
actuators

Article

Modern Semi-Active Control Schemes for a Suspension with
MR Actuator for Vibration Attenuation †

Kevin Herubiel Floreán-Aquino 1, Manuel Arias-Montiel 2,* , Jesús Linares-Flores 2 ,
José Gabriel Mendoza-Larios 3 and Álvaro Cabrera-Amado 4

����������
�������

Citation: Floreán-Aquino, K.H.;

Arias-Montiel, M.; Linares-Flores, J.;

Mendoza-Larios, J.G.;

Cabrera-Amado, Á. Modern

Semi-Active Control Schemes for a

Suspension with MR Actuator for

Vibration Attenuation. Actuators 2021,

10, 22. https://doi.org/10.3390/

act10020022

Academic Editor: Norman M.

Wereley

Received: 29 December 2020

Accepted: 22 January 2021

Published: 27 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Posgraduate Studies, Technological University of the Mixteca, Huajuapan de León 69000, Oaxaca,
Mexico; floreankh@gmail.com

2 Institute of Electronics and Mechatronics, Technological University of the Mixteca, Huajuapan de León 69000,
Oaxaca, Mexico; jlinares@mixteco.utm.mx

3 Institute of Industrial and Automotive Engineering, Technological University of the Mixteca,
Huajuapan de León 69000, Oaxaca, Mexico; jgml@mixteco.utm.mx

4 Department of Mechatronics Engineering, Papaloapan University, Loma Bonita 68400, Oaxaca, Mexico;
alvaroca_1@hotmail.com

* Correspondence: mam@mixteco.utm.mx; Tel.: +52-9535320214
† This paper is an extended version of our paper published in Florean-Aquino, K.H.; Arias-Montiel, M.;

Lugo-Gonzalez, E.; Cabrera-Amado, A. Single and Multiple Positive Position Feedback Control of a
Magnetorheological Automotive Suspension. In Proceedings of the National Congress on Automatic Control,
Puebla, Mexico, 23–25 October 2019.

Abstract: This article describes semi-active modern control schemes for a quarter-vehicle suspension
with a magnetorheological damper (MRD) to attenuate vibrations and simultaneously improve the
passenger comfort and the vehicle road-holding. The first solution is a multiple positive position
feedback (MPPF) control scheme to attenuate the vibration amplitude at the two modal frequencies.
The second solution is based on elementary passivity considerations on the exact regulation error
dynamics passive output. The passive output feedback is used to improve the control aims. Finally,
the third solution deals with a disturbance rejection control (DRC) based on an extended state
observer. The three proposed control schemes consider an inverse polynomial model of a commercial
MRD for numerical implementation and are evaluated by comfort and road-holding performance
indexes proposed in the literature. Furthermore, the effects of variation in the sprung mass (emulating
different number of passengers) on the controllers’ performance is analysed. The numerical results
show in both scenarios (constant and variable sprung mass) that passivity based control (PBC)
and DRC improve the performance indexes compared with the classical sky-hook control and the
open-loop systems with a different constant current input for the MRD. Obtained results for damping
force and power consumption are within the operation range of the considered commercial MRD
showing the viability for experimental implementation of the proposed control schemes.

Keywords: magnetorheological damper; differential flatness; extended state observer; passivity-
based control

1. Introduction

Rheological actuators (RA) are the most promising semi-active devices in energy
dissipation of structures under dynamic loads. These actuators contain a fluid which is
able to modify its rheological structure (yield stress and apparent viscosity) through the
action of an electrical field (electrorheological) or a magnetic field (magnetorheological) [1].
According to [2], RA are passive-dissipative devices because they do not provide energy to
the controlled system. Moreover, the low power consumption, large force capacity, high
bandwidth, low cost, force controllability and quick reaction time make magnetorheological
dampers (MRD) a viable option for vibration control systems in civil engineering applica-
tions, impact absorption and vibration isolation technology in industrial engineering and

Actuators 2021, 10, 22. https://doi.org/10.3390/act10020022 https://www.mdpi.com/journal/actuators

https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-4534-9401
https://orcid.org/0000-0002-5723-4786
https://doi.org/10.3390/act10020022
https://doi.org/10.3390/act10020022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/act10020022
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/2076-0825/10/2/22?type=check_update&version=1


Actuators 2021, 10, 22 2 of 23

heavy vehicles, as well as advanced prosthetics in biomedical fields [3–5]. In automotive
applications, MRD are used in the development of electronic suspension (ES) systems
in order to reduce the transmissibility of mechanical vibration caused by unknown road
irregularities improving passenger comfort (mainly related to vibration transmitted to pas-
sengers from road irregularities, in this work measured through the chassis displacement)
as well as vehicle road-holding (related to the tire deflection, measured by the difference
between the tire displacement and movement caused by the road profile) [6,7]. The au-
tomotive ES based on magnetorheological dampers (MRD) have demonstrated excellent
real-time performance. In addition, they present other relevant characteristics such as
response delays in the milliseconds order and low power consumption [6–8]. In the classifi-
cation of controllable suspension systems presented by Savaresi et al. [7], typical ranges of
power consumption for different types of electronically controlled suspension are provided.
According to this information, semi-active suspension systems, mainly based on RA have
a power request from a few tens of Watts, while the fully active suspensions power request
is around tens of kilowatts. The control input of a MRD is an electrical current from a coil
which induces a magnetic field on the magnetorheological fluid (MRF). Regarding MDR
characterization, parametric models were developed to describe the hysteretic behaviour of
the force-velocity curve [4,9]. Furthermore, there are non-parametric models to describe the
hysteretic loop by polynomial velocity functions. This type of model allows an expression
of the electric current as a function of the desired damping force to semi-active control
(SAC) applications [10]. In this case, the performance of suspensions with MRD strongly
depends on the intrinsic characteristics of the SAC scheme. Classic SAC strategies are based
on discontinuous switching according to two different performance approaches: comfort
or road-holding. Some examples of these approaches are Ground-hook (road-holding),
Acceleration Driven Damper (comfort), sky-hook (comfort) and SH-ADD (comfort and
road-holding) [7]. The classic SAC presents some drawbacks such as chattering to high fre-
quencies which could excite non-modelled dynamics in mechanical systems and a reduced
bandwidth which limits the capacity for improving passenger comfort and road-holding
simultaneously [6,11]. As an alternative for overcoming the limitations of classic SAC,
modern SAC schemes have emerged mainly based on Linear Parameter Varying (LPV)
approach [8], optimal control theories [12], robust control [13,14], adaptive control [15],
modal and multi-modal control [16,17] and fault tolerant control [18].

In the model-based control schemes, the unknown and unmeasurable external distur-
bances highly affect the closed-loop system performance. In this regard, extended-state
observers (ESO) have been proposed in the active disturbance rejection control (ADRC)
approach [19] to estimate unmeasurable states and unknown disturbances as well as to pro-
vide adaptability, and robustness to the controller. Recently, ESO have found applications
in uncertain mechanical systems with various control schemes [20–23].

