, numerical methods such as nonlinear programming solver could be used to
find coefficient values that give the minimum error. This coefficient search method was
employed in this study. For error minimization, the normalized force error is summed at a
number, n, of uniformly distributed normalized length changes, averaged with division
by n, and then summed for each pressure to be then averaged by division of the number
of different test pressures, Np. Model coefficients for the stress functions are determined
using fminsearch in MATLAB, the axial-force-response experimental data, and the error
cost function:

ERROR =
Np

∑
j=1

1
Np

 n

∑
k=1

1
n

√√√√√√
 (Fexperiment)

j
∆L= k

n ∆Lmax
− (Fmodel)

j
∆L= k

n Lmax

(Fexperiment)
j
∆L= k

n Lmax


2
 (14)
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where Np is the number of test pressures (in this study, n = 5 and Np = 5). In the
Equation (14), Fexperimental denotes the force measured by the testing system, Fmodel denotes
the force calculated with a model. The subscript, (·)∆L= k

n Lmax
, denotes length change at

which the force values were acquired. The superscript, (·)j indicates the internal pressure
at which a given test was performed.

The Nedler–Mead algorithm (fminsearch) was chosen for its simplicity and its familiar-
ity to the first author [46]. MathWork’s fminsearch implements a Nedler–Mead algorithm
that starts at one set of initial values. Use of other algorithms that have more starting
points, or simply using a multi-start version of fminsearch might increase a likelihood
of finding a better local minima. Two groups of such algorithms are evolutionary and
swarm algorithms used in population-based optimization methods [47]. For this problem,
MATLAB’s genetic algorithm, ga, was also tried instead of fminsearch, but surprisingly,
it yielded errors that were three times larger in value than the ones that were obtained
with fminsearch.

It is hypothesized that the more important factor for this problem was picking a “good
enough” starting point for fminsearch or “good enough” bounds on coefficients for the
genetic algorithm. In this study, an elastic model was used for a baseline, and was described
further in the next section. That baseline model used only two coefficients which made the
search simple. With our other models, non-linear terms were added to the baseline model
with an aim to improve the regions of transient behavior for small, or large strains. The
non-linear terms extended the search to four coefficients. Since the new models were an
extension of the baseline model, the coefficient values found with the baseline could be
reused as starting points for the new models. As can also be seen in the following section,
for certain models, one can find bounds on the coefficients, which makes it even easier to
find a good starting point for fminsearch, or narrow the search space when using another
algorithm such as genetic algorithm.

4.7. Stress Function Model Structures

To identify the parameters, the form of the stress function, σ(ε, P), is first needed.
Since the latex-rubber bladder stress response to strain and pressure can vary with factors
like time, temperature, UV light or humidity, a pressure-dependent hyper-elastic behavior
of the EFAM bladder is not fully known. In this section, four different stress function are
evaluated for modeling of this subtle EFAM bladder behavior. All models include a linear
term and use four Ei parameters that are the output of fminsearch. With iterative testing,
four appears to be the smallest number of parameters that provides sufficient degrees of
freedom for a good fit of the stress function to measured data.

Four stress functions were selected to represent four different approaches to hyper-
elasticity. The stress functions let us gain physical insights from the trends of various
parameters. A linear stress function was selected as the baseline, and the three other stress
functions added higher order hyper-elastic terms to the linear model.

The first stress function, denoted as the linear model, assumes a linear elastic bladder
with stiffness linearly dependent on pressure [33]:

σ(ε) = (E1 + E2P)ε (15)

where Ei refers to the coefficients obtained by the minimization algorithm. E1 is an equiv-
alent of Young’s modulus for rubber, and was expected to be positive and range from 1
to 5 MPa. E2 was used to model the pressure effect, which was assumed to be linearly
increasing [33]. Given that the two parameters were positive and thus the positive strain
derivative of stress was also positive, dσ

dε > 0, the material stability of the linear term was
guaranteed with E1 > 0 and E2 > 0.

The second stress function, denoted as the polynomial model, assumes hyper-elastic
material with a 3rd order polynomial stress–strain relationship. This form was chosen
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based [9] as it successfully modeled both, CFAMs and EFAMs . The order of the polynomial
expression was chosen through trial and error.

