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Abstract: This paper presents a predefined-time convergent robust control algorithm that allows
the control designer to set the convergence time in advance, independently of initial conditions,
deterministic disturbances, and stochastic noises. The control law is consequently designed and
verified by simulations for a full-scale 4-degrees-of-freedom (4D) permanent-magnet synchronous
motor (PMSM) system in cases of a disturbance-free system with completely measurable states,
a disturbance-free system with incompletely measurable states, a system with incompletely measur-
able states in the presence of deterministic disturbances, and a system with incompletely measurable
states in the presence of both deterministic disturbances and stochastic noises. Numerical simulations
are provided for the full-scale 4D PMSM system in order to validate the obtained theoretical results
in each of the considered cases. To the best of our knowledge, this is the first attempt to design a
predefined-time convergent control law for multi-dimensional systems with incompletely measurable
states in the presence of both deterministic disturbances and stochastic noises.

Keywords: predefined-time control; nonlinear control; robust control; permanent-magnet synchronous
motor; deterministic disturbances; stochastic noises

1. Introduction

A designer of control systems faces two problems [1,2] when trying to find a control
algorithm to drive the system states to an equilibrium point. On the one hand, the designer
must overcome the problem of convergence rate. On the other hand, he/she needs to solve
the problem of robustness against disturbances, uncertainties, and noises affecting the sys-
tem. In the linear control theory, it is relatively easy to solve the stated problems; however,
when dealing with nonlinear systems, these two problems present a great challenge for the
control theory community [3,4].

An important application of fast robust controllers is regulating permanent-magnet
synchronous motors (PMSMs). PMSMs have many advantages in comparison to induc-
tion motors. They are more efficient—95–97% compared to 90–92% in typical induction
motors—lighter, and smaller [5]. Furthermore, they generally have larger torques, higher
rotation speeds, higher power densities, and quicker responses. All these characteristics
make them perfectly suitable for applications in power trains of electrical vehicles [6],
trains [7], industrial robots [8,9], unmanned autonomous vehicles [10], and others. Adap-
tive sensorless control laws for PMSMs of industrial robots are designed in [11,12], PMSM
rotor position/speed estimators are proposed in [13,14], and a comprehensive review of
various PMSM control techniques is provided in [15]. On the other hand, the PMSM
performance might be adversely affected by uncertainties [16] and disturbances due to
variations in external load [17], temperature, and/or magnetic saturation [18]. There are
many techniques, including adaptive [19], model-predictive [20,21], and fault-tolerant
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ones [22,23], to counteract the disturbance influence. Therefore, a controller that is robust
against disturbances, uncertainties, and noises, and also responds rapidly to the system
requests, is in great demand.

Two solutions have been proposed to solve the convergence problem: finite- and
fixed-time controllers (please see [24] for a detailed review). However, even though various
algorithms have been developed using either method, the proposed solutions often suffer
from the drawback that the finite convergence time unboundedly grows as the initial
conditions increase or there is no convergence at all. On the other hand, although the
convergence time of a fixed-time controller does not depend on the initial conditions,
the designer can only calculate an upper estimate of the convergence time, which might
be much larger than the real convergence time. For example, in [17], the calculated
convergence time estimate is 7228 s, while the real convergence time is 114 s. Therefore,
a control algorithm, whose performance is not affected by the initial conditions and also
allows one to know precisely the true convergence time, is in great demand as well.

To eliminate the mentioned drawback of finite- and fixed-time controllers, a new
technique, known as predefined-time control, has been proposed, whose key idea is to
propose a control law that relates the state variables and the desired convergence time.
For example, [25,26] have implemented exponential and polynomial forms of the control
input that relate the variable states and the convergence time. Moreover, in [27], a control
input in an exponential form has been employed for a multi-dimensional dynamical
system. However, the foregoing control laws are proposed only for systems of degrees one
or two [25,28], or the control magnitude exponentially grows for large values of negative
initial conditions [27], as shown in [29].