According to the consulted literature, one of the main drawbacks of classic SAC
schemes is their inability to improve passenger comfort and vehicle road-holding simul-
taneously. Moreover, some modern SAC schemes have proved effective in the main
vibration mode only [13–16,18], and just a few works take into account the MR damper
dynamics [8,15]. Moreover, the effects of the system parameters variation on the controller
performance is rarely considered, even in the robust control schemes. This work is an
extended and improved version of the results reported in [17] and presents the design
of three modern control schemes for a quarter-vehicle suspension with MRD taking into
account the actuator dynamics from an inverse polynomial model previously characterized.
Furthermore, the control schemes are numerically evaluated by comfort and road-holding
indexes, while changes in the sprung mass (emulating different number of passengers)
are considered in the controllers’ performance. The methodology used in this article is
presented in Figure 1. The research development is divided into four stages: modeling, cov-
ering the suspension dynamics as well as the polynomial model to characterize the MRD;
control design, where the theoretical background to synthesise the proposed SAC schemes
is given; simulation, where the proposed SAC schemes are numerically proved taking into
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account variations in the sprung mass value; and evaluation through performance indexes
for comfort and road-holding. The principal aim of the proposed controllers is to achieve a
high comfort performance for the passenger as well as obtaining ride stability (road hold-
ing). The first solution was taken from [17] and uses a modal coordinate form to extend
and control the primary system dynamic by virtual filters tuned to the principal modal
frequencies. Another solution based on elementary passivity considerations on the exact
regulation error dynamics passive output is presented using a hamiltonian form to improve
both control aims with low power consumption. Finally, a robust adaptive controller based
on differential flatness is developed where an ESO is incorporated to add robustness and
adaptability to the primary control system. All these proposed schemes are numerically
implemented by considering an inverse polynomial model of a commercial MRD and
evaluated by performance indexes reported in the literature. The article is organized
according to the activities presented in the methodology as follows: Section 2 presents
the vertical model of a quarter car and an inverse polynomial model for a commercial
magnetorheological damper experimentally characterized in [24]. The following sections
presents the main results related to: the design of two modal controllers (Section 3); the
design of a passivity-based controller (PBC) (Section 4); and the development of a robust
and adaptive controller using the system flatness property (Section 5). Section 6 briefly
describes the performance indexes used to evaluate the proposed control schemes and
shows the numerical results from simulation tests of a closed-loop semi-active suspension
system. Finally, Section 7 presents the conclusions of this work and some suggestions for
further work.
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Figure 1. Proposed research methodology.

2. Modeling of a Quarter Automotive Suspension and MRD Dynamics
2.1. Vertical Model of a Quarter Car (VMQC)

The vertical model of a quarter car (VMQC) defines the dynamic relationships of
a sprung mass ms (the portion of the total mass of the vehicle that is supported by the
suspension) and an unsprung mass mu (the mass of the suspension, wheels and other
components directly connected to them), see Figure 2.

The suspension system consists of a linear stiffness ks and an apparent damping
coefficient cs. The tire stiffness is assumed as linear with spring constant ku and the tire
damping is neglected. The disturbance caused by the road profile zr(t) is unknown but is
perfectly bounded. The semi-active MRD force fa is the control input which is a function of
the electric current ia between the MRD terminals. The motion equations for the system
masses can be obtained by applying the second law of Newton as

ms z̈s + cs[żs − żu] + ks[zs − zu] + fa(ia) = 0
mu z̈u + ku[zu − zr] = cs[żs − żu] + ks[zs − zu] + fa(ia)

(1)

where z̈s, żs, zs are the acceleration, velocity and displacement of ms respectively, and z̈u, żu,
zu are the acceleration, velocity and displacement of mu respectively. Moreover, there is a
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set of strictly positive real constants {mmin, mmax, ilim, fo, rmax} such as mmin ≤ ms ≤ mmax,
0 ≤ ia ≤ ilim, | fa| ≤ fo, and |zr| ≤ rmax. mmin, mmax define the range of the sprung mass
variation, ilim is the maximum input current permissible for MRD, and fo is the maximum
damping force provided by MRD, rmax is a positive number that represents the upper limit
of the disturbance amplitude indicating this variable is bounded.

𝑚𝑠

𝑚𝑢

𝑘𝑢

𝑘𝑠𝑓𝑎(𝑖𝑎)

𝑧𝑠

𝑧𝑢

𝑧𝑟

𝑐𝑠

Figure 2. Vertical model of a quarter car with semi-active suspension [7].

2.2. MRD Dynamics

This work considers a polynomial model for the MRD. The polynomial model pa-
rameters can be experimentally estimated from force and displacement measurements
only, and this model is an expression of the damping force as a function of piston velocity
and the input current of the damper. The order of the polynomial can be adjusted to the
experimental data while its coefficients can be determined by curve fitting. In addition,
an inverse model to obtain the input current to achieve a desirable damping force can be
easily obtained which is very useful for implementing SAC schemes [24].

The damping force of the MRD can be expressed by [10]

fa =
n

∑
i=0

ai żi
de f , n = polynomial degree (2)

where żde f = żs − żu is the piston velocity and ai is the experimental coefficient that can be
represented as a function of the intensity of the input current in a linear form as

ai = bi + ciia, i = 0, 1, ..., n (3)

where bi and ci are constant to be determined from curve fitting.
Combining Equations (2) and (3), the damping force can be expressed by

fa =
n

∑
i=0

(bi + ciia)żi
de f (4)

In a SAC problem a desired damping force fa is calculated to attenuate the vibration
amplitudes in the suspension system. This desired force can be used to determine the input
current needed in the MRD to achieve this force. For the polynomial model, the control
input is determined from Equation (4) as

ia =
fa −∑n

i=0(bi żi
de f )

∑n
i=0(ci żi

de f )
(5)

The commercial MRD RD-8040-1 by LORD Corporation® experimentally character-
ized in [24] is considered in this work to implement the proposed SAC schemes. For this



Actuators 2021, 10, 22 5 of 23

MRD, the inverse polynomial (IP) model is defined by (6) with the numerical parameters
presented in Table 1 [17].

ia( fa) =


fa−b+2 ż2

de f−b+1 żde f−b+0
c+2 ż2

de f +c+1 żde f +c+0
z̈de f > 0

fa−b−2 ż2
de f−b−1 żde f−b−0

c−2 ż2
de f +c−1 żde f +c−0

z̈de f < 0

 (6)

Table 1. Inverse polynomial model parameters for positive and negative acceleration of the suspen-
sion deflection (copyright AMCA (2019), reproduced from [17]).

z̈de f > 0 z̈de f < 0

j b+
j c+j b−

j c−j

0 3.2679 224.8581 −115.2069 −259.8339
1 7.9904 50.1593 8.2080 51.2396
2 −0.0836 −0.7803 0.2687 0.7833

