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Abstract: In this paper, a method to control one degree of freedom lightweight flexible manipulators
is investigated. These robots have a single low-frequency and high amplitude vibration mode. They
hold actuators with high friction, and sensors which are often strain gauges with offset and high-
frequency noise. These problems reduce the motion’s performance and the precision of the robot
tip positioning. Moreover, since the carried payload changes in the different tasks, that vibration
frequency also changes producing underdamped or even unstable time responses of the closed-loop
control system. The actuator friction effect is removed by using a robust two degrees of freedom
PID control system which feeds back the actuator position. This is called the inner loop. After, an
outer loop is closed that removes the link vibrations and is designed based on the combination of
the singular perturbation theory and the input-state linearization technique. A new controller is
proposed for this outer loop that: (1) removes the strain gauge offset effects, (2) reduces the risk
of saturating the actuator due to the high-frequency noise of strain gauges and (3) achieves high
robustness to a change in the payload mass. This last feature prompted us to use a fractional-order
PD controller. A procedure for tuning this controller is also proposed. Simulated and experimental
results are presented that show that its performance overcomes those of PD controllers, which are
the controllers usually employed in the input-state linearization of second-order systems.

Keywords: flexible links robot; fractional order control; robust control; sensor offset; high-frequency noise

1. Introduction

Robotic manipulators are used to assist in a wide range of tasks. Most of them are
designed in such a way that the vibration of the end-effector is minimized in order to
achieve good position accuracy. High tip position accuracy is achieved in industrial robots
by endowing them with high structural stiffness, i.e., building them with links that are
rigid can become simply rigid links. These robots are therefore heavy and bulky and are
inefficient in terms of power consumption or speed of motion with regard to the operating
payload [1]. Moreover, collision of this kind of robots cause remarkably destructive effects.

One effective solution by which to achieve high performance requirements such as
high-speed operation, lower energy consumption, lighter weight and safer operation owing
to reduced inertia, is to use robots which have slender lightweight links. Unfortunately,
these building considerations, that lead to the mentioned advantages, reduce the stiffness
of the structure of the link and cause serious vibration problems that substantially diminish
the accuracy of the robot if they are not properly resolved. Links with low stiffness have
also been applied in the medical field, such as for minimally-invasive surgery in which
the endoscopic tools are mainly used. The flexibility of these medical devices allows them
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to follow tortuous paths with little interaction force with organs and with low risk of
damaging tissues or causing pain to the patient, being therefore a safer mode [2]. The
robots that have links with low stiffness are denoted flexible link robots (FLR). Controlling
their behaviour has given rise to numerous problems in the field of dynamic modeling,
control and sensory systems that have yet not been completely solved. A detailed list of
these problems and the solutions achieved can be found in [3,4]. Some recent solutions to
damp the vibrations of FLR are: the control based on Port-Hamiltonian modeling [5], the
sliding mode control [6], the adaptive control [7], the reinforcement learning control [8]
and the fuzzy neural network control [9]. Moreover, multi-loop schemes have been used to
control FLR like in [10,11], in which the inner loop carried out the position control and the
outer loop the vibration attenuation.

A FLR robot has an infinite number of vibration modes. However, only a small
number of modes is usually considered in the design of the control system. This number
depends on the ratio between the links and the payload’ masses. Thus, the lower the ratio,
the lighter the links and, furthermore, the heavier the payload, the smaller the number of
significant vibration modes. Links made of composite materials (e.g., the graphite-epoxy
or fiberglass) are able to carry heavy payloads though being very lightweight. Therefore,
the large thin links made of these materials that are used in FLR often have very small
link-payload mass ratios and can be regarded as having a single vibration mode. This
greatly simplifies the dynamic models of these robots and facilitates the design of their
controllers. However, technically, there are several implementation problems of these
controllers, which must be considered, and have not been satisfactorily solved yet:

1. Nonlinearities and time-varying parameters of the actuators reduce their performance:
the discontinuous nonlinear Coulomb friction hinders the precise positioning of the
robot tip, and the time-varying parameters as well as the actuator saturation produce
overshoot and a slow response.

2. Strain gauges are often used as sensors in flexible link robots because they are cheap
and measure both vibrations and deflections. However, strain gauges are prone
to introduce two kinds of disturbances in the measurement: variations in temper-
ature [4] produce a time-varying offset and electromagnetic interference produces
high-frequency noise [12]. The first disturbance produces a steady-state error in
the closed-loop position of the links [13]. The second disturbance may saturate the
actuators, leading therefore to a bad dynamic behavior. Both disturbances dwindle
the accuracy of the robot state observation (which is often needed for control) [14].

3. Robot tasks involve carrying variable payloads. Then, the control system has to be
robust to these changes and must always preserve the stability, e.g., [15].

The first two problems have already been addressed in the context of active touch
sensing using a robotic antenna with a flexible link. First, a control system for a single
flexible link with a single degree of freedom (1− DOF) in the horizontal plane was devel-
oped in [16], which combined feedforward and feedback control. Later, this result was
extended in [17] to a nonlinear robotic antenna with a single flexible link and two degrees
of freedom (2− DOF) by applying the input-state feedback linearization technique [18]. In
both papers, a control structure constituted by two nested loops was implemented:

1. An inner loop was closed around the actuators which fed back the actuator position.
In this manner, a servo-controlled actuator robust to the Coulomb friction nonlinearity
and viscous friction variations was achieved.

2. An outer loop in charge of removing the link vibrations was achieved feeding back the
measurements of some strain gauges placed at the base of the flexible link. This outer
loop removed the strain gauge offset, reduced the effects of sensor high-frequency
noise and allowed to perform fast trajectories of the tip of the antenna without
vibrations.

However, this control system presents two problems:
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1. Robotic sensing antennae are not aimed to carry payloads. Then robustness to chang-
ing payloads was not addressed in the design of these controllers. Variations in the
payload of FLR produce changes in their vibration frequencies which may prompt
underdamped or unstable responses in the closed-loop control system.