In this paper, a predefined-time convergent control algorithm is proposed that al-
lows the control designer to set the convergence time in advance, independently of initial
conditions, deterministic disturbances, and stochastic noises. The control law is conse-
quently designed and verified by simulations for a full-scale 4-degrees-of-freedom (4D)
PMSM model [30] in cases of a disturbance-free system with completely measurable states,
a disturbance-free system with incompletely measurable states where only the rotation
angle can be measured, a system with incompletely measurable states in the presence
of deterministic disturbances, and a system with incompletely measurable states in the
presence of both deterministic disturbances and stochastic noises. The proposed algorithm
is free from the restriction of exponential control magnitude growth and can be applied
to multi-dimensional systems. To the best of our knowledge, this is the first attempt
to design a predefined-time convergent control law for multi-dimensional systems with
incompletely measurable states in the presence of both deterministic disturbances and
stochastic noises. The numerical simulation results obtained for a full-scale 4D PMSM
system show that the designed control law is capable of driving the PMSM system states to
an equilibrium point for a pre-assigned time and operates with control magnitudes suitable
for practical applications.

The paper is organized as follows. In Section 2, the predefined-time control problem
is stated for a general nonlinear dynamical system and a full-scale 4D PMSM model is
described. Sections 3–6 consequently present implementations of the proposed predefined-
time convergent control algorithm for a full-scale 4D PMSM model in all the above-
mentioned cases. Some conclusions to this study are provided in Section 7.

2. Problem Statement
2.1. Predefined-Time Convergence

Before formally introducing the control problem for a full-scale 4D PMSM model, let
us define the predefined-time convergence notion for a general nonlinear n-dimensional
dynamic system.

ẋ(t) = u(t) + ξ(t) + σ(t, x(t))dW(t), x(t0) = x0, (1)
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where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, ξ(t) is a deterministic
disturbance satisfying the Lipschitz condition

‖ξ(t1)− ξ(t2)‖ ≤ L|t1 − t2|, (2)

with a certain constant L. W(t) is a Wiener process defined in the complete probability
space (Ω, F, P), where Ω is the sample space, F is a σ field with a filtration {Ft}(t≥0), and P
is a probability measure. The condition σ(t, 0) = 0 must be satisfied for all t ≥ t0.

The predefined-time convergence definitions are separately introduced for determin-
istic and stochastic systems [29].

1. The system (1) is only affected by a deterministic disturbance—that is, σ(t, x(t)) = 0.
The predefined-time convergence is introduced for a deterministic system.

Definition 1. Predefined-time convergence for a deterministic system
The system (1) is called predefined-time convergent to the origin, if

(a) It is fixed-time convergent to the origin, i.e., for any initial state x0, there exists a
positive constant Tmax > 0, independent of x0, such that x(t) = 0 ∀t ≥ Tmax.

(b) Tmax is independent of any initial conditions and disturbances and can be arbitrarily
chosen in advance.

(c) Tmax ≥ Tf , where Tf is the true convergence time.

2. The system (1) is affected by a deterministic disturbance and a stochastic noise—that is,
σ(t, x(t)) 6= 0. The predefined-time convergence is introduced for a stochastic system.

Definition 2. Predefined-time convergence for a stochastic system
The system (1) is called predefined-time convergent to the origin in ρ-mean, if

(a) It is fixed-time convergent to the origin in ρ-mean, i.e., for any initial state x0, there
exists a positive constant Tmax > 0, independent of x0, such that E[x(t)]ρ = 0,
∀t ≥ Tmax.

(b) Tmax is independent of any initial conditions and disturbances and can be arbitrarily
chosen in advance.

(c) Tmax ≥ Tf , where Tf is the true convergence time.

2.2. PMSM Predefined-Time Stabilization Problem

Let us consider the following full-scale 4D model of the permanent-magnet syn-
chronous DC motor (PMSM), whose general view and model block diagram are shown
in Figure 1. The model dynamics are governed by the following system of differential
equations [30]:

θ̇ = ω,

ω̇ =
Kt

J
iq − B

J
ω− TL

L
,

i̇d = −Rs

Ld
id + npωoiq +

ud
Ld

,

i̇q = −Rs

Lq
iq − npωoid −

npφvω

Lq
+

uq

Lq
.

(3)

Here, θ(t) is the rotation angle, ω(t) is the rotor speed, id(t) and iq(t) are the d-axis
and q-axis stator currents, ud (the control input) and uq are the d-axis and q-axis stator
voltages, TL (uncoupled perturbation) is the load torque, Ld and Lq are the inductances of
the d and q axes satisfying Ld = Lq = L, Rs is the stator resistance, np is the number of pole
pairs, φv is the rotor flux linkage, KT = (3npφv)/2, J is the moment of inertia, ω0 is the
initial rotor speed, and B is the viscous friction coefficient. The variables θ(t), ω(t), iq(t),
and id(t) are selected as system states to form a four-dimensional state vector.
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Figure 1. (Above) Permanent-magnet synchronous motor. (Below) Model block diagram.