3. Modal and Multimodal Controller Design

The development presented in this section is based on the results previously presented
in [17]. The aim of modal control is to provide damping to certain modes of the system,
which dominate the dynamic response. Positive Position Feedback (PPF) [25] is a modal
control method, which provides additional dynamics to the system through the control
law. Both PPF and its variant Multi Positive Position Feedback (MPPF) [26,27] are analysed
in this work to provide comfort and performance on the road (road-holding) of the VMQC.
These objectives are related with two main modes of the system (the first in low frequencies,
the second in high frequencies). A modal control approach refers to the procedure of
decomposing the dynamic equations of a structure into modal coordinates and designing
the control law in this modal coordinate system [28]. Note that (1) can be expressed by a
modal coordinate form as follows:

M~̈z + C~̇z + K~z = ~B f u + ~Brzr (7)

where the vertical displacement masses vector is defined as~z =
[
zs zu

]T and the control
input as u = fa; here the matrices M, K and C are symmetric and positive definite as

M =

[
ms 0
0 mu

]
, C =

[
cs −cs
−cs cs

]
, K =

[
ks −ks
−ks ks + ku

]
(8)

the vectors ~B f , ~Br are defined by

~B f =

[
−1
1

]
~Br =

[
0
ku

]
(9)

3.1. Positive Position Feedback (PPF) Controller Design

The positive position terminology comes from the fact that the position coordinate
of the structure equation is positively fed to a virtual second-order filter, and the position
coordinate of the compensator equation is positively feedback to the structure [28].

The PPF control is implemented by using an auxiliary dynamic system (virtual com-
pensator) which can be defined by

η̈ + 2ζ f ω f η̇ + ω2
f η = gω2

f
~BT

f~z (10)
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u = gω2
f η (11)

where η is the generalized coordinate of the virtual compensator (secondary system),
ζ f , ω f > 0 are the damping ratio and natural frequency of the controller, and g is a positive
constant. These control parameters can be chosen so that the response has the desired
damping. Coupling the system dynamics in (7) with the PPF controller in (10), which
assumes no external force, yields

[
M 0
0 1

][
~̈z
η̈

]
+

[
C 0
0 2ζ f ω f

][
~̇z
η̇

]
+

[
K −gω2

f
~B f

−gω2
f
~BT

f ω2
f

][
~z
η

]
=

[
0
0

]
(12)

Since the matrices M, C, and K in (7) are symmetric and positive definite, both
the augmented damping matrix and the augmented mass matrix are also symmetric
and positive definite, so the closed-loop stability will depend on the definiteness of the
augmented stiffness matrix.

Closed-Loop Stability

The augmented stiffness matrix in (12) is given by

K̂ =

[
K −gω2

f
~B f

−gω2
f
~BT

f ω2
f

]
(13)

which will be positive definite if for whichever test vector~q ∈ <n it is satisfied that

~qTK̂~q > 0. (14)

Considering the test vector as

~qT =
[
~qT

1 ~qT
2
]T (15)

where~q1,~q2 ∈ <n, substitution of (15) in the Inequality (14) can be expressed as

~qTK̂~q =
[
~qT

1 ~qT
2
][ K −gω2

f
~B f

−gω2
f
~BT

f ω2
f

][
~q1
~q2

]
(16)

~qTK̂~q = ~qT
1 K~q1 − gω2

f~q
T
1
~B f~q2 − gω2

f~q
T
2
~BT

f ~q1 + ω2
f~q

T
2~q2 (17)

Completing the square and factoring in (17) yields

~qTK̂~q = ~qT
1 (K− g2ω2

f BT
f B f )~q1 +

(
gω f BT

f ~q1 −ω f~q2

)T(
gω f BT

f ~q1 −ω f~q2

)
(18)

Since the second term in the right side of (18) is always non-negative, the augmented
stiffness matrix K̂ will be positive definite if the term (K − g2ω2

f BT
f B f ) is a positive defi-

nite matrix.

Remark 1. The closed-loop system is asymptotically stable if the gain g and the natural frequency
of the virtual compensator ω f are chosen such that (K− g2ω2

f BT
f B f ) is positive definite.

3.2. Multiple Positive Position Feedback (MPPF) Controller Design

Multiple Positive Position Feedback (MPPF) is a modal control strategy to attenuate
mechanical vibrations on different modes, which is an extension of the PPF approach. This
scheme adds multiple virtual passive absorbers located in parallel form to the primary
system. Non-disturbed suspension system in closed loop is given by

M~̈z + C~̇z + K~z = ~B f u (19)
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where M, C, K ∈ <2x2, ~B f ∈ <2,~z ∈ <2 and u ∈ <.
In analogy to the PPF approach, the auxiliary compensator in MPPF control is defined

by two virtual second-order filters to simultaneously attenuate two modes, as follows

η̈1 + 2ζ1ω1η̇1 + ω2
1η1 = g1ω2

1
~BT

f~z (20)

η̈2 + 2ζ2ω2η̇2 + ω2
2η2 = g2ω2

2
~BT

f~z (21)

likewise, the input control is calculated by

u =
2

∑
i=1

giω
2
i ηi gi, ωi ∈ < (22)

where ζi and ωi is the damping ratio and natural frequency of the i-th filter respectively.
The virtual second-order filters’ dynamics can be rewritten in a matrix form as follows

I~̈η + 2ΓΩ~̇η + Ω2~η = GΩ2BT~z (23)

Thus, the control law (22) becomes

u =~hGΩ2~η (24)

here, ~η =
[
η1 η2

]T , and I, Γ, Ω, G ∈ <2x2 are positive definite, B ∈ <2x2,~h ∈ <1x2, and
are given by

I =
[

1 0
0 1

]
, Γ =

[
ζ1 0
0 ζ2

]
, Ω =

[
ω1 0
0 ω2

]
, G =

[
g1 0
0 g2

]
B =

[
B f B f

]
,~h =

[
1 1

]
(25)

Coupling the system dynamic in (7) with the MPPF controller in (25), and assuming
no external force, yields[

M 0
0 I

][
~̈z
~̈η

]
+

[
C 0
0 2ΓΩ

][
~̇z
~̇η

]
+

[
K −BGΩ2

−GΩ2BT Ω2

][
~z
~η

]
=

[
0
0

]
(26)

Note that the matrix B is equivalent to the matrix product of B f and the vector
~h =

[
1 1

]
. This form allows the closed-loop stability to be analyzed directly.