2. The outer loop controller is designed using frequency techniques and, in particular,
phase margin and gain crossover frequency specifications. We found that these two
specifications have to be chosen carefully because they may lead to control systems
with two problems: (1) closed-loop poles that are canceled by zeros, which implies
that the robot is able to accurately track a trajectory without vibrating but, in turn,
it is not able to damp the vibrations caused by external disturbances, even in the
case that only small changes are produced in the robot state and (2) unfulfillment of
the desired time specifications because direct correspondences between them and
frequency specifications only exist in the case of low order simple systems.

In order to cope with the first problem, this article proposes to use a fractional-order
controller. These controllers are implemented using fractional order derivatives and can be
often regarded as an extension of standard PID controllers [19,20]. The robustness of these
controllers to parametric changes has been extensively reported in the last two decades,
e.g., [21]. In particular, several works can be found in the scientific literature about the
design of fractional-order controllers robust to changes in the frequencies of mechanical
vibrations. For example, a vehicle suspension system based on a fractional-order derivative
controller (FD controller) was developed in [22], a robust fractional strategy was developed
for the speed control of a low-damped rotating multi-mass system in [23] and the control
of systems with an arbitrary number of vibration modes whose frequencies can experience
large changes was studied in [24]. Regarding manipulators, [25] proposed a fractional order
fuzzy logic controller to control a rigid 2− DOF arm that experienced payload changes
of ±5%, and [26] applied a fractional-order sliding mode controller to a FLR of 1− DOF
that experienced payload changes of ±25%. These last two articles developed relatively
complex controllers, accepted small payload variations and reported only simulated results.

In order to cope with the second problem, this article proposes a method to design
fractional-order controllers based on the closed-loop pole allocation technique. We will
show that this technique allows us to design controllers with performances closer to the
desired time specifications than the technique based on the frequency response.

Our control system proposal uses the above-mentioned two nested control loops
scheme. It aims at solving the above-cited problems so that the performance and robust-
ness of FLR control systems is improved. It is focused on the control of a FLR with a single
link and 1−DOF that rotates in the horizontal plane. Moreover, it is assumed that the ratio
between the link and the payload mass is low enough as to consider only one significant
vibration mode. We will show that the commonly used PD and PID controllers cannot
satisfy simultaneously the constraints introduced by the input-state feedback linearization
technique and the robustness requirements and that, instead, a fractional-order PD con-
troller (FPD) can do it. Simulated and experimental results are provided that illustrate the
advantages of the proposed controller and its tuning procedure.

The article is organized as follows. Section 2 describes the dynamic model of the FLR
to be controlled. Section 3 presents the control scheme, which is based on implementing
two nested control loops. Section 4 exposes the new method proposed to tune the param-
eters of the controllers. Section 5 describes the experimental setup. Section 6 illustrates
the simulations and experimental results obtained when implementing the PD and the
proposed FPD controllers. Finally, Section 7 gives some conclusions.

2. Robot Dynamics
2.1. Flexible Link Dynamics

The dynamics of a single-link flexible manipulator carrying a payload is modeled.
The payload is a disk attached to the robot tip through a vertical freely pivoted pin joint.
Then the disk can freely rotate around its center of mass in the vertical axis, which implies
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that a negligible rotational moment is produced at the tip. The link is assumed to be an
Euler–Bernoulli beam that has a small distributed mass. Axial deformation is neglected
because the disk is floating on an air table that cancels the gravity effect and the friction of
the disk with the table surface. Figure 1 shows the scheme of this setup. In this figure, θm
rad is the joint angle, θt rad is the angle of the tip, i.e., the angular position of the payload,
m is the payload mass, L is the length of the link, and c = 3·E·I

L is the stiffness of the link,
where E · I N·m2 is the flexural rigidity of the link.

Since structural damping usually increases the stability margin of the closed-loop
control of an FLR, it is not included in the dynamic model developed here. A controller
designed assuming a FLR without damping is a conservative design that will remove the
link vibrations even better if that damping existed.

Figure 1. Diagram of a single link flexible robot.

Our study is carried out assuming the hypothesis of small deflections, which implies
that the dynamics of the robot link can be regarded as linear. Since the mass of the disk is
significantly larger than the mass of the beam, this last one can be neglected and we can
assume that the vibration of the flexible beam has a single mode (the frequencies of the
other modes are very far away from the first one and amplitudes associated with them are
very small). Based on these considerations, the model for a FLR proposed in [27] is used:

m · L2 · θ̈t = Γ (1)

which expresses the balance of torques at the base of the link. In this expression, Γ N·m is
the moment transferred by the motor to the base of the link and θ̈t rad/sec2 is the angular
acceleration of the tip. This model is completed by the equation of the link deflection:

Γ = c · (θm − θt) (2)

Combining (1) and (2) and taking Laplace transforms on the resulting equation, the
transfer function between the tip and motor angles is obtained:

G(s) =
θt(s)
θm(s)

=
ω2

s2 + ω2 (3)
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where ω is the fundamental frequency of our system, which is given by:

ω =

√
c

m · L2 (4)

In these equations, the stiffness c is assumed to be perfectly known as well as L.
However, the mass of the disk m may vary and, as consequence of the Equation (4), ω
varies too. Hereafter, we represent the nominal payload by m0, the corresponding nominal
frequency by ω0 and the resulting nominal transfer function (3) by G0(s).

2.2. Rigid Dynamics

The rotational joint of the robot is actuated by a DC motor. It is supplied by a servo-
amplifier with a current inner loop control. The equation of the dynamics of this system
can be obtained by using the Newton’s second law:

K · u = J · θ̈m + ν · θ̇m + Γc + Γ (5)

where K N·m/V is the electromechanical constant of the motor servo-amplifier system,
J kg·m2 is the inertia of the motor, ν N·m·sec is the viscous friction coefficient, u V is the
control signal, θ̈m rad/sec2 and θ̇m rad/sec are, respectively, the angular acceleration and
velocity of the motor, and Γc N·m is the Coulomb friction torque. This last nonlinear friction
term is considered as a piecewise constant perturbation that depends only on the sign of
the motor angular velocity:

Γc = Γ̂c · sign(θ̇m) =

{
Γ̂c(θ̇m > 0)
−Γ̂c(θ̇m < 0)

}
(6)

where Γ̂c is the Coulomb friction constant. In the case that θ̇m = 0, the Coulomb friction is
given by:

Γc = min
(
|K · u− Γ|, Γ̂c

)
· sign(K · u− Γ) (7)

We note that Equations (5)–(7) are the equations of the motor referring to the output
side of the gear, and that Γ can be regarded as the coupling torque between the motor and
the flexible link.