The system in (3) can be transformed [17] into a chain of integrators. To do so, let us
introduce new state variables v1(t) = ω̇ and v2(t) = v̇1. After calculating the derivatives
of v1(t) and v2(t) in view of Equation (3), the following system in the chain of integrators
form is obtained:

θ̇ =ω,

ω̇ =v1,

v̇1 =v2,

v̇2 =v1

[
−n2

pω2
o −

RsB
JLq
− R2

s
LqLd

− RsB
JLd
−

KTnpφv

JLq

]
+ TL

[
−

n2
pω2

0

J
−

R2
S

JLqLd

]
+ ω

[
−

n2
pω0B

J
− R2

s
JLqLd

−
KT Rsnpφv

JLqLd

]

+ v2

[
−RS

Lq
− RS

Ld
− B

J

]
+ uq

KT RS
JLqLd

− ud
KTnpω0

JLd
.

(4)

The PMSM predefined-time stabilization problem is to design a continuous control law
that drives all the states of the system (4), including θ and ω, to the origin for a predefined
time, independently of state initial conditions, deterministic disturbances, and stochastic
noises. The control law is consequently designed and verified by simulations for a full-scale
4D PMSM model in the following four cases.
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1. The system (4) is not affected by any disturbance, there is no noise entering the system,
and all system states are measurable. A predefined-time convergent control law must
be employed to drive all the states of the system (4) to the origin.

2. The system (4) is not affected by any disturbance or noise; however, only the state
variable θ can be measured. In this case, a predefined-time convergent observer must
be employed to reconstruct the other three state variables.

3. The system (4) is affected by a deterministic disturbance, and only the state variable θ
can be measured. In this case, a predefined-time convergent compensator must be
employed to estimate the disturbance.

4. The system (4) is affected by a deterministic disturbance and a stochastic noise,
and only the state variable θ can be measured. In this case, a predefined-time conver-
gent control law must be specialized for stochastic systems.

The corresponding algorithms are designed in the following sections.

3. PMSM Predefined-Time Stabilization for Completely Measured States
3.1. Control Design

In this section, a predefined time-convergent control law is designed for the system (4)
with completely measured states without disturbances and noise. The full-scale 4D PMSM
model takes the form

θ̇ = ω,

ω̇ = v1,

v̇1 = v2,

v̇2 = K1v1 + K2ω + K3v2 − K4ud,

(5)

where

K1 = −n2
pω2

o −
RsB
JLq
−

R2
S

LqLd
− RsB

JLd
−

KTnpφv

JLq
,

K2 = −
n2

pωoB
J
− R2

s
JLqLd

−
KT Rsnpφv

JLqLd
,

K3 = −Rs

Lq
− Rs

Ld
− B

J
, (6)

K4 =
KTnpωo

JLd

The following control law is proposed:

ud(t) =


1

K4

(
z3 + K1v1 + K2ω + K3v2 − ∂v2d

∂θ (z2 − ψ1)

− ∂v2d
∂z2

(z3 − ψ2 − θ)− ∂v2d
∂z3

(z4 − z2 − ψ3)− ∂v2d
∂t + ψ4

)
, 0 < t ≤ t f ,

0, t > t f ,

(7)

The control input ud(t) can be represented as ud(t) = ud1(t) + ud2(t), where

ud1(t) =
1

K4
(K1v1 + K2ω + K3v2), (8)

which opposes the known terms of the last equation in (5), and

ud2(t) =
1

K4

(
z3 −

∂v2d
∂θ

(z2 − ψ1)−
∂v2d
∂z2

(z3 − ψ2 − θ)− ∂v2d
∂z3

(z4 − z2 − ψ3)−
∂v2d
∂t

+ ψ4

)
, (9)

which provides the predefined-time convergence of the states of the system (5) to the origin,
as stated in the following theorem.
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Theorem 1. The control law (7) drives all the states of the system (5) to the origin within a
predefined time t f , and they remain there for any t ≥ t f .