Closed-Loop Stability

In analogy to the PPF approach, the closed-loop stability will depend on the definite-
ness of the augmented stiffness matrix, which is expressed by

K̂ =

[
K −BGΩ2

−GΩ2BT Ω2

]
(27)

and will be positive definite for whichever test vector~q ∈ <n is satisfied that

~qTK̂~q > 0. (28)

Here,~q is considered as
~qT =

[
~qT

1 ~qT
2
]T (29)

where q1, q2 ∈ <n. Thus, the left side of the inequality in (28) can be expressed as

~qTK̂~q =
[
~qT

1 ~qT
2
][ K −BGΩ2

−GΩ2BT Ω2

][
~q1
~q2

]
(30)

~qTK̂~q = ~qT
1 K~q1 −~qT

1 BGΩ2~q2 −~qT
2 GΩ2BT~q1 +~qT

2 Ω2~q2 (31)
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Completing the square and factoring in (31) yields

~qTK̂~q = ~qT
1 (K− G2Ω2BT B)~q1 +

(
GΩBT~q1 −Ω~q2

)T(
GΩBT~q1 −Ω~q2

)
(32)

Remark 2. The closed-loop system will be asymptotically stable if G and Ω are chosen such that
(K− G2Ω2BT B) is positive definite.

The proposed multimodal controller is illustrated in Figure 3 [17].

Multiple Positive Position Feedback controller Quarter Car Model

(QCM)
PPF Controller

(First mode

improvement)

Inverse Polynomial

MR Damper Model

𝑚𝑠

𝑚𝑢

𝑘𝑢

𝑘𝑠
𝑓𝑎

𝑧𝑠

𝑧𝑢

𝑧𝑟

𝑖𝑎

𝐹𝑑

𝑧𝑠, 𝑧𝑢

ሶ𝑧𝑑𝑒𝑓 , ሷ𝑧𝑑𝑒𝑓

𝑔1𝜔1
2𝑞1

Current

controller

𝑖𝑑

PPF Controller

(Second mode

improvement)

𝑔2𝜔2
2𝑞2

𝑢𝐹𝑖𝑟𝑠𝑡 𝑃𝑃𝐹

𝑢𝑆𝑒𝑐𝑜𝑛𝑑 𝑃𝑃𝐹

𝑢𝑀𝑃𝑃𝐹

Figure 3. Proposed modal control system for semi-active suspension with magnetorheological
damper (MRD) (copyright AMCA (2019), reproduced from [17]).

4. Passivity-Based Controller (PBC) Design

Passive systems are a class of dynamical systems which cannot store more energy than
is supplied from external sources. This property is sufficient for solving regulation tasks in
mechanical systems using the the passivity-based control (PBC) approach by modifying
the potential energy and the dissipation function [29]. This scheme allows the total energy
of the system to be shaped by using a feedback control law obtained from a Hamiltonian
storage function [30].

4.1. Hamiltonian Open Loop Dynamics of the System

According to the PCB scheme, a matrix Hamiltonian notation of the primary system is
required as

ṡ = [J(s)− R(s)]
∂H(s)

∂s
+ β(s)u (33)

y = βT(s)
∂H(s)

∂s

where s ∈ <n includes all variables of the system energy, J(s) = −JT(s) ∈ <nxn is
an antisymmetric matrix that represents the conservative characteristic of the system,
R(s) = RT(s) ∈ <nxn is an asymmetric and positive semi-defined matrix which represents
the dissipative characteristic, H(s) : <n → < is the storage energy function, β ∈ <n is a
vector which defines the control input channels, u ∈ < is the control input, and y ∈ < is
the system output. The energy balance for (33) is developed in [30] by

H[s(τ)]− H[s(0)]︸ ︷︷ ︸
stored−energy

+

[
∂H(s)

∂s

]T
R(s)

[
∂H(s)

∂s

]
︸ ︷︷ ︸

dissipated−energy

=
∫ τ

0
yTuds︸ ︷︷ ︸

supplied−energy

(34)

From (34) it can be observed that the sum between stored energy and dissipated
energy results in the supplied energy, then it demonstrates that the primary system in (33)
is dissipative passive.
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The system model in (7) is rewritten by using a change of variable such as~q = ~z ∈ <2

and ~p = M~̇q ∈ <2, then, computing a Hamiltonian storage energy function defined by

H(~q,~p) = =
1
2
~pT M−1~p +

1
2
~qTK~q (35)

=
1
2
[
~qT ~pT][K 0

0 M−1

][
~q
~p

]
yields a Hamiltonian dynamics of the undisturbed system, as follows[

~̇q
~̇p

]
=

([
0 I
−I 0

]
−
[

0 0
0 C

]) [
K~q

M−1~p

]
︸ ︷︷ ︸
=: ∂H(~q,~p)

∂(~q,~p)

+

[
0
~B f

]
u (36)

where~q represents a vector of the generalized coordinates whereas ~p represents a vector of
the generalized momenta of the system; M, C, K, I ∈ <2x2 correspond to mass, damping,
stiffness and identity matrices respectively; ~B f ∈ <2 and u ∈ <.

The notation in (36) is in accordance with the general form of dissipative passive
systems expressed by

~̇s = (J − R)
∂H(~s)

∂~s
+ βu (37)

where
∂H(~s)

∂~s
= A~s, ~s =

[
~q ~p

]T , A =

[
K 0
0 M−1

]
, J =

[
0 I
−I 0

]
= −JT , R =

[
0 0
0 C

]
= RT , β =

[
0

B f

]
(38)

4.2. Exact Regulation Error Dynamics Passive Output Feedback Control Design

It is desired to minimize the dynamics of the generalized coordinates and momenta,
min(~q,~p), therefore min(~s). According to the dissipative passive form in (37), a control
law u∗ is proposed which is the reference input corresponding to the desired reference
dynamics~s∗ and satisfies the system

~̇s∗ = (J − R)
∂H(~s∗)

∂~s∗
+ βu∗ (39)

The regulation error and the control input error can be defined respectively as

~e =~s−~s∗; eu = u− u∗ (40)

and the dynamics of exact regulation error is derived from (37) and (39) as follows

~̇e = (J − R)
∂H(~e)

∂~e
+ βeu (41)

where

∂H(~e)
∂~e

= A~e = A(~s−~s∗), (42)

=
∂H(~s)

∂~s
− ∂H(~s∗)

∂~s∗
.

Here, the Lyapunov stability criterion is considered to obtain a feedback control input
law u, which is defined in terms of the control input error eu, that allows asymptotic
stability of the origin of the regulation error~e. A Hamiltonian candidate energy function of
the regulation error dynamics is proposed as

V(~e) = H(~e) =
1
2
~eT A~e > 0, −{0} (43)
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From a time derivative process of the proposed Lyapunov function V(~e), the inequality
in (44) must be obtained to achieve asymptotic stability, which corresponds to a negative
semi-defined function.