The complete dynamics of the flexible link system actuated by the DC motor can be
therefore modeled by Equations (2)–(7). The input to this system is the voltage u applied to
the motor and the output is the angular position of the payload θt.

3. Control Scheme
3.1. General Description

The controller of a FLR feeds back the angle of the actuator θm—which is often
obtained using an optical encoder—and a measure of the link deflection, which is often the
moment at the base of the link Γ—which is measured using strain gauge bridges placed at
the base of the flexible link [28].

This work uses the control scheme presented in [16,17], which implements two nested
control loops:

1. An inner loop that feeds back the measurement of the angle θm of the motor. This loop
almost removes the effects of the nonlinear Coulomb friction and the time-varying
viscous friction. Moreover, this loop is closed using a controller with high gains so
that the dynamics of the resulting servo-controlled motor is much faster than the
dynamics of the flexible link.

2. An outer loop that is in charge of controlling the position of the payload and moving
it preventing the appearance of mechanical vibrations.

In this control scheme, the output of the control law of the outer loop is the reference
of the inner loop. This strategy allows us to divide the design of the control system into
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two separate tasks. The motor is controlled in such a way that the fastest response allowed
by its saturation levels is achieved. After that, the outer loop is designed using the singular
perturbation theory, e.g., [18], that would allow us to neglect the dynamics of the inner
loop if it were fast enough. The controller of the outer loop is tuned to achieve the desired
tip positioning performance. The inner and outer loops are subsequently integrated into a
singularly perturbed model and the stability of the whole system is studied.

3.2. Inner Loop Model

The control scheme presented in [17] is used here, which implements a two degrees of
freedom robust PID controller. The controller includes a feedback of the coupling torque
which makes the dynamic of the controlled motor insensitive to the movements of the link.
This feedback of the coupling torque clearly simplifies the motor model used to calculate
the motor controllers. Next, this controller is outlined. The details of its design can be
found in [29].

First, a fictitious control signal u′ is defined as:

u′(t) = u(t)− Γ(t)
K

(8)

in order to cancel the effect of the link on the motor dynamics. Then Equation (5) becomes
K · u′ = J · θ̈m + ν · θ̇m + Γc. Furthermore, if the Coulomb friction is assumed as a step-like
disturbance to be compensated by the motor control loop, the dynamic model of the motor
becomes linear being K · u′ = J · θ̈m + ν · θ̇m, whose transfer function is:

θm(s)
u′(s)

= Gm(s) =
K

s · (J · s + ν)
(9)

Based on model (9), a PID controller with a low pass filter of the form:

n1(s)
d1(s)

=
a2 · s2 + a1 · s + a0

s · (s + c)
(10)

is tuned, combined with a compensator:

n2(s)
d2(s)

=
b1 · s + b0

s + c
(11)

in accordance with Figure 2. The closed-loop poles are allocated at desired locations
following the procedure described in [29]. These four poles are placed on the same location
z. Moreover, the two zeros of the closed-loop system are also placed on z. Then two of
the four poles are cancelled by the two zeros yielding a simplified transfer function of the
closed-loop system of the form:

θm(s)
θ∗m(s)

= M(s) =
1

(1 + ε · s)2 , ε = −1
z

(12)

This control system ensures a good trajectory tracking, compensates disturbances
such as unmodeled components of the friction, and is robust to parameter uncertain-
ties. Such controller provides precise and fast positioning of the motor. Since very fast
motor movements are required, |z| is chosen as high as possible, and the value of ε is
therefore small.
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Figure 2. Inner control loop scheme.

3.3. Outer Loop Model

The outer control loop removes the link vibrations and its design involves the combi-
nation of the singular perturbation theory and the input-state linearization technique. We
adapt here the nonlinear controller designed in [17] for a 2− DOF flexible sensing antenna
to our 1−DOF linear FLR. In accordance with the singular perturbation theory, we design
this controller assuming that M(s) = 1, and then we check the stability of the closed-loop
system with its complete dynamics including (12).

The transfer function of the system to be controlled is therefore G(s) which is given
by (3). Application of the input-state linearization technique to this linear system yields a
control law of the form:

θ∗m(s) = θ∗t (s) +
1

ω2
0
·
(

s2 · θ∗t (s) + C(s) · (θ∗t (s)− θt(s))
)

(13)

where θ∗t (s) is the trajectory desired for the payload, θ∗m(s) is the control signal generated
by the outer loop which, in turn, is the reference of the inner loop, ω0 is the value of ω in
the case that the robot is carrying the nominal payload m0, and C(s) is the controller of the
outer loop which, according to [18], must be a PD controller of the form:

C(s) = kp + kd · s (14)

in the case of controlling a second-order system (as it is the case of (3)). In this control law,
the tip position θt is estimated from measurements of the motor angle θm and the strain
gauges Γ equating θt in (2): θt(t) = θm(t)− Γ(t)

c . Assume that the measurement of the
moment at the base of the link provided by the strain gauges has a disturbance d′(t) such
that the estimated moment is Γe(t) = Γ(t) + d′(t). Thus, the estimation of θt becomes:

θe
t (t) = θm(t)−

Γe(t)
c

= θm(t)−
Γ(t)

c
+ d(t) (15)

where the disturbance d(t) in the estimation of the tip position is d(t) = −d′(t)/c. Figure 3
shows the scheme of the proposed control system including the sensor disturbance.