Proof. The design of ud2(t) follows an approach similar to that in [27]. First, consider that
the control law

u(t) = −η1

(
e|θ| − 1

)
e|θ|
(

t f − t
) sign(θ), (10)

η1 > 1, makes the system
θ̇ = u(t)

convergent to the origin for a predefined time t f , as shown in [29]. Second, using the
backstepping technique, it can be shown that all the states of the system (5) converge to the
origin within the predefined time t f . Defining the variables

ψ1 = −η1

(
e|θ| − 1

)
e|θ|
(

t f − t
) sign(θ),

ψ2 = −η2

(
e|z2| − 1

)
e|z2|

(
t f − t

) sign(z2),

ψ3 = −η3

(
e|z3| − 1

)
e|z3|

(
t f − t

) sign(z3),

ψ4 = −η4

(
e|z4| − 1

)
e|z4|

(
t f − t

) sign(z4),

z2 = ω−ωd, where ωd(θ, t) = −ψ1,

z3 = v1 − v1d, where v1d(θ, z2, t) = −θ − ∂ψ1

∂t
− (z2 − ψ1)

∂ψ1

∂x1
− ψ2,

z4 = v2 − v2d, where v2d(θ, z2, z3, t) = −z2 + ω
∂v1d
∂θ

+
∂v1d
∂z2

(z3 − ψ2 − θ) +
∂v1d
∂t
− ψ3,

(11)

and taking the time derivatives of z2, z3, and z4, we obtain:

ż2 = ω̇− ω̇d = v1 +
∂ωd
∂θ

θ̇ +
∂ωd
∂t

,

ż3 = v̇1 − v̇1d = v2 −
(

∂v1d
∂θ

θ̇ +
∂v1d
∂z2

ż2 +
∂v1d
∂t

)
,

ż4 = v̇2 − v̇2d = ud −
(

∂v2d
∂θ

θ̇ +
∂v2d
∂z2

ż2 +
∂v2d
∂z3

ż3 +
∂v2d
∂t

)
.

To prove the theorem, we need to find a Lyapunov function V(t) that converges to
zero for the predefined time t f . To do so, the recursive Lyapunov functions are defined
as follows:

V1(x1) = θ2(t),

V2(x1, z2) = V1 + z2
2,

V3(x1, z2, z3) = V2 + z2
3,

V4(x1, z2, z3, z4) = V3 + z2
4, which yields

V̇4 = 2θθ̇ + 2z2ż2 + 2z3ż3 + 2z4ż4.
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Substituting θ̇, ż2, ż3, and ż4 into the last equation, we obtain

V̇4 = −2θψ1 − 2z2ψ2 − 2z3ψ3 + 2z3z4 + 2z4

[
ud −

(
∂v2d
∂θ

θ̇ +
∂v2d
∂z2

ż2 +
∂v2d
∂z3

ż3 +
∂v1d
∂t

)]
.

Taking into account the expression for ud in (7) yields

V̇4 =− 2θψ1 − 2z2ψ2 − 2z3ψ3 − 2z4ψ4 ≤ −
2η1|θ|

(
e|θ| − 1

)
e|θ|
(

t f − t
) −

2η2|z2|
(

e|z2| − 1
)

e|z2|
(

t f − t
) −

2η3|z3|
(

e|z3| − 1
)

e|z3|
(

t f − t
) −

2η4|z4|
(

e|z4| − 1
)

e|z4|
(

t f − t
) .

(12)

Since V4 = θ2 + z2
2 + z2

3 + z2
4, then

V4 ≤ 4(max{|θ|, |z2|, |z3|, |z4|})2 and

√
V4

4
≤ max{|θ|, |z2|, |z3|, |z4|}.

Using the last inequality, the expression (12) for V̇4, and the fact that the function
(e|z|−1)

e|z|
is non-decreasing in z implies that

V̇4 ≤ −
2η
√

V4
4

(
e
√

V4
4 − 1

)
e
√

v4
4
(

t f − t
) , (13)

where η = min{η1, η2, η3, η4}. Making the change of variables ζ =
√

V4
4 yields ζ̇ = V̇4

8ζ .
Substituting this result into V̇, we obtain

ζ̇ ≤ −
η′
(
eζ − 1

)
eζ
(

t f − t
) ,

where η′ = η
4 .