σ(ε) = (E1 + E2P)ε + E3ε2 + E4ε3 (16)

The stability of this material model can be analyzed with its stress–strain derivative:

dσ

dε
= E1 + E2P + 2E3ε + 3E4ε2 (17)

Since the linear term was shown to be positive, a constraint is introduced to guarantee
material stability:

E1 + E2P > 2E3ε + 3E4ε2 (18)

The constraint adds complexity to the non-linear optimization procedures, which
based on authors’ experience may lead to the end optimization at local minima that do
not give a good fit. This was even more apparent for polynomial models of higher orders
that were not included in this study. As shown later in the results, for a good fit, E3 should
be negative, which runs counter to the idea of using a simple constraint where all the
coefficients are assumed to be positive.

The third and fourth stress functions evaluated here were inspired by tensile stress–
strain relationships found for rubber in Treloar’s (1944) [38] work on vulcanized data. The
added terms were chosen to directly address the non-linear effects in rubber-like materials.
The third stress function, denoted as the exponential-decay model, uses an exponential
term with the goal of modeling initial “transient” state for small strains which was observed
in the data.

σ(ε) = (E1 + E2P)ε + E3

(
1− e−E4ε

)
(19)

The stress–strain derivative of the exponential-decay model is:

dσ

dε
= E1 + E2P + E3E4e−E4ε (20)

Since E3 was used for scaling of the non-linear term, and becomes an added linear
term when ε → ∞, it was explicitly assumed to be positive. Additionally, the sum of E1
and E3 should give a value close to that of E1 from the linear model. For the exponen-
tial term to vanish, E4 must also be positive. With these two simple requirements, the
stress–strain derivative is also positive, which makes the material model always preserve
Drucker’s stability.

The fourth stress function, or the exponent model, was inspired by Ogden’s (1972) [36]
work. It is composed of terms with increasing and decreasing derivatives, which was
obtained by constraining 0 < E3 < 1 and E4 > 1. The goal of the εE3 was to model the
transient effect for the small strains, and εE4 was to model strain stiffening. The parameter,
E1, appearing in all models, was here reused for scaling of the exponential terms.

σ(ε) = (E1 + E2P)ε + E1(ε
E3 + εE4) (21)

The stress–strain derivative of the exponent model is:

dσ

dε
= E1 + E2P + E1E3εE3−1 + E1E4εE4−1 (22)

With E3 and E4 being positive values, the strain derivative of stress is guaranteed to
be positive at all times which guarantees material stability. Note that for negative strains,
the strain terms, εEi , need to be substituted with sign(ε)|ε|Ei to avoid imaginary values.

More variations of function structures can be studied, and many of them may need
fewer coefficients, or provide smaller errors. However, the important aspect of the two
proposed function structures is that the non-linear effects of choice can be added through
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related terms; the function shape is based on and constrained to physical behavior; and
that they guarantee material stability. Although polynomial expressions are often used to
model non-linear behaviors, their structure may leave out degrees of freedom, which based
on experimental data, or elastic material models are unrealizable by rubber-like materials.
Leaving out additional degrees of freedom for the optimization procedure, or introducing
complex constraints, might lead to the optimization process converging at a local minima
that give an undesirably large error. One could also consider modeling the non-linear
behavior with terms such as sigmoid or arccotangent functions. They could potentially give
lower errors, or fit the small strain transients better. However, for this study, the emphasis
was made on selecting terms that were considered simple and providing physical insight.

4.8. Modeling Results

The maximum normalized length change was divided into five points, n = 5, and the
error was computed for each point. Then, the sum of the errors was taken and normalized
by the number of evaluated points and another sum was taken over a number of pressure
tests, Np = 5, as listed in Equation (14). The sum was then divided by Np. Compared results
were shown in Table 3 and optimization results in Table 4. The introduced constitutive
models (Fun (19) and (21)) were characterized by smaller errors than the previously-used
models (Fun (15) and (16)). In this study, the polynomial model (Fun (16)) reached a similar
average error to exponential-decay model (Fun (19)) and exponent model (Fun (21)). Only
5% improvement was shown, compared to the polynomial model.