The transfer functions that relate the tip/payload angular position θt(t) and the control
signal of the outer loop θ∗m(t) with the reference θ∗t (t) and the disturbance d(t) are obtained
after some operations:

(
θt(s)
θ∗m(s)

)
=

 M(s) · G(s) · C(s)+s2

ω2
0

−M(s) · G(s) · C(s)−ω2
0

ω2
0

C(s)+s2

ω2
0

−C(s)−ω2
0

ω2
0


1 + M(s) · G(s) · C(s)−ω2

0
ω2

0

·
(

θ∗t (s)
d(s)

)
(16)
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and substituting (3) into this,

(
θt(s)
θ∗m(s)

)
=


(

ω
ω0

)2
·M(s) ·

(
C(s) + s2) −( ω

ω0

)2
·M(s) ·

(
C(s)−ω2

0
)

(C(s)+s2)·(ω2+s2)
ω2

0
− (C(s)−ω2

0)·(ω2+s2)
ω2

0


s2 + ω2 +

(
ω
ω0

)2
·M(s) ·

(
C(s)−ω2

0
)

︸ ︷︷ ︸
Q(s)

·
(

θ∗t (s)
d(s)

)
(17)

Figure 3. Outer control loop scheme.

3.4. Achieving Robustness to Strain Gauge Disturbances

Two kind of disturbances may appear in a strain gauge signal: offset and high fre-
quency noise. In this Section, the controllers proposed in [16,17] for reducing their effects
are adapted to our 1− DOF FLR.

3.4.1. Offset Elimination

Consider the transfer function of (17) that relates θt(s) and d(s):

θt(s)
d(s)

= Q1,2(s) = −
(

ω

ω0

)2
·

M(s) ·
(
C(s)−ω2

0
)

s2 + ω2 +
(

ω
ω0

)2
·M(s) ·

(
C(s)−ω2

0
) (18)

Since the offset can be modeled as a step disturbance d(s) = d̂/s, the steady state
error eθt caused in θt by this disturbance can be assessed applying the final value theorem,
e.g., [30]:

eθt = lim
s→0

s ·Q1,2(s) · d(s) = −
(

ω

ω0

)2
·

M(0) ·
(
C(0)−ω2

0
)

ω2 +
(

ω
ω0

)2
·M(0) ·

(
C(0)−ω2

0
) · d̂ (19)

Taking into account that M(0) = 1, this expression yields that C(0) must be ω2
0 in order to

make eθt = 0. Then controllers of the form:

C(s) = Ĉ(s) + ω2
0, Ĉ(0) = 0 (20)

, i.e., with the term Ĉ(s) having a zero in the origin, completely remove the steady state
error caused by the offset.

3.4.2. Reduction of the Effect of the High Frequency Noise

The high frequency noise of the sensor produces an amplified noise in the control
signal θ∗m(t) that may produce actuator saturation. This yields a deficient dynamic perfor-
mance and even instability.

Consider now the transfer function of (17) that relates θ∗m(s) and d(s):
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θ∗m(s)
d(s)

= Q2,2(s) = −
1

ω2
0
·

(
C(s)−ω2

0
)
·
(
ω2 + s2)

s2 + ω2 +
(

ω
ω0

)2
·M(s) ·

(
C(s)−ω2

0
) (21)

Assuming a controller of the form (20) we have that:

Q2,2(s) = −
1

ω2
0
·

Ĉ(s) ·
(
ω2 + s2)

s2 + ω2 +
(

ω
ω0

)2
·M(s) · Ĉ(s)

(22)

The high frequency noise of the strain gauge signal can be modeled by a sinusoidal
signal of very high frequency. Then the frequency response of Q2,2 at ω → ∞ shows how
the effect of this noise on the control signal θ∗m of the outer loop is amplified. Dividing the
numerator and denominator of Q2,2(s) by s2 yields that:

lim
ω→∞

|Q2,2(j ·ω)| = 1
ω2

0
· lim

ω→∞

|Ĉ(j ·ω)| ·
∣∣∣1− ω2

ω2

∣∣∣∣∣∣∣1− ω2

ω2 −
(

ω
ω0

)2
· M(j·ω)·Ĉ(j·ω)

ω2

∣∣∣∣ (23)

Let us assume that:

lim
ω→∞

|Ĉ(j ·ω)|
ω4 = ψ < ∞ (24)

Then limω→∞

∣∣∣M(j·ω)·Ĉ(j·ω)
ω2

∣∣∣ = ψ/ε2 and consequently:

lim
ω→∞

|Q2,2(j ·ω)| = 1
ω2

0
· limω→∞ |Ĉ(j ·ω)|∣∣∣∣1− ( ω

ω0

)2
· ψ

ε2

∣∣∣∣ (25)

This expression shows that the effect of the high frequency noise on the control signal θ∗m(t)
is highly reduced if:

lim
ω→∞

|Ĉ(j ·ω)| = 0 (26)

We note that (26) guarantees the verification of condition (24). Condition (26) means that
the order of the numerator of Ĉ(s) must be lower than the order of the denominator.

Remark 1. Since the inner loop includes controllers with high gains, the effect on the motor input
u(t) of a high frequency noise in θ∗m(t) is highly amplified, being thus prone to saturating the motor.
Then condition (26) has to be necessarily verified in order to prevent this effect.

4. Control Robust to Payload Changes

Changes in the payload m produce changes in the vibration frequency ω in accordance
with (4). Changes of this frequency produce underdamped or even unstable closed-loop
systems. This section develops a controller C(s) that, embedded in the control scheme
described in Section 3, provides a robust behavior to payload changes. This controller
must be also robust to strain gauge offset and high frequency noise. Then C(s) must verify
conditions (20) and (26).