V̇(~e) = Ḣ(~e) := ~eT A~̇e = ~eT AT~̇e = [A~e]T~̇e =⇒ V̇(~e) =
[

∂H(~e)
∂~e

]T
~̇e ≤ 0 (44)

Substituting the dynamics of the exact regulation error (41) in (44) yields

V̇(~e) =
[

∂H(~e)
∂~e

]T[
(J − R)

∂H(~e)
∂~e

+ βeu

]
(45)

and since J is an antisymmetric matrix, then[
∂H(~e)

∂~e

]T
J
[

∂H(~e)
∂~e

]
:= 0 (46)

Finally, the error dynamics is computed as

V̇(~e) = −
[

∂H(~e)
∂~e

]T
R
[

∂H(~e)
∂~e

]
︸ ︷︷ ︸

≤0

+

[
∂H(~e)

∂~e

]T
βeu. (47)

According with the definitions in (38), R is a symmetric and positive semi-defined
matrix, then the first term of the expression (47) is a negative semi-defined result. Con-
sequently, to comply with the Lyapunov function inequality in (44), a dynamic eu in the
second term is imposed with the form

eu = −γβT
[

∂H(~e)
∂~e

]
, γ > 0 (48)

As such, according to Lyapunov theory, the regulation error converges asymptotically
to the origin, bringing all states close to the desired reference. This control technique
based on the passivity property is known as the exact regulation error dynamics passive
output feedback (EREDPOF) controller design including suitable adaptive feed-forward
precompensation [31]. Therefore, substituting (48) in (47), we have the following

V̇(~e) = −
[

∂H(~e)
∂~e

]T
R
[

∂H(~e)
∂~e

]
−
[

∂H(~e)
∂~e

]T
βγβT︸ ︷︷ ︸
:=Rd

[
∂H(~e)

∂~e

]

= −
[

∂H(~e)
∂~e

]T

︸ ︷︷ ︸
:=ẽT

(R + Rd)︸ ︷︷ ︸
:=R̃

[
∂H(~e)

∂~e

]
︸ ︷︷ ︸

:=ẽ

= −ẽT R̃ẽ ≤ 0 (49)

where

R̃ =

(
0 0

0 C + γ
(

B f

)2

)
(50)

Using Sylvester’s criterion, we verify R̃ is a positive semi-definite matrix. Thus (49) is
a negative semi-definite function, and therefore the point of equilibrium of (39) under the
control law (50) is stable. We take advantage of the asymptotic stability for autonomous
systems (41), applying LaSalle’s invariance principle, which for reasons of clarity, we give
the following Theorem [32].
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Theorem 1. Let V(e): Rn → R be such that on Ωc = {e ∈ Rn : V(e) ≤ c}, a compact set we
have V̇(e) ≤ 0. We define S ⊂ Ωc by

S = {e ∈ Rn : V̇(e) ≤ 0}

Then, if S contains no trajectories other than x = 0 then 0 is asymptotically stable.
Since V̇(e), then V(e) is a function decreasing of t. V(e) is continuos in the compact set

Ωc, and it is bounded inferiorly by Ωc. For example, satisfies 0 ≤ V(e(0)). Thus, V(e) has a
limit as t→ ∞. Hence V̇(e) = 0. Since Ωc is an invariant set, V̇(e) = 0 and the only invariant
solution is e = 0. As the trivial solution is the unique solution of (41) restricted by Ωc, then
using Theorem 1, we can conclude that the origin of the state space is asymptotically stable.

Taking into account that eu = u− u∗, so in terms of the generalized coordinates~q, the
EREDPOF control law given by (48) guarantee the regulation of the system position and
velocity variables. Thus, we have the following

u = u∗ −
(

γBT
f

)
~̇eq (51)

where u∗ is a feed–forward term, which is calculated by (39). Note also in (51), that γ
should be chosen in such a way that u belong to [ fa(imin), fa(imax)] (see Equation (91)). For
this, the γ parameter was selected based on the following inequality

0 < γ < 1 (52)

To avoid a possible saturation in the actuator, we choose the γ parameter smaller than
1 because this depends on the system’s internal parameters.

The diagram of the proposed PBC scheme is shown in Figure 4.

Hamiltonian dynamics

Passivity-Based Control

(PBC)

Quarter Car Model

(QCM)

Hamiltonian

Storage Energy 

Function

Exact Regulation Error 

Dynamics Passive Output 

Feedback Control 

Inverse Polynomial

MR Damper Model

(IPMRDM)

Legendre 

Coordinate

Transform 𝑚𝑠

𝑚𝑢

𝑘𝑢

𝑘𝑠
𝑓𝑎
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𝑧𝑟
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𝑧𝑠, ሶ𝑧𝑠, 𝑧𝑢, ሶ𝑧𝑢

ሶ𝑧𝑑𝑒𝑓, ሷ𝑧𝑑𝑒𝑓

𝑞, 𝑝

H(q,p)

Current

controller𝑖𝑑

Figure 4. Proposed passivity-based control system for semi-active suspension with MRD.

5. Disturbance Rejection Controller Design

This control scheme allows for the indirect regulation of all system states by the
regulation of the so-called flat output [33], thereby fulfilling both objectives of achieving
comfort and road–holding. The controller robustness is improved by designing an extended
state observer to estimate the unknown disturbances in order to be cancelled in the closed
loop system.

By defining the state variables for the system (1) as x1 = zs, x2 = żs, x3 = zu, x4 = żu
and the control input as u = fa the system state space representation can be obtained as

ẋ = Ax + Bu + Ezr (53)

y = Cx (54)
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where

x =
[
x1 x2 x3 x4

]T (55)

A =


0 1 0 0
− ks

ms
− cs

ms
ks
ms

cs
ms

0 0 0 1
ks
mu

cs
mu

−ks−ku
mu

− cs
mu

 (56)

B =
[
0 − 1

ms
0 1

mu

]T
(57)

E =
[
0 0 0 ku

mu

]T
(58)

with C ∈ <1x4, u, y, zr ∈ <. The state vector (55) is assumed as completely measurable.

5.1. Differential Flatness of the VMQC

The system (53)–(54) is differentially flat, i.e., there is a system output F(x) = y which
accurately linearises the closed-loop system, which is the flat output. For a single input-
single output (SISO) system, the flat output is defined as (59) by considering the full range
controllability matrix CM (60) [33].

F(x) =
[
0 0 0 1

]
CM
−1x (59)

CM =
[
B AB A2B A3B

]
(60)

The differential flatness property allows for the system states xi, i = 1, . . . , 4, as well as
the control law u to be parametrized in terms of the flat output F and a finite number of its
successive time derivatives, as follows

Ḟ = f1(x1, x2, x3, x4) (61)

F̈ = f2(x1, x2, x3, x4) (62)
...
F = f3(x1, x2, x3, x4) (63)

F(4) = ξ(x1, x2, x3, x4, t) + u (64)

where ξ represents a function including the endogenous and exogenous unknown time-
variant system disturbances. The existence of a real constant ξo is considered, such as the
function ξ which is bounded as |ξ| ≤ ξo.