Since the last inequality presents a particular case of the differential inequality

ζ̇ ≤ −
η′
(

e|ζ| − 1
)

e|ζ|
(

t f − t
) sign(ζ) (14)

for positive ζ, which is dominated from the above by the differential equation following (10),
its solution ζ(t) converges to zero for the predefined time t f and remains there afterwards,
as shown in [29]. Therefore, the Lyapunov function V4 converges to zero for the predefined
time t f and remains there afterwards as well. This finally implies that all the states of the
system (5) converge to zero for the predefined time t f and remain there for any t ≥ t f .

3.2. PMSM Simulations

To verify the performance of the proposed control law (7), numerical simulations were
run for the system (5) in MatLab 2020a, using the PMSM parameter values given in Table 1.
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Table 1. PMSM parameter values.

Variable Value Unit

np 4
Rs 0.01 Ω
Lq 0.1 H
Ld 0.1 H
B 7.403× 10−5 N ·m · s/rad
J 1.74× 104 kg ·m2

φv 0.1167 wb
KT 0.7002
ωo 1 rpm
t f 10 s
η [20, 20, 20, 20]
x0 [−0.5, −3, −3, −5]

Figure 2 shows that the control (7) drives all the states of the full-scale 4D PMSM
system to the origin within the predefined time of 20 s. The zoom in Figure 2 demonstrates
that the obtained predefined-time convergence satisfies the Levant’s test [31], with the
precision up to 10−12, provided that the discretization step is set to 10−3 and the system
dimension n = 4. Moreover, it can be observed from Figure 3 that the magnitude of the
control input remains within values acceptable in practice. Note, however, that the control
input magnitudes presented in the given figures correspond to specific initial conditions
and final times and evidently depend on both of these parameters. The same observation
is valid for the simulations in subsequent sections.

0 2 4 6 8 10 12 14 16 18 20

Time(sec)

-15

-10

-5

0

5

10

M
a

g
n

it
u

d
e

6 8 10 12
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-0.5

0

0.5

1
10

-12

Figure 2. Convergence of the states of the system (5) to the origin.
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Figure 3. Time history of the control input ud2.

4. PMSM Predefined-Time Stabilization for Incompletely Measured States
4.1. Observer Design

In the preceding section, all the states of the full-scale 4D PMSM system are assumed
available; that is, there are sensors to measure the shaft angle, the angular velocity, and the
currents. However, in practice, this is not always possible. Therefore, we need to recon-
struct unmeasurable states. In this case, we have to use a predefined-time convergent
observer to estimate unmeasurable states and then design a predefined-time convergent
controller based on the obtained estimates. The corresponding problem is represented by
the following system:

θ̇ = ω,

ω̇ = v1,

v̇1 = v2,

v̇2 = v1

[
−n2

pω2
0 −

RSB
JLq
− R2

s
LqLd

− RSB
JLd
−

KTnpφv

JLq

]
+ ω

[
−

n2
pω0B

J
−

R2
S

JLqLd
−

KT Rsnpφv

JLqLd

]

+ v2

[
−RS

Lq
− RS

Ld
− B

J

]
− ud

KTnpω0

JLd
,

y = θ(t),

(15)

where y(t) is the only measured system output. The states ω, v1, v2 should be estimated by
using a predefined-time observer to be able to proceed to the design of a predefined-time
controller. For this purpose, the predefined-time convergent observer proposed in [32]
is employed

˙̂θ = ω̂− γk1 sign(θ̂ − y)
(
|θ̂ − y|α1 + |θ̂ − y|β1

)
,

˙̂ω = v̂1 − γ2k2 sign(θ̂ − y)
(
|θ̂ − y|α2 + |θ̂ − y|β2

)
,

˙̂v1 = v̂2 − γ3k3 sign(θ̂ − y)
(
|θ̂ − y|α3 + |θ̂ − y|β3

)
,

˙̂v2 = −γ4k4 sign(θ̂ − y)
(
|θ̂ − y|α4 + |θ̂ − y|β4

)
,

(16)
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where θ̂, ω̂, v̂1, and v̂2 are the estimates for the states θ, ω, v1, and v2, respectively. The val-
ues of α, β, and γ are assigned as

αi = iα− (i− 1), α ∈ [1− ε1, 1], for a sufficiently small ε1 > 0, i = 1, . . . , 4,

βi = iβ− (i− 1), β ∈ [1, 1 + ε2], for a sufficiently small ε2 > 0 i = 1, . . . , 4,