4.1. A Fractional-Order Controller

Since the dynamics of the inner loop (12) is much faster than the dynamics of the
link (3), the following analysis is carried out applying the singular perturbation theory,
e.g., [18]. It is then assumed that M(s) = 1 and the characteristic equation of the closed-loop
system—which is the denominator of (17)—becomes:

s2 + ω2 +

(
ω

ω0

)2
· Ĉ(s) = 0 (27)
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It can be expressed as:

1 +
ω2

s2 + ω2 ·
Ĉ(s)
ω2

0
= 0 (28)

Next we recall a result about achieving isophase margin robustness of oscillatory
systems [24]: given an oscillator (3) in which ω has a large uncertainty, it can be robustly
controlled in the sense of achieving a phase margin invariant to ω changes—it is denoted
the isophase margin property—by closing a loop using a fractional-order controller of
the form:

Ĉ(s) = k f · sα, α ∈ <+, 0 < α < 2 (29)

This controller was designed in [24] using the phase margin and gain crossover frequency
specifications.

Controller (29) is improper. Several structures of fractional-order PID controllers have
been proposed [31] to make proper these controllers. In particular, the phase-lead fractional-
order controller [32] is the proper realization of the FPD controller. In our case, since we
need that Ĉ(s) has a zero in the origin in order to preserve the offset effect cancellation and
α can be higher than one, we modify controller (29) to:

Ĉ(s) = k f ·
sα

(1 + µ · s) (30)

in order to make it strictly proper.
Frequency specifications do not have an easy interpretation in terms of time specifica-

tions. Then this section proposes a new method to tune controllers (29), (30) by applying a
closed-loop pole allocation technique. Since the controller structure is preserved in this
method, the isophase margin property will be maintained.

The final step of the controller design using the singular perturbation theory re-
quires checking the range of values ε of M(s) that make stable the closed-loop system.
Theorem 11.4 from the book [18] is often used to carry out this study. However, this theo-
rem was developed only for integer-order systems. Some researchers have tried to extend
the singular perturbation theory to fractional order systems [33] and have applied it to the
PID control of nonlinear systems [34]. We recall here the recent extension of the mentioned
theorem of [18] to fractional-order nonlinear systems [35], which would allow us to apply
the singular perturbation theory to our control system.

4.2. Dynamic Specifications

Let us assume that 0 < α < 2 in (29). Then the characteristic Equation (27) has two
poles p1 and p2. In order to be able to apply the singular perturbation technique, these
two poles must be much closer to the imaginary axis than the double pole z of M(s). We
impose then an ‘a priori’ condition to the relative position between these two pairs of poles:

|real(p1)|, |real(p2)| < |z|/5 (31)

in order to be able to apply that technique. In any case, the stability of the complete
closed-loop system will have to be verified ‘a posteriori’.

Let us assume that the two desired closed-loop poles p1 and p2 are complex conjugates.
They are expressed in polar form as p1,2 = p · e±jφ. We use two time specifications to
determine these two poles: the settling time ts and the overshoot Mp. In the case of an
underdamped second-order system, the previous specifications are related to the position
of the poles in the complex plane by the expressions:

ts ≈
π

σ
(32)

Mp = e
−πξ√
1−ξ2 , ξ = cos(θ) (33)
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where the meaning of parameters σ and θ is shown in Figure 4. These specifications
are desired for the nominal process ω0. In this case, ω = ω0, and the characteristic
Equation (27) becomes:

s2 + ω2
0 + Ĉ(s) = s2 + C(s) = 0 (34)

Figure 4. Location of the poles of the closed outer loop.

4.3. Tuning the Controller

We need controllers that have at least two parameters to be tuned in order to be able to
achieve the two specifications defined above. Substituting s = p1 or s = p2 in Equation (34)
yields two simple conditions that allow us to tune the parameters of the controller.

In the following, we carry out the design of four simple controllers with two or more
tunable parameters:

1. PD controller: CPD(s) = kp + kd · s. This controller has two parameters to be tuned.
Then the dynamic specifications can be achieved but not the robustness to strain
gauges offset nor the robustness to payload changes. In this case, (34) becomes
s2 + kd · s + kp = 0, and substituting s = p1 yields:

p2 · ej·2·φ + kd · p · ej·φ + kp = 0⇒
{

kp = p2

kd = −2 · p · cos(φ)
(35)

2. FPD controller: CFPD(s) = ω2
0 + k f · sα. This controller has three parameters to be

tuned. Then the dynamic specifications can be achieved as well as the robustness to
strain gauges offset. Moreover, the structure of this controller yields the iso phase
margin property to changes in the payload. In this case, (34) becomes s2 + k f · sα +

ω2
0 = 0, and substituting s = p1 yields:

p2 · ej·2·φ + k f · pα · ej·α·φ + ω2
0 = 0⇒

α =
∠−ω2

0−p2·ej·2·φ

φ

k f =
|ω2

0+p2·ej·2·φ |
pα

(36)

3. Proper FPD controller: CP−FPD(s) = ω2
0 + k f · sα

(1+µ·s)2 . This controller has four
parameters to be tuned. In this case, the dynamic specifications can be achieved as
well as the robustness to strain gauges offset. The structure of this controller yields
an isophase margin property to payload changes which is not as good as that of the
previous controller. In any case, if the gain crossover frequency ωc of the system varies
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in the range ωcl ≤ ωc ≤ ωch as consequence of changes in the payload, choosing
a value:

µ <
1

5 ·ωch
(37)

and the same values of k f and α as in CFPD(s) assures that CP−FPD(j ·ω) ≈ CFPD(j ·ω)
in the mentioned frequency range, and the isophase margin property becomes guar-
anteed for the range of variation of the payload. Since controller (30) is proper (always
α < 2), CP−FPD(s) reduces the effect of the high frequency noise in the control signal
θ∗m(t). In this case, (34) becomes s2 + k f · sα

(1+µ·s)2 + ω2
0 = 0, and the tuning procedure

is carried out in five steps:

(a) Obtain controller CFPD(s) from expression (36).
(b) Calculate the range of gain crossover frequencies [ωcl , ωch] for the previous

CFPD(s).
(c) Choose a value of µ using condition (37).
(d) Obtain controller CP−FPD(s) using the previous value of µ. In this case, (34)

becomes s2 + k f · sα

(1+µ·s)2 + ω2
0 = 0, and substituting s = p1 yields:

p2 · ej·2·φ + k f ·
pα · ej·α·φ

(1 + µ · p · ej·φ)2 + ω2
0 = 0⇒

α =
∠−(ω2

0+p2·ej·2·φ)·(1+µ·p·ej·φ)2

φ

k f =
|ω2

0+p2·ej·2·φ |·|1+µ·p·ej·φ |2
pα

(38)

(e) Check that the gain crossover frequency range [ωcl , ωch] obtained with CP−FPD(s)
verifies condition (37). If not, a lower value of µ has to be chosen and the pro-
cedure has to be repeated until a satisfactory controller is found.