In Figure 9, four subfigures show the same axial force response of FAM1 with an
overlaid black curve representing results obtained from modeling of the axial behavior
with a given stress function structure. Although in Figure 9a the linear model gave
a satisfactory fit, it failed to model the non-linear behavior for small strains. For free
extensions the fit starts to deviate for larger internal pressure levels, although for the testing
pressure range it still gives a good fit. For all other stress function structures, the model
fits the free extensions precisely. At the cost of additional coefficients in Figure 9b, the
polynomial model provides a better fit for small strains that worsens with increasing FAM
internal pressure. The two new proposed stress functions model the small strain region
slightly better than the polynomial model. From an engineering perspective, all the models
match the data well, with the hyper-elastic ones mainly introducing improvements in the
small strain region, which might be of importance for precise actuation. The qualitative
observations were confirmed for FAM2 (Figure 10), and further validated quantitatively in
Table 3.

For FAM1, the stress function for strain up to 10% and up to 400% was plotted to show
comparison between the modeled stress functions. Figure 11a shows how different models
captured the transient state for small strains. The polynomial model did not capture the
transient state and the proposed models did, which can be further observed in the modeled
axial force response in Figures 9b and 10b. Figure 11b shows stress values for strains
outside of the testing range. For large strains, the polynomial model can yield behavior
that is unrealistic. Here, it quickly exceeds realistic stresses for rubber, which makes it
impractical for predictions of non-measured strains.

The exponential-decay model yields an almost linear increase in stress for large strains,
which is beneficial if one needs a conservative model outside of a tested strain region.
Although the exponent model assumes exponential increase in stress, the modeling-error
minimization was able to “learn the stress behavior”, which resulted in stress increasing
only slightly faster than that of the linear model for large strains.
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Table 3. Error Comparison for the four different stress function models. Two error values are shown for FAM1 and
FAM2, respectively.

Name: Linear Polynomial Decaying Exponential Exponent

Function Structure: (E1 + E2P)ε (E1 + E2P)ε (E1 + E2P)ε (E1 + E2P)ε
+E3ε2 + E4ε3 +E3

(
1− e−E4ε

)
+E1(ε

E3 + εE4)

Comparison Length Error, %

Blocked Force * 2.59, 4.02 2.59, 4.01 2.6, 3.99 2.79, 3.71
2
5 ∆Lmax 8.75 **, 5.51 ** 1.82, 2.37 1.83, 2.37 1.83, 2.37
3
5 ∆Lmax 6.71, 4.59 3.09, 2.23 2.32, 1.51 2.26, 1.49
4
5 ∆Lmax 2.32, 0.72 2.17, 0.73 2.16, 0.74 2.16, 0.74
∆Lmax 4.46, 1.48 1.22, 0.61 1.22, 0.62 1.23, 0.62

Average 4.97 **, 3.26 ** 2.18, 1.99 2.03, 1.85 2.05, 1.79

* According to Equation (2), for blocked force condition ε = 0, the stress terms are equal to zero, which means that the error should be
the same regardless of any stress model used. Since the analysis is based on experimental data, the table actually shows error where
ε = ±5 · 10−4. This results in a more informative error measure of the stress models for near-blocked-force condition. ** The error was
calculated close to the zero force condition, which resulted in a large error that does not reflect the fit well. The error was not included in
the calculation of the average error value.

Table 4. Coefficients found through error minimization for the studied stress models.

FAM Model Function Structure E1 · 106 E2 E3 E4

1 Linear (E1 + E2P)ε 1.766 1.5717
2 Linear (E1 + E2P)ε 1.638 2.2113

1 Polynomial (E1 + E2P)ε + E3ε2 +
E4ε3 2.367 1.9749 −1,822,118 1,151,902

2 Polynomial (E1 + E2P)ε + E3ε2 +
E4ε3 2.086 2.344 −1,365,659 947,580

1 Exponential-Decay (E1 + E2P)ε +
E3
(
1− e−E4ε

) 1.479 1.9771 121,646 13.0762

2 Exponential-Decay (E1 + E2P)ε +
E3
(
1− e−E4ε

) 1.468 2.3456 74976 28.7297

1 Exponent (E1 + E2P)ε +
E1(ε

E3 + εE4)
0.538 1.9782 0.5061 1.3539

2 Exponent (E1 + E2P)ε +
E1(ε

E3 + εE4)
0.531 2.346 0.5599 1.5233

(a) Linear
σ = (E1 + E2P)ε

(b) Polynomial
σ = (E1 + E2P)ε + E3ε2 + E4ε3

Figure 9. Cont.
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(b) Exponential-Decay
σ(ε) = (E1 + E2P)ε + E3

(
1− e−E4ε

) (c) Exponent
σ(ε) = (E1 + E2P)ε + E1(ε

E3 + εE4 )

Figure 9. The quasi-static axial force responses of FAM1 extensile fluidic muscles to varying strain for incrementally
increasing internal pressure. The axial force outputs of the force-balance model employing the studied stress functions are
overlayed as black lines for comparison to experimental data.