γ ≥ 1,

and the gains k1, k2, k3, k4 are selected such that the matrix

K =


−k1 1 0 0
−k2 0 1 0
−k3 0 0 1
−k4 0 0 0

. (17)

is Hurwitz.
It can be verified that the assumptions of Theorem 3 in [32] hold. Therefore, the con-

vergence time of the observer (16) is bounded by the expression:

T ≤ 4
γ

(
1

1− α
+

1
β− 1

)
. (18)

In this case, the proposed control law for the system (15) has a structure identical to (7),
where the state variables are replaced by their estimates produced by the observer (16):

ud(t) =


1

K4

(
ẑ3 + K1v̂1 + K2ω̂ + K3v̂2 − ∂v̂2d

∂θ̂

(
ẑ2 − ψ̂1

)
− ∂v̂2d

∂ẑ2

(
ẑ3 − ψ̂2 − θ̂

)
− ∂v̂2d

∂ẑ3

(
ẑ4 − ẑ2 − ψ̂3

)
− ∂ẑ2d

∂t + ψ̂4

)
, 0 < t ≤ t f ,

0, t > t f .

(19)

Simulation results corresponding to this control input are presented in the next subsection.

4.2. PMSM Simulations

To verify the performance of the proposed controller, numerical simulations are run
for the system (15) and (16) in MatLab 2020a, using the values given in Table 1 and α = 0.9,
β = 1.1, γ = 10, and K = [4, 6, 4, 1]. According to (18) and the selected values of α and
β, the predefined convergence time of the observer is calculated equal to 4 s. Note that
the predefined convergence time for the observer is equal to 4 s, whereas the predefined
convergence times for the corresponding controllers in this and subsequent sections are set
to 10 or 20 s, so the controllers can work sufficiently long after the observer converges.

Figure 4 shows that the control (7) drives all the states of the full-scale 4D PMSM
system to the origin within the predefined time of 20 s. The upper zoom in Figure 4
verifies that the estimates produced by the observer (16) converge to the real state values
for less than 0.5 s. The second zoom in Figure 4 demonstrates that the obtained predefined-
time convergence satisfies the Levant’s test [31], with the precision up to 10−12 virtually,
provided that the discretization step is set to 10−3 and the system dimension n = 4.
Additionally, it can be observed from Figure 5 that the magnitude of the control input
remains within values acceptable in practice.
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Figure 4. Convergence of the states of the system (15) and the estimates produced by the observer (16)
to the origin.
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Figure 5. Time history of the control input ud2 based on the estimates produced by the observer (16).

5. PMSM Predefined-Time Stabilization for Incompletely Measured States with
Deterministic Disturbances
5.1. Control Design

In the preceding sections, the full-scale 4D PMSM system was considered without
deterministic disturbances or stochastic noises. Nonetheless, deterministic disturbances
are common in practice and can appear, for instance, due to torque volatility or stator
voltage supply failure. Let us consider the full-scale 4D PMSM system dynamics subject to
deterministic disturbances

θ̇ = ω,

ω̇ = v1,

v̇1 = v2,

v̇2 = K1v1 + K2ω + K3v2 − K4ud + K5uq,

y = θ

(20)
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where the coefficients K1, K2, K3, K4 are defined in (6), the term ξ(t) = K5uq is a disturbance
satisfying the Lipschitz condition with constant L, and K5 = KT Rs

JLd Lq
. The objective is to

design a continuous control law that drives all the states of the system (20) to the origin
for a predefined time, independently of state initial conditions, and maintains it there
afterwards in spite of deterministic disturbances.

The control input solving this problem consists of two parts. The first nominal part,
unom, drives the system (20) to the origin for a predefined time t ≤ t f . This part is active
only until t = t f . The second compensator part, v(t), compensates for deterministic
disturbances, driving the system to the nominal track, and maintains the system (20) at
the origin for t ≥ t f . The corresponding result is presented in the next theorem for the
full-scale 4D PMSM system with completely measured states. If the states of the PMSM
system are not completely measurable, the observer (16) and the control input based on the
estimates produced by the observer are employed.

The following control law is proposed:

u(t) =

{
ud(t) + v(t) 0,≤ t < t f ,
v(t), t f ≤ t,

(21)

where the nominal control law ud is defined in (7) and

v(t) = −λ1|s(t)|
1
2 sign(s(t))− λ2|s(t)|p sign(s(t))− αs

∫ t

0
sign(s(t))ds

−η

(
e|s(t)| − 1

)
e|s(t)|

(
t f − t

) sign(s(t)).
(22)

Here, s(t) = v2 − r(t), ṙ(t) = ud2(t)− v(t). Moreover, λ1, αs > 0, λ2 ≥ 0, η > 1 and
p > 1.