4. Proper PD controller: CP−PD(s) = kp + kd · s
(1+µ·s)2 . This controller has three pa-

rameters to be tuned. It uses the same values kp and kd designed for CPD(s) but the
derivative term is modified by adding the same filter as in the CP−FPD(s) in order to
attain a similar attenuation of the high-frequency noise. Since µ is low, the double
pole introduced at −1/µ has a small influence on the values of the two dominant
poles p1 and p2 of the closed-loop system.

Remark 2. The procedure to design the Proper FPD controller always converges to a satisfactory
solution. However, it must be taken care of the obtained µ. In some cases, it may be too low to
really reduce the effect of the high-frequency noise of the strain gauges in the control signal. If the
value of µ were unsatisfactory, the controller must be redesigned changing a specification (a time
specification or relaxing the accuracy required in the verification of the isophase margin robustness).

The final step of the controller design procedure, which is based on the theorem
of [18] for singularly perturbed nonlinear systems, can be simplified in our case because
we have an FLR whose dynamics is linear. In this case, we can apply the well-known root
locus method to assess the location of the poles of the complete system when parameter

λ =
(

ω
ω0

)2
varies. The denominator of (17) gives the following closed-loop characteristic

equation:

s2 + ω2 +

(
ω

ω0

)2
·M(s) ·

(
C(s)−ω2

0

)
= 0 (39)

and rearranging:

1 + λ
ω2

0 + M(s) ·
(
C(s)−ω2

0
)

s2 = 0 (40)

which can be used to plot the root locus of both the simplified and the complete systems.
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5. Experimental Platform
5.1. Setup Description

Figure 5 is a picture of the experimental platform, which is constituted by a three
legged metallic structure that supports a Harmonic Drive mini servo DC motor RH− 8D−
6006− E036AL− SP(N) that has a reduction ratio characterized by n = 50. This frame
makes it possible the stably and free rotation of the motor in the horizontal plane around the
vertical axis of the platform. The motor parameter values are: inertia
J = 6.87× 10−5 kg·m2, viscous friction ν = 1.041× 10−3 N·m·sec and electromechanical
constant K = 0.21 N·m/V. The servo-amplifier accepts control inputs from the computer in
the range of [−10, 10] V. The flexible beam is attached to the motor. The load (disk) floats
over the surface of an air table in such a way that the friction with the surface of the table
and the gravity effect are canceled. The flexible beam characteristics are: length L = 0.5 m,
diameter d = 3× 10−3 m, flexural rigidity EI = 0.260 N·m2 and c = 3 · EI/L = 1.56 N·m.
The nominal tip load is a wood disk of mass m0 = 0.05 kg. Then the nominal vibration
frequency of the link is characterized as ω0 = 10.99 rad/sec ( f0 = 1.75 Hz). Other two disks
of masses ml = 0.0312 kg and mh = 0.1249 kg are used, whose respective vibration frequen-
cies are ωl = 7.1226 rad/sec ( fl = 1.132 Hz) and ωh = 14.2463 rad/sec ( fh = 2.2674 Hz).
The sensor system consists of an encoder embedded in the motor—which allows us to
know the motor angular position with a precision of 7× 10−5 rad—and a pair of strain
gauges with gauge factor 2.16 and resistance 120.2 Ω. The sampling time of the signals
processing is 4 msec.

Figure 5. Air table flexible robot system.

5.2. Setup Dynamics Validation

The dynamics of the flexible robot was characterized by studying its frequency re-
sponse. It was obtained by applying a chirp signal to the input θ∗m(t) of the inner loop,
having disconnected the outer loop. The angle of the motor θm(t) and the moment at the
base of the link Γ(t) were recorded, and the FFTs of these two signals were calculated. The
quotient of these FFTs gave the frequency response of the link. Figure 6 is a periodogram
that shows the magnitude of the frequency response in the case of carrying the nominal
disk. This figure shows a single peak. Then there is a single vibration mode. Moreover,
that peak is observed at a frequency f0 = 1.75 Hz (ω0 = 10.99 rad/seg), which is exactly
the value estimated from the link parameters using (4). All this supports the assumptions
that the link is massless, all the mass is concentrated at the tip of the link and the rotation
moment produced at the tip is zero.
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Figure 6. Frequency response of the link θt(j·ω)
θm(j·ω)

.

Figure 7 shows the response to a step command applied at the input of the inner loop.
The upper figure shows the reference step θ∗m(t) and the motor angle response θm(t), and
the lower figure shows the measurement of the moment at the base of the link provided by
the strain gauges Γe(t). The upper figure shows that, in the steady-state after the maneuver,
the motor angle is resting in the reference position. Since there is no deflection in the steady-
state because the link moves in an horizontal plane (the gravity does not produce any
moment), the measurement of the moment at the base of the link should oscillate around
zero. However, the signal of the lower figure oscillates noticeably around a negative value
showing that the strain gauges signal has a significant offset in the steady-state. This
prompts us to design controllers robust to this measurement disturbance.
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Figure 7. Measurement of the strain gauges when a step command is applied to the inner loop.