(a) Linear
σ = (E1 + E2P)ε

(b) Polynomial
σ = (E1 + E2P)ε + E3ε2 + E4ε3

(c) Exponential Decay
σ(ε) = (E1 + E2P)ε + E3

(
1− e−E4ε

) (d) Exponent
σ(ε) = (E1 + E2P)ε + E1(ε

E3 + εE4 )

Figure 10. The quasi-static axial force responses of FAM2 extensile fluidic muscles to varying strain for incrementally
increasing internal pressure. The axial force outputs of the force-balance model employing the studied stress functions are
overlayed as black lines for comparison to experimental data.
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(a) FAM1 stress function, close up to 10% strains. (b) FAM1 stress function, up to 400% strain.

Figure 11. Obtained stress–strain relationship for zero pressure, P = 0, for FAM1.

A high-level comparison of the stress models is shown in Table 5. The average error
was calculated from the average errors for the two FAMs shown in Table 3. Expanding the
linear model with non-linear terms led to a decrease of the average error by 50%. Among
the three non-linear models, the exponent model had the smallest average error.

Table 5. Comparison of constitutive models. Models were compared with: their average error, if there was a simple
expression for each coefficient, or a multi-coefficient expression was needed to satisfy the material stability criterion, growth
rate in Big O notation, and for which coefficients boundaries are known. Bndd stands for bounded, and lbnd stands for lower
bound.

Model Average Error, % Stability Conditions O(σ(ε)) Known Coef. Boundaries

Linear 4.12 One-coeff. inequalities O(ε) E1 (bndd); E2 (lbnd)
Polynomial 2.09 Multi-coeff. inequality O(ε3) E2 (lbnd)

Exponential-Decay 1.94 One-coeff. inequalities O(ε) E1, E3 (bndd); E2, E4 (lbnd)
Exponent 1.92 One-coeff. inequalities O(εE4) E3 (bndd); E2, E4 (lbnd)

Next in Table 5, complexity of the conditions for material stability were compared. For
polynomial model, an inequality with different coefficients was needed to satisfy material
stability. For all the other models, one-coefficient inequalities were needed to be evaluated,
which simplified material stability analysis and optimization procedures.

Next, the models were compared with their growth rates using Big O notation. Growth
rates were found to quantify how conservative the models would be outside of the tested
range of strains. If the growth rate is big, as was the case with the polynomial model,
then the model might give physically unrealistic predictions of stress outside of the tested
region. The most conservative were the linear and exponential-decay models. Since in the
exponent model 0 < E3 < 1, its growth rate comes from E4. Theoretically, this gives the
model a potential to become unrealistic for large non-tested strains; however, in the case of
this study, E4 for FAM1 and FAM2 was 1.35 and 1.52 respectively. The polynomial model
has O(ε3), which gives the model a fast growth rate, and can lead to a quick stress increase
as was shown in Figure 11b.

For finding the coefficients through optimization, it is important to know what the
bounds on the coefficients are. This was summarized in the last column Table 5. For the
linear model, the bounds on E1 are known from empirical data on rubber-like material
properties.E2 has to be positive for every model as it was discussed in Section 4.6, which
means that the lower bound is known. For the polynomial and exponent model, bounds
on E1 are not explicitly known because other terms affect the total stress values. For
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polynomial model, the bounds of other coefficients are also unknown as the coefficients do
not explicitly link to non-linear effects.

Since the exponential-decay model becomes approximately linear after the exponential
term vanishes, it inherits bounds from the linear model and has an upper bound on E3 as it
is a fraction of linear model’s E1. As E4 is an equivalent of the multiplicative inverse of a
time constant, τ, of a stable first order LTI system, it has to be positive. The analogy to the
time constant also sheds some light on when the small-strain non-linear effect vanishes.
After the time of 3 time-constants, the term, 1− e−

1
τ t, is 0.95, which is here defined as a

point after which the non-linear effect becomes negligible. This means that the non-linear
effect vanishes at strains of 23% and 10%, for FAM1 and FAM2 respectively.