5.2. Disturbance Rejection Control

A disturbance rejection control (DRC) is designed through the differential parametriza-
tion of the system (64), in combination with a linear extended state observer, which will
be responsible for estimating the endogenous and exogenous perturbations of the system.
Thus, the DRC is designed as

u = v(
...
e , ë, ė, e)− ξ (65)

v = −k3
...
e − k2 ë− k1 ė− k0e (66)

where, the regulation errors are defined as

e = F− F̄,
.
e = Ḟ−

.
F̄,

..
e = F̈−

..
F̄,

...
e =

...
F −

...
F̄ (67)

while ξ is the unknown perturbation function; v is the virtual control, which imposes the

regulation error dynamics in closed loop, its desired references are given as:
...
F̄ =

..
F̄ =

.
F̄ = F̄ = 0. The set of coefficients {k3, k2, k1, k0} are positive values which are chosen
with the help of a desired closed loop fourth–degree characteristic polynomial of pd(s) =
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(
s2 + 2ζcωcs + ω2

c
)2. Consequently, λ3 = 4ζcωc, λ2 =

(
2ω2

c + 4ζ2
c ω2

c
)
, λ1 = 4ζcω3

c , and
λ0 = ω4

c . Therefore, the regulation error stability in closed loop has an asymptotic conver-
gence near to zero.

5.3. Linear Extended State Observer (LESO) Design for the DRC

From (64), the following linear extended state observer (LESO) is designed as follows

ẏ1 = y2 + λ5(y− y1) (68)

ẏ2 = y3 + λ4(y− y1) (69)

ẏ3 = y4 + λ3(y− y1) (70)

ẏ4 = γ1 + u + λ2(y− y1) (71)

γ̇1 = γ2 + λ1(y− y1) (72)

γ̇2 = λ0(y− y1) (73)

where, y = F is the flat output of the system, which is calculated by means of (59); y1 = F̂

is the estimated value of the flat output, while y2 =
.
F̂, y3 =

..
F̂ and y4 =

...
F̂ are the estimated

values of the successive time derivatives of the flat output; γ1 = ξ̂ is the estimation of

the unknown perturbation function, and γ2 =
.
ξ̂ is the estimated time derivative of the

perturbation function, which are considered as unknown.
To demonstrate the closed-loop stability of the system, we will analyze the stability of

the linear extended state observer and the disturbance rejection controller.

5.4. Closed-Loop Stability Analysis

We present here the proof of stability of the LESO’s output estimation error dynam-
ics [34,35]. Defining the output estimation error as

eobs = y− y1 (74)

whose first time–derivative is given by

ėobs = ẏ− ẏ1 =
(

Ḟ− y2
)
− λ5eobs (75)

Finding the time-derivative of (75)

ëobs + λ5 ėobs = F̈− y3 − λ4eobs (76)

The third time-derivative of eobs, is obtained by

...
e obs + λ5 ëobs + λ4 ėobs + λ3eobs =

...
F − y4 (77)

The fourth time-derivative of eobs can be expressed by

(4)
e obs + λ5

...
e obs + λ4 ëobs + λ3 ėobs + λ2eobs = ξ(x1, x2, x3, x4, t)− γ1 (78)

The fifth time-derivative of eobs is

(5)
e obs + λ5

(4)
eobs + λ4

...
e obs + λ3 ëobs + λ2 ėobs + λ1eobs = ξ̇(x1, x2, x3, x4, t)− γ2 (79)

Finally, the estimation error dynamics is given by

(6)
e obs + λ5

(5)
eobs + λ4

(4)
eobs + λ3

...
e obs + λ2 ëobs + λ1 ėobs + λ0eobs = ξ̈(x1, x2, x3, x4, t) (80)

Since ξ̈(x1, x2, x3, x4, t) is assumed to be uniformly absolutely bounded, then there
exist design coefficients {λ5, λ4, λ3, λ2, λ1, λ0} for the LESO’s (in the form of GPI observers),
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such that the estimation errors are uniformly asymptotically convergent to a small neigh-
borhood of the origin of the phase space of the estimation error dynamics. The faster
the estimation error dynamics, the smaller the convergence neighborhood of the origin.
The value of the gain parameters is customarily chosen via a term-by-term comparison
of (80) with those of a desired, nominal, dominating, sixth-degree characteristic poly-
nomial pd−obs(s) =

(
s2 + 2ζoωos + ω2

o
)3. Therefore, λ5 = 6ζoωo, λ4 =

(
3ω2

o + 12ζ2
o ω2

o
)
,

λ3 =
(
8ζ3

o ω3
o + 12ζoω3

o
)
, λ2 =

(
3ω4

o + 12ζ2
o ω4

o
)
, λ1 = 6ζoω5

o , and λ0 = ω6
o .

On the other hand, from (64)–(66) We have the dynamics system of the following form

F(4) = ξ(x1, x2, x3, x4, t) + u (81)

with the disturbance rejection controller as

u = −k3

...
F̂− k2

..
F̂− k1

.
F̂− k0

(
F̂− F̄

)
− γ1 (82)

Substituting (82) in (81), we have the closed–loop system of the following form

F(4) = ξ(x1, x2, x3, x4, t)− γ1︸ ︷︷ ︸
:=∆p(e,eobs)

− k3

...
F̂− k2

..
F̂− k1

.
F̂− k0

(
F̂− F̄

)
(83)

The estimated values of F̂,
·
F̂,
··
F̂, and

···
F̂ are defined in terms of the observation error,

the flat output, and successive time-derivatives

F̂ = F− eobs,
·
F̂ = Ḟ− ėobs,

··
F̂ = F̈− ëobs,

···
F̂ =

...
F −

...
e obs (84)

The regulation error dynamics given by (83) is transformed as follow

(4)
e = −k3

(...
e − ...

e obs
)
− k2(ë− ëobs)− k1

.
(ė− ėobs)− k0(e− eobs) + ∆p(e, eobs) (85)

Therefore, the closed–loop system is expressed in terms of the tracking error, observa-
tion error, and perturbation error

(4)
e + k3

...
e + k2 ë + k1 ė + k0e = k3

...
e obs + k2

..
ëobs + k1 ėobs + k0eobs + ∆p(e, eobs) (86)

As the regulation error and observation error are linear, then we can apply the Laplace
transformation with initial conditions equal to zero, thus we have(

s4 + k3s3 + k2s2 + k1s + k0

)
e(s) =

(
s4 + k3s3 + k2s2 + k1s + k0

)
eobs(s) + ∆p(s)

The closed–loop system can be expressed as a transfer function with two inputs

e(s) =
(
s4 + k3s3 + k2s2 + k1s + k0

)
(s4 + k3s3 + k2s2 + k1s + k0)

eobs(s) +
1

(s4 + k3s3 + k2s2 + k1s + k0)
∆p(s)

To analyze the stability in the closed–loop of the system, we appeal to the steady-state
error, let by the final value theorem

ess = lim
t→∞

e(t) = lim
s→0

se(s) = lim
s→0

s
(
s4 + k3s3 + k2s2 + k1s + k0

)
eobs(s)

(s4 + k3s3 + k2s2 + k1s + k0)
+

s∆p(s)
(s4 + k3s3 + k2s2 + k1s + k0)

(87)

The summarizes of the steady-state error results for each disturbance input are the
following:
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ess :=


0
1
0

if eobs(s) = ∆p(s) = 1
if eobs(s) = ∆p(s) = 1/s

if eobs(s) = ∆p(s) = w
s2+w2

(88)

Remark 3. The regulation error is asymptotically stable near-zero whenever the controller’s tuned
is made utilizing a fourth-order Hurwitz polynomial.