Finally, Figure 8 shows the response to an abrupt command applied at the input
of the inner loop when the robot carries the nominal disk. Figure 8a shows the motor
angle response θm(t) measured by the encoder and the tip angle response θt(t) estimated
from measurements of the motor encoder and the strain gauges using (15). This Figure 8a
shows that the link has a slight damping: in the steady state of the motor, where its angle
shows a very small residual vibration, the amplitude of the oscillation of the tip angle
is slightly decreasing. Then Figure 8b shows again the experimental tip response θt(t)
(black dashed line), the simulated tip response provided by the undamped model (3) with
ω = ω0 = 10.99 rad/s obtained from the previous frequency response characterization
(red line), and the simulated tip response provided by a damped model:
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Gd(s) =
θt(s)
θm(s)

=
ω2

s2 + 2 · ζ ·ω · s + ω2 =
125.44

s2 + 0.1484 · s + 125.44
(41)

which has been fitted between the tip response θt(t) and the motor response θm(t) using
the Identification Toolbox of MATLAB (the blue line). The parameters of (41) yielded by
this identification procedure were ω = 11.2 rad/s and ζ = 0.006. We remark that the red
and blue plots of Figure 8b are the simulated time responses of models (3) and (41) when
the input is the motor angle shown in Figure 8a. The error between the theoretical vibration
frequency (which coincides with the value estimated using the frequency response of
Figure 6) and the vibration frequency obtained by the identification based on the time
responses is 1.91%, which allows us to consider that the theoretical value ω0 = 10.99 rad/s
adequately reproduces the oscillation (the experimental response and the red line response
show approximately the same frequency and phase in Figure 8b). Moreover, the estimated
damping coefficient is very small, which allows us to neglect it and use the undamped
model (3).
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Figure 8. Verification of the model of the link dynamics in the time domain: (a) measured motor and
tip angles, (b) comparison of simulated and real tip angle responses.

6. Control System Validation
6.1. Design of the Control System

The inner loop is designed using the procedure described in [29] with the motor
parameters listed in Section 5.1. The two poles of the inner loop are placed in z = −80.

Proper PD and FPD controllers are designed for the outer loop. Two time specifica-
tions are used to tune the parameters of these controllers: the settling time ts which
must be lower than 1 sec, and an overshoot Mp which must be lower than 5%. In
the case of an under-damped second order system such as ours, expressions (32) and
(33) can be applied. Then choosing θ = π

4 rad and p = 5 yields that φ = 2.356 rad,
ξ = 0.7071, σ = p · cos(θ) = 3.5354, Mp = 4.32% < 5% and ts = π

σ = 0.8886 < 1.
Therefore, the closed-loop poles of the outer loop are placed at p1,2 = 5 · e±j·2.356. Note
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also that condition (31) needed to apply the singular perturbation technique is verified:
|real(p1,2)| = σ = 3.5354 << |z|/5 = 16.

Expressions (35) allow us to tune a PD controller:

CPD(s) = 25 + 7.0711 · s (42)

and expressions (36) a FPD controller

CFPD(s) = 120.9 + 16.6 · s1.25 (43)

Figure 9 shows the root loci of (40) in function of λ having made M(s) = 1 and using

controllers (42) and (43). λ is varied between
(

ωl
ω0

)2
and

(
ωh
ω0

)2
. The straight lines that

define the locus of constant damping 0.7071 are also plotted. These root loci show that
damping changes with λ significantly less using the FPD than using the PD controller.
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Figure 9. Root loci of the simplified characteristic Equation (40) in function of λ: PD root locus (red
line), FPD root locus (blue line), allocated poles p1,2 (circle) and the locus of poles with damping
0.7071.

In accordance with the procedure proposed in Section 4.3 to design proper FPD
controllers, the gain crossover frequencies of the robot using (43) are calculated for the

range of variation of the payload. The open-loop system L(s) = ω2

s2+ω2 ·
Ĉ(s)
ω2

0
has two

gain crossover frequencies. It is usually assumed that the gain crossover frequency ωc
of a multiple gain crossover frequency system is the highest one, e.g., [36] (pp. 365–367).
Figure 10 shows this ωc in function of ω. Its highest value is ωch = 82.2243 rad/sec.
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Figure 10. Gain crossover frequency versus ω using controller (43).

Then condition (37) imposes that µ < 0.0024. Since we have a sampling time T
of 4 msec, this value of µ cannot be attained using our computer. Then we choose
µ = T = 4 msec. Though this value does not verify the design condition, it is close enough
to 0.0024 as to assumer that the changes introduced by this filter in the phase margin plot
of the FPD are moderate. Tuning the parameters of the proper FPD by using (38) yields
values of α and k f very close to the ones of (43). Then we maintain these values and the
proper FPD controller is:

CP−FPD(s) = 120.9 + 16.6 · s1.25

(1 + 0.004 · s)2 (44)

The design process finishes verifying the stability of the complete system, including
the inner loop, by calculating the root locus. It is plotted in Figure 11, which shows that the
six branches of the root locus remain in the real negative half-plane for all the values of λ
certifying the stability of the closed-loop system.
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Figure 11. Root loci of (40) in function of λ.

For comparison purposes, we also consider the proper PD controller:

CP−PD(s) = 25 + 7.0711 · s

(1 + 0.004 · s)2 (45)
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Simulated results using MATLAB are shown in Figure 12 of the time responses of
controllers (44) and (45) to a trajectory composed of a constant acceleration stretch and a
constant deceleration stretch, in which a disturbance is produced that consists of a sudden
change in the tip angle at the instant t = 3 s. These simulations have been carried out
for the minimum, nominal and maximum vibration frequencies, and it has been assumed
that the strain gauges sensor introduced an offset in the tip position estimation of 0.03 rad.
These simulations show that: (1) the FPD removes the steady state error caused by the
offset while the PD does not, (2) the variation of the responses of the robot to payload
changes when tracking a trajectory is significantly smaller using a FPD controller than
using a PD and (3) the FPD controller removes the effects of state disturbances in the tip
position quicker than the PD, though the FPD responses are slightly less damped.
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Figure 12. Simulated responses using controllers (44) and (45) for the minimum, nominal and
maximum vibration frequencies.

6.2. Experimental Validation of the Controller

In this subsection, the proper FPD and PD controllers are experimented on the setup
described in Section 5. The trajectory defined in the previous subsection is used. Figure 13
shows the trajectory tracking performance of the robot using the PD controller (45) in the
cases of lowest, nominal and highest payloads (ωh, ω0 and ωl , respectively). The noticeable
steady state error shows that this controller is unable to achieve the required tip position
accuracy because it cannot remove the error caused by the offset of the strain gauge sensor.
Besides, this controller shows a robust and damped response when the payload changes.