For the exponent model, coefficient E3 has a lower and an upper bound and coefficient
E4 has a lower bound based on the model’s definition. The linear model was the model for
which the most was known about its coefficient values because of its simplicity. Among
the non-linear models, however, it was the exponential-decay model that gave not only the
largest number of bounds, but also the bounds that were connected to the physical behavior.

5. Discussion

Little was found in the literature on differences between contractile and extensile
FAMs in manufacturing, testing and modeling as few studies dedicated specifically to
EFAMs were found. The first question in this study sought to determine whether the
methods developed for CFAMs can be adapted for use with EFAMs.

The loose sleeve on the elastomeric bladder makes braid length measurement methods
of CFAMs impractical for use with EFAMs. Two methods for braid angle estimation
have been shown (see Figure 8). The first method is based on the design variables and
geometrical measurements, and the second is based on the experimental characterization
of the muscles. Relative to the first method, the second method showed that the differences
between the braid angle values for the specimen were 2.47% and 8.96%, accordingly. This
validated the design-based braid angle estimation method, which was found to be useful
for calculations prior to experimental characterization.

Since the EFAM resting diameters changed after initial cycling, calculating a bladder
working volume from post-cycling measurements was found to be inaccurate. A method
that included an effect of a clamping mechanism on the bladder was used and based off
pre-assembly measurements. After initial cycling of the two specimens, an increase of 3.7%
and 5.3% in resting lengths and 29% for the resting diameters were observed. Although the
study did not aim to examine this effect, the measured geometrical changes were found
to strongly affect the modeling results. The modeled axial force response is especially
dependent on the resting diameter, as the FAM axial force is proportional to the square to
diameter’s value.

Dead-band pressure was found to be smaller than those obtained for a comparable
EFAM in a previous study [9]. This was attributed to the tighter fitting between the bladder
and the sleeve during manufacturing process. And, as can be seen from Equation (9), a
lower dead-band pressure increases the blocked force of an EFAM.

One interesting finding is that the experimental data have relatively large hysteresis
when compared to the previous studies on CFAMs (Figure 6). It is hypothesized that
the difference in hysteresis might come from the friction between the plastic tube that
prevented the specimens from buckling and the braided sleeve. This hypothesis would
agree with the size of the hysteresis decreasing with decreasing FAM internal pressure
and decreasing with increasing length of the EFAM. At low internal pressure, the force
acting on EFAM walls is smaller as with increased length the braid kinematics force the
EFAM outer diameter to reduce its size, relieving the anti-buckling tube. In a future study,
one could design an experimental version of an EFAM that would be constrained from
buckling with an internal rod rather than with an external tube. The hysteresis in such case
could be simpler to quantify and more readily attributed to the bladder hysteretic behavior.
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In Figure 7a, an outlier point in the data was observed for FAM2. The source of
that deviation from a linear trend remains unknown. In Figure 7b, it can be seen that
the EFAM reached an extension close to 100%, a value which has not been reported in
the literature covered by this study. Both results might indicate that the design was im-
proved from previous studies as the FAMs also provided a blocked force of approximately
280 N and a large maximum stroke of 98% at 517 kPa, and low dead-band pressure of
35 kPa. All values indicate a better performance than that of a comparable EFAM tested
in Pillsbury et al. (2017) [9]. However, it should be noted that temperature may have dif-
fered during the various tests under comparison, which may have lead to variability in
bladder properties.

The study also focused on modeling of the bladder constitutive model non-linear
terms, because models other than polynomial could provide better fit to data, satisfy mate-
rial stability criterion, ease parameter identification. All of the hyper-elastic constitutive
models showed nominal errors of 2%, while having the same number of coefficients.

Although the polynomial model uses the same number of coefficients as the other
non-linear models and has a similar error, the process to obtain its final form proved to
be difficult. Following tests with different forms to minimize the number of coefficients,
a polynomial model was found, but there are no implications that this form would also
work for different types of FAMs. Moreover, Figure 11b shows that outside of the tested
strain region, the stress rises quickly and gives values that greatly exceed stresses reported
for rubber [38], rendering the usefulness of the polynomial model outside of the tested
region questionable.