Theorem 2. The control law (21) and (22) drives all the states of the system (20) to the origin for a
predefined time and maintains them there for t ≥ t f in the presence of a deterministic disturbance
that satisfies the Lipschitz condition with constant L, if the following conditions hold: η > 1,
αs > L, λ1 >

√
2α, λ2 ≥ 0, and p > 1.

Proof. According to Theorem 2 in [29], the given conditions ensure the predefined-time
convergence of the variable s(t) to zero, which results in s(t) = ṡ(t) = 0 afterwards. Since
ṡ(t) = v̇2(t)− ṙ(t), then 0 = v̇2(t)− ṙ(t) = ud2(t) + ξ(t)− ud2(t) + v(t), which leads to
v(t) = −ξ(t), so that v(t) compensates for the disturbance ξ(t). After compensating for
the disturbance ξ(t), the nominal control law ud provides the predefined-time convergence
of all the states of the system (20) to the origin, according to Theorem 1 of Section 3. Since
the compensation v(t) = −ξ(t) also holds for t ≥ t f , all the states of the system (20) remain
at the origin after their convergence as well.

5.2. PMSM Simulations

To verify the performance of the proposed control law (21) and (22) in the presence
of deterministic disturbances, numerical simulations were run for the system (20) in
MatLab 2020a, using the same first nine PMSM parameter values as those in Table 1.
The deterministic disturbance was selected as uq = 0.1t + 0.001 cos(10t), and the value of
the coefficient K5 was calculated according to the PMSM parameter values as K5 = 4024.14.
Accordingly, the Lipschitz constant was set to L = 443. The newly assigned PMSM
parameter values are listed in Table 2.
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Table 2. PMSM parameter values.

Variable Value Unit

t f 20 s
η [10, 10, 10, 10]
K [4, 6, 4, 1]
x0 [−0.5, −10, −40, −60]
α 0.9
β 1.1
γ 10
λ1 50
λ2 1
αs 445

It is assumed that only the variable θ can be measured. Therefore, the observer (16)
is used to reconstruct the unmeasured state variables, and the applied control input (21)
and (22) is based on the estimates produced by the observer.

Figure 6 shows that the control input (21) and (22), based on the estimates produced
by the observer (16), drives all the states of the full-scale 4D PMSM system to the origin
within the predefined time of 20 s, with the precision 10−4, even for high disturbance
magnitudes of order 103. It can be observed from Figure 7 that the magnitude of the nominal
control input ud2 is higher than that without disturbances but still remains acceptable.
Note that the obtained results provide better convergence precision and a lesser control
magnitude than those presented in [17] for close values of the PMSM parameters and
deterministic disturbances.

Finally, Figure 8 displays the compensator control input (22) v(t), based on the esti-
mates produced by the observer (16), against the disturbance ξ(t) = K5uq = 4024.14(0.1t +
0.001 cos(10t)). It can be observed that the control input v(t) reliably compensates for the
disturbance soon after the initial time moment.
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Figure 6. Convergence of the states of the system (20) and the estimates produced by the observer (16)
to the origin in the presence of deterministic disturbances.
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Figure 7. Time history of the nominal control input ud2 based on the estimates produced by the
observer (16).

0 5 10 15 20 25 30 35 40

Time(sec)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

M
a

g
n

it
u

d
e

104

Figure 8. Time history of the compensator control input (22) v(t), based on the estimates produced
by the observer (16), against the disturbance ξ(t) = K5uq = 4024.14(0.1t + 0.001 cos(10t)).