Figure 14 shows the trajectory tracking performance of the robot using the FPD
controller (44) in the cases of lowest, nominal and highest payloads (ωh, ω0 and ωl ,
respectively). The steady state error has been completely removed, which shows the ability
of this controller for cancelling the effect of the offset of the strain gauge sensor. This
controller shows a trajectory tracking robust to payload changes. However, the movement
shows a small oscilation that is damped in the steady state. This signifies that the secondary
poles introduced by the inner loop M(s) in the closed-loop are less damped in the case of
using the FPD than in the case of using the PD. Figure 11 shows two very lowly damped
branches (the absolute values of their imaginary components are between 27 and 63) that
are the cause of this oscillation. These branches are not so close to the imaginary axes
in the case of the PD controller. Then the solution of this problem will be the object of a
further study.
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Figure 13. Experimental tracking of a trajectory using the PD controller (45).
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Figure 14. Experimental tracking of a trajectory using the FPD controller (44).

Figure 15 compares the experimental response obtained carrying the nominal disk
(the same plot of Figure 14) and the simulated response using the dynamic model (3) with
ω = 10.99 rad/sec combined with (12) with z = −80. The offset of the strain gauge in this
experiment, and included in the simulation is 0.0062 N·m. The error between these two
responses is always lower than the 5% of the total displacement of the tip (which is 0.2 rad).
This error value is small, particularly taking into account that the programmed manoeuvre
is very fast (it takes about 1 sec to perform the trajectory), and fast trajectories are prone to
amplify the errors between real and simulated responses, i.e., modelling errors. This result
and the one shown in Figure 8 support the assumption that the before mentioned model
adequately reproduces the robot dynamics.
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Figure 15. Comparison of the simulated and experimental tracking of a tip trajectory the FPD
controller.

Figure 16 shows the ability of the FPD controller (44) for removing the state dis-
turbance effects on the tip position in the case of carrying the nominal payload. The
experiment consisted in hitting two times the payload at the tip. The figure shows that the
tip correction is well damped and fast (it takes about 0.6 sec returning the tip position back
to its desired position). Note that the second hit is made when the transient after the first
hit has not finished yet.
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Figure 16. Experimental compensation of an external disturbance using the FPD controller (44).

Finally, Figure 17 shows the control signals θ∗m(t) generated by the outer loop in the
cases of using the modified (proper) and simplified (improper) FPD controllers (expressions
(44) and (43), respectively). A high frequency component is observed in the case of using
(43) that does not appear using (44). This illustrates the statement that the proposed proper
FPD reduces the high frequency noise introduced by the sensors and other sources in the
control signal.
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Figure 17. Experimental motor reference angles θ∗m(t) using the two FPD controllers.

7. Conclusions

This work has developed a robust control system for a FLR with a single massless link
that moves in the horizontal plane. It is robust to: (1) nonlinear and time-varying motor
friction, (2) offset and high-frequency noise of strain gauge sensors and (3) changes in the
carried payload.

The contribution of this paper is having developed for the first time a control system
robust to these three disturbances simultaneously. In order to achieve this, a two nested
control loops scheme has been proposed in which the inner loop is much faster than
the outer loop. This last issue allowed us to design the two control loops sequentially,
implementing first a two degrees of freedom robust PID controller in the inner loop and,
after, applying the singular perturbation technique combined to the input-state feedback
linearization method in order to design the outer loop. In the case of a second order system,
this method states that the outer loop has to be closed with a PD controller.

Then, our specific contribution is substituting the outer loop PD by a fractional order
PD and developing a new tuning method based on the pole allocation technique. Our
tuning method allows us to design a controller with desired time specifications for the
nominal system that also achieves an isophase margin feature. This controller improves
the PD in two issues: it removes the sensor offset and increases the robustness to payload
changes. Simulated and experimental results have been reported which illustrate these
improvements. They show that a small oscillation appears during the transient in the case
of the FPD. It is caused by the secondary branch of the root locus that appears in Figure 10.
We remark that the damping of the poles of this branch can be increased by choosing
poles z of the inner loop more distant from the imaginary axis (this has been verified by
simulations). We could not go further than z = −80 in the inner loop because our computer
did not allow us to use sampling times lower than 4 msec. Then this oscillation is not
caused by our method but by a technological limitation.

We conclude as result of this research that:

• It is possible to remove the offset disturbance of the strain gauges of a FLR without
having to use controllers with an integral term—which would reduce the relative
stability of the closed-loop system and the robustness to payload variations—nor
differentiating the strain gauge signal, which would add noise to the closed-loop
control and would compromise the compensation of some steady state tip position
errors such as the errors brought about by the steady state deflections of multilink
FLRs caused by gravity.
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• The designed controller is simpler than others and provides robustness to tip payload
changes larger than other controllers. For example, our controller allows payload
variations from −40% to +150% of its nominal value while the robust fractional
controllers [25,26] cited in the Introduction allowed only changes of ±5% and ±25%,
respectively, of their payload nominal values.

• Consequently, high speed motions can be achieved using a controller that can be easily
designed and can be implemented in a low performance computer.

• This work prompts the design of new efficient controllers for multilink FLRs that will
show improved robustness to torque measurement offset and payload changes. These
controllers will allow fast movements with enhanced tip position precision, and will
be the object of our future research.

We remark that, since our system is linear, the outer loop controller could had been
designed directly using the complete dynamics of the robot with the help of a root locus
such as the one of Figure 11. However, we preferred to use our procedure based on the
singular perturbation technique because it has the advantage that it can be easily extended
to control nonlinear systems such as multilink FLR, thus being the base for the development
of our future controllers.

Finally, we mention that our control method, which is specially suited for FLR of
1− DOF with one vibration mode, can be easily applied to robots with flexible joints
because they also have a single vibration mode (one mode at each joint), e.g., [37].
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