The exponential-decay model and exponent model yielded only positive coefficients
which fulfilled Drucker’s material stability criterion [40] without further analysis. The
exponential-decay model is the most conservative about predictions of stress–strain rela-
tionships for untested strain values. For larger strains, the exponential term vanishes, and
the model assumes a nearly linear relationship outside of strains that are not in the range
of experiments. The drawback of the exponential term in the exponential-decay model is
that for larger strains, the form is not capable of modeling the strain-stiffening effect as the
decaying exponential term can only model the initial “transient” state. The Ogden-inspired
exponent model, however, can model the stiffening and has small discrepancies between
the coefficients for the two tested EFAMs, which gives it an advantage over the exponential-
decay model. On the other hand, the exponential-decay model has a broader set of defined
bounds on its coefficient, which is advantageous when identifying parameters of the stress
function.

6. Conclusions

In this investigation, the primary aim was to introduce new hyper-elastic constitutive
models and revalidate methods for extensile FAMs (EFAMs) that were previously studied
for contractile FAMs (CFAMs). The secondary aim of the study was to investigate man-
ufacturing process, measurements, and experimental characterization of EFAMs as they
were adapted from more extensive studies of CFAMs.

Four constitutive models of an elastomeric bladder were investigated to gain physical
insights into the bladder’s behavior. An elastic model, the linear model, was chosen as
the baseline. The other models were formed as an extension of a pressure-dependent
elastic model, the linear model, with hyper-elastic terms. The polynomial model was
chosen to represent a previously investigated approach in the literature. The exponent
model was inspired by the work of Ogden (1972) [36]. The exponential-decay model with
a vanishing non-linear term, was selected based on experimental data showing an initial
“transient” state for small strains. As shown in Table 5, all studied hyper-elastic constitutive
models showed relatively small errors of around 2% as compared to 4.1% of the elastic
model. The linear, exponent, and exponential-decay models required simple one-coefficient
inequalities to check for Drucker’s material stability [40] as compared to multi-coefficient
inequalities for the polynomial model. Since hyper-elastic behavior for large strains of the
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bladder might be not known, a conservative model for untested strains was considered
advantageous. Among the hyper-elastic models, the exponential-decay model had the
most conservative growth rate of O(ε) as compared to polynomial-order or coefficient-
dependent growth rates of: O(ε3) and O(εE4) for the polynomial model and exponent
model, respectively. In order to identify stress function parameters, it was important to
assess bounds on the model coefficients, as listed in Table 5. For the polynomial model,
only one parameter had a lower bound. The exponent model and the exponential-decay
model had bounds or simple bounds on every coefficient, as listed in Table 5.

The results revealed that for the modeling of a non-linear bladder behavior with
the force-balance model, it is beneficial to use the newly introduced exponential-decay
model. The model was shown to have the advantage of small error when compared to
other models, well-defined boundaries on constitutive model coefficients, and simple
conditions for meeting Drucker’s stability criterion. The model was also found to be
conservative outside of the range of measured strains, as it converges to a linear model as
the strain growths. Moreover, it allows for finding the range of strains influenced by the
transient behavior.

Primarily, the findings of this research provide insights into selecting an EFAM bladder
constitutive model. Secondarily, the study revalidated and adapted methods previously
studied for CFAMs in the EFAMs context. Thus, the insights gained from this study
can inform research in the field of soft robotics, with a particular focus on EFAM-driven
continuum soft robots.

The current study is not without limitations. The findings are not generalizable as only
two EFAMs of the same size and materials were experimentally tested. Another limitation is
that the parameter optimization relies on initial guesses of the model parameters. Moreover,
the hysteretic behavior observed in the experimental data was not addressed. Finally,
an additional uncontrolled factor was the temperature under which the experimental
characterization was conducted.

7. Future Work

In spite of its limitations, the study extends and validates the current state of knowl-
edge on EFAMs and suggests future work. A larger number of pressure conditions might
be investigated to unveil low-pressure effects. Moreover, the sources of the hysteretic
behavior need to be found and quantified, as the axial force hysteresis was significant.
Future research might explore other non-linear terms in bladder constitutive models, such
as arccotangent or sigmoid functions that may have potential to better approximate the
small strain behavior. Further work also needs to be done to establish a reliable coefficient
optimization method that produces a good fit of the axial force model to the experimental
data with a reasonable amount of computation. Tests of EFAMs (and CFAMs) of a range
of sizes and materials could be performed to better assess the general applicability of the
techniques in this study.
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