Remark 4. The estimation or observation errors are uniformly asymptotically convergent to a
small neighborhood of the phase space’s origin of the estimation error dynamics. The faster the
estimation error dynamics, the smaller the convergence neighborhood of the origin. This, whenever
the LESO tune is made employing a Hurwitz polynomial of sixth order.

Remark 5. The tuned of the controller and LESO observer is made by separated. The controller’s
robustness resides in the estimation and reduction to the same time as the internal and external
disturbances unknown by the system.

The proposed global system (DRC+LESO) is illustrated in Figure 5.
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Figure 5. DRC system for semi-active suspension with MRD.

6. Results

The methodology of analysis for automotive suspensions reported by Savaresi et al. [7]
is implemented in this section to evaluate the proposed SAC schemes. The comfort and
road–holding performance of the suspension can be evaluated with the Transmissibility
Frequency Response (TFR) of the sprung mass displacement Zs( f ) and the tyre deflection
displacement Zde f t( f ). The comfort and road-holding performance criteria are defined
as [7]

Ic =
J(Znom

s ( f ))
J(Zs( f ))︸ ︷︷ ︸

com f ort

, Irh =
J(Znom

de f t( f ))

J(Zde f t( f ))︸ ︷︷ ︸
road−holding

(89)

where Znom
s ( f ) and Znom

de f t( f ) are the TFR for sprung mass and tyre deflection displacements
respectively, both developed by a constant nominal current of MRD; J(Y( f )) is the root
main square (RMS) function of TFR of interest Y( f ). The criteria in (89) describes the
overall suspension performance as follows:

• if Ic > 1 (resp. Ic < 1) then the analysed suspension is more (resp. less) comfortable
than the nominal reference one.

• if Irh > 1 (resp. Irh < 1) then the analysed suspension provides better (resp. worse)
road-holding performance than the nominal reference one.
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The TFR is estimated frequency by frequency (Algorithm 1 in the methodology of
Savaresi et al. [7]) using a sinusoidal perturbation function, which is applied to the
system during P periods of this signal as zr = Zrsin(2π f t), where f ∈ [ fmin, fmax], t ∈
[P/ fmin, P/ fmax]. For each response y(t) the maximum transmissibility value is calculated
by Y( f ) = 20log{max[y(t)]/max[zr(t, f )]}. For more details of this methodology, refer to
chapter 4 from [7]. In addition, a parameter disturbance is applied by means of two sprung
mass variations carried out at P

3 and 2P
3 time as

ms =


mmin t < P

3
mnom

2P
3 ≥ t ≥ P

3
mmax t > 2P

3

. (90)

A MR suspension study case with numerical parameters in Table 2 is considered to verify
comfort and road-holding performance under different damping control inputs, which
uses the inverse polynomial MR damper model expressed in (6) to compute the electric
current that provides the desired damping force. Furthermore, a current regulation is
carried out by a PID controller to track the computed current. The numerical results are
obtained through MATLAB/Simulink simulations using ODE4 method. The numerical
values corresponding to masses, springs constant and damping constant are proposed
based on the experimental test rig described in [36] which was designed taking into account
the characteristics of the MRD, particulary the maximum damping force available. The
disturbance frequency range is defined in order to excite the two modal frequencies of the
suspension system.

Table 2. Parameters for numerical simulation of the closed-loop system with the proposed controllers.

Parameter Description Value

mmin Minimum sprung mass 100 kg
mnom Nominal sprung mass 135 kg
mmax Maximum sprung mass 187.5 kg
mu Unsprung mass 27.8 kg
ks Suspension stiffness 18.775 kN/m
ku Tire stiffness 148.2886 kN/m
cs Suspension damping 100 Ns/m

ilim Maximum input current permissible for MRD 2 A
fo Maximum damping force provided by MRD 1750 N

fmax Upper test frequency 30 Hz
fmin Lower test frequency 1 Hz
Zr Disturbance signal amplitude 1 cm
P Test periods 10

ω f PPF Frequency 12 rad/s or 72 rad/s
ζ f PPF Damping ratio 1.0
g PPF gain constant 5.0 or 1.0

ωi i-th MPPF Frequency 12 rad/s and 72 rad/s
ζi i-th MPPF Damping ratio 1.0
gi i-th MPPF gain constant 5.0 and 1.0
γ PBC gain constant 0.44

ωc Angular frequency for DRC scheme 20 rad/s
ζc Damping ratio for DRC scheme 3.0
ωo Angular frequency for LESO 150 rad/s
ζo Damping ratio for LESO 4.0
T Sample time for simulation 100 µs

The system response under constant values of current input {imax, inom, imin} is ana-
lyzed to compare the overall suspension performance with the proposed controllers. The
TFR of the system under different inputs for MR current is illustrated by Figures 6 and 7,
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where two vibration modes can be located in f1 ≈ 2 Hz (ω1 ≈ 12 rad/s) and f2 ≈ 12 Hz
(ω2 ≈ 72 rad/s). It can be observed that: if the maximum (resp. minimum) electric current
is applied, then Zs( f ) and Zde f t( f ) TFR are attenuated (resp. intensified) around to f1 and
f2, but both are intensified (resp. attenuated) in other frequencies.
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Figure 6. Comparison of Transmissibility Frequency Response (TFR) of the sprung mass displacement
for different current inputs.
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Figure 7. Comparison of TFR of the tyre deflection for different current inputs.

The effectiveness of three control schemes proposed in this work is compared through
numerical simulation. Firstly, the PPF scheme expressed in Equations (10) and (11) is
designed for two different objectives: first vibration mode improvement (low frequencies)
and second vibration mode improvement (high frequencies). Moreover, the MPPF scheme
in (20) is proposed to attenuate the motion amplitudes in both vibration modes simultane-
ously as described in Section 3. Secondly, a positive high gain for an exact regulation error
dynamics passive output feedback controller is considered to quickly bring the system
dynamics close to the stationary reference following the methodology of Section 4. Next,
both differential flatness-based control and extended state observer (DRC scheme) are proposed
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as an effective alternative for unknown disturbances rejection increasing the robustness and
reliability of the system. To observe the exogenous disturbances, the angular frequency for
LESO is set faster than the angular for DRC scheme (see the development in Section 5 and
parameters in Table 2). Additionally, a classic semi-active Skyhook (SH) control is implemented
to compare the overall suspension performance of the proposed controllers in this work, as
follows

uSH =

{
fa(imax) (żs − żu)żs ≥ 0
fa(imin) (żs − żu)żs < 0

}
. (91)

where fa(imax) and fa(imin) are the damping forces developed by the minimum and maxi-
mum current, respectively [7].

Figures 8 and 9 show the TFR of the sprung mass displacement and the tyre deflection
for the closed-loop system with the controllers described above.
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Figure 8. Comparison of TFR of the sprung mass displacement for different damping control.
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Figure 9. Comparison of TFR of the tyre deflection for different damping control.

To quantitatively compare the controllers’ performance, the criteria given by Equa-
tion (89) were normalized regarding the suspension system with MRD operating with a
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constant nominal current (530 mA). The obtained results of normalized indexes evaluation
for both comfort and road-holding performance are presented in Table 3.

Table 3. Normalized performance criteria comparison for different damping control.

Controller Comfort Road-Holding

inom = 530 mA 1.0 1.0
imin = 0 A 0.5766 0.7324
imax = 1 A 1.1262 1.2723

Skyhook scheme 1.3242 1.2379
PPF (comfort approach) 0.8866 0.7365

PPF (road-holding approach) 1.6428 0.8981
MPPF scheme 2.2926 0.9012

Passivity-based scheme 3.1954 1.9634
DRC scheme 5.1122 1.4534

As one can observe, a soft suspension represented by open loop system operating at imin
is the worst evaluated in both criteria. On the other hand a rigid suspension operating at
imax improve both performance indexes. However, MRD manufacturer suggest not operate
it by an extended period of time at maximum current. Besides, in Figures 6 and 7 a poor
performance of the rigid suspension at intermediate frequency range can be appreciated.
Regarding to closed-loop system with the classical sky-hook controller and the proposed SAC
schemes, modal controls are unable to improve simultaneously comfort and road-holding
indexes, and only the PCB and DRC schemes improve both criteria, with the first one
producing the best performance at high frequencies (road-holding) operation, and the
second one producing a superior performance at low frequencies (comfort) region.

Changes in sprung mass described in Equation (90) were introduced to verify the
effect of these variation in the performance of the proposed controllers. As we mentioned
above, parameters of the primary system are defined according to a experimental test ring.
The range of variation for the sprung mass represents in a proportional manner, different
number of passengers in the vehicle keeping in mind that the sprung mass value is selected
according to the physical limitations on the MRD. Results for the TFR of the sprung mass
displacement and the tyre deflection with this disturbance in the mass value are shown in
Figures 10 and 11.
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Figure 10. Comparison of TFR of the sprung mass displacement for different damping control and
variable sprung mass.



Actuators 2021, 10, 22 20 of 23

Frequency (Hz)

10
0

10
1

10
2

M
a
g
n
it
u
d
e
 (

d
B

)

-30

-20

-10

0

10

20

30
Transmissibility Frequency Response of Zdeft

Skyhook

MPPFC

PBC

DRC

Figure 11. Comparison of TFR of the tyre deflection for different damping control and variable
sprung mass.

Normalized criteria evaluation for variable sprung mass is shown in Table 4. As can
be observed, road-holding index practically does not have any change in comparison with
results in Table 4. Regarding comfort index, the rigid suspension is considerably affected by
the sprung mass variation resulting in a worst performance in relation with the reference
case (open-loop system with nominal current input). Again, DRC and PBC present the
best performance at low and high frequencies respectively, even with disturbances in the
sprung mass value. Moreover, these control schemes achieve the attenuation at the two
main vibration modes.

Table 4. Normalized performance criteria comparison for different damping control and variable
sprung mass.

Controller Comfort Road-Holding

inom = 530 mA 1.0 1.0
imin = 0 A 0.5747 0.7352
imax = 1 A 0.8047 1.2691

Skyhook scheme 1.4319 1.2359
PPF (comfort approach) 0.8602 0.7396

PPF (road-holding approach) 1.1997 0.9011
MPPF scheme 1.8206 0.9050

Passivity-based scheme 2.3945 1.9672
DRC scheme 3.6119 1.4550

Finally, Figures 12 and 13 present the maximum damping force and the power
consumption of the MRD for each proposed SAC scheme corresponding to results in
Figures 8 and 9 and Table 3. These values are calculated for each frequency of the proposed
disturbance. The obtained damping forces are within the range of maximum force provided
by the MRD considered in this work. Moreover, the MRD reaches saturation in frequencies
around the second vibration mode, as can be observed in Figure 13. Despite this operation
condition, the MRD is able to provide the damping force requested to attenuate the TFR in
both vibration modes.
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Figure 12. Damping force for the proposed semi-active control (SAC) schemes.
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Figure 13. MRD power consumption for the proposed SAC schemes.

7. Conclusions

In this article, three semi-active modern control schemes for a quarter-vehicle suspen-
sion with magnetorheological damper (MRD) were developed to overcome the limitations
of traditional semi-active control approaches and achieve the two main objectives with these
kinds of systems, which are passenger comfort and the vehicle’s tyre road holding. The pro-
posed control schemes were quantitatively evaluated by performance indexes by following
the methodology of analysis for automotive suspensions reported by Savaresi et al. [7],
and compared with traditional sky-hook semi-active control, showing a considerable
improvement in the closed-loop system performance at the two main vibration modes
simultaneously. Furthermore, in order to carry out the numerical implementation of all
proven controllers, the MR damper dynamics were taken into account by an inverse poly-
nomial model for the current-damping force relationship. The proposed PBC and MPPFC
had the simplest design and implementation procedure, therefore a low computing effort
is requested, similar to classic SAC strategies. These characteristics are useful for real time
automotive embedded systems. Although proposed DRC scheme had higher implementa-
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tion complexity than PBC and MPPFC, this strategy achieves the high robust and adaptive
performance to reject endogenous and exogenous disturbances. In addition, synthesis
and computing cost of proposed DRC scheme is even simpler than other modern SAC
methods in the literature such as optimal hybrid or H∞ approaches. The obtained results
show viability to experimentally implement the proposed SAC schemes in the laboratory
test rig presented in [36] through the MRD considered in this work due to the obtained
damping forces are within its operation range. This is the main future activity proposed
to extend the presented numerical results. Regarding to quantified power consumption,
24 W is the maximum power provided to MRD which confirm the low power consumption
for this kind of actuators. With this power, the MRD is able to generate damping forces
up to 1700 N. As can be observed in the obtained numerical results, the damping force
depends on the particular SAC scheme and its maximum values are strongly related to the
achieved vibration attenuation. This demonstrates the importance of considering other
factors (related to hardware limitations) in the synthesis and performance evaluation of
SAC schemes.
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