6. PMSM Predefined-Time Stabilization with Incompletely Measured States with
Deterministic Disturbances and Stochastic Noises
6.1. Control Design

In this section, the full-scale 4D PMSM system is considered with both determinis-
tic disturbances and stochastic noises. As is known, stochastic noises are also common
in practice and can appear, for instance, due to electromagnetic static or parasitic im-
pulses. The full-scale 4D PMSM system dynamics subject to deterministic disturbances
and stochastic noises are given by the equations

θ̇ = ω,

ω̇ = v1,

v̇1 = v2,

v̇2 = K1v1 + K2ω + K3v2 − K4ud + K5uq + σ(t, v2(t))dW(t)

(23)
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where the coefficients K1, K2, K3, K4 are defined in (6), the term ξ(t) = K5uq is a disturbance
satisfying the Lipschitz condition with constant L, and W(t) is a Wiener process, whose
weak mean-square derivative is a Gaussian white noise. The objective is to design a
continuous control law that drives all the states of the system (23) to the origin in ρ-mean
for a predefined time, independently of state initial conditions, and maintains it there
afterwards in spite of deterministic disturbances and stochastic noises. The corresponding
result is presented in the next theorem for the full-scale 4D PMSM system with completely
measured states. As in Section 5, if the states of the PMSM system are not completely
measurable, the observer (16) and the control input based on the estimates produced by
the observer are employed.

Theorem 3. The control law (21) and (22) drives all the states of the system (23) to the origin in
ρ-mean for a predefined time and maintains them there for t ≥ t f in the presence of a deterministic
disturbance that satisfies the Lipschitz condition with constant L and a stochastic white noise with
diffusion σ(t) = |v2(t)|r, if the following conditions hold: ρ > 1, η > 1, αs > L, λ1 >

√
2α,

λ2 ≥ 0, p > 1, 2λ1 > ρ− 1 > 0, 2λ2 > ρ− 1 > 0, and 3
2 ≤ 2r ≤ (1 + p).

Proof. According to Theorem 3 in [29], the given conditions ensure the predefined-time
convergence of the variable s(t) to zero in ρ-mean, which results in s(t) = ṡ(t) = 0 in
ρ-mean afterwards. Since ṡ(t) = v̇2(t) − ṙ(t), then 0 = v̇2(t) − ṙ(t) = ud2(t) + ξ(t) −
ud2(t) + v(t), which leads to v(t) = −ξ(t), so that v(t) compensates for the disturbance
ξ(t) in ρ-mean. After compensating for the disturbance ξ(t), the nominal control law ud
provides the predefined-time convergence of all the states of the system (20) to the origin
in ρ-mean, based on Theorem 1 of Section 3. Since the compensation v(t) = −ξ(t) also
holds for t ≥ t f , all the states of the system (20) remain in the origin after their convergence
as well.

6.2. PMSM Simulations

To verify the performance of the proposed control law (21) and (22) in the presence of
deterministic disturbances and stochastic noises, numerical simulations were run for the
system (20) in MatLab 2020a, using the values in Section 5.1. The deterministic disturbance
was selected as uq = 0.1t+ 0.001 cos(10t), and the value of the coefficient K5 was calculated
according to the PMSM technical parameters as K5 = 4024.14. Accordingly, the Lipschitz
constant was set to L = 443. The stochastic noise parameter was given by r = 0.75.
The stochastic convergence was regarded in the mean-square sense, ρ = 2, to satisfy the
conditions of Theorem 3.

It was assumed that only the variable θ can be measured. Therefore, the observer (16)
was used to reconstruct the unmeasured state variables, and the applied control input (21)
and (22) was based on the estimates produced by the observer.

Figure 9 shows that the control input (21) and (22), based on the estimates produced
by the observer (16), drives all the states of the full-scale 4D PMSM system to the origin
within the predefined time of 20 s, again with the precision 10−4, even for high disturbance
magnitudes of order 103. It can be observed from Figure 10 that the magnitude of the
nominal control input ud2 still remains acceptable. In this simulation, the control input (21)
and (22) is activated after T = 4 s, when the observer (16) converges according to (18),
to avoid unreasonably high control magnitudes. Note that the obtained results still provide
better convergence precision and a lesser control magnitude than those presented in [17] for
close values of the PMSM parameters and deterministic disturbances, even in the presence
of additional stochastic noise.
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Figure 9. Convergence of the states of the system (23) and the estimates produced by observer (16) to
the origin in the presence of deterministic disturbances and stochastic noises.
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Figure 10. Time history of the nominal control input ud2 based on the estimates produced by the
observer (16) for the stochastic system (23).

Finally, Figure 11 displays the compensator control input (22) v(t), based on the esti-
mates produced by the observer (16), against the disturbance ξ(t) = K5uq = 4024.14(0.1t +
0.001 cos(10t)) in the presence of a white noise with diffusion v0.75

2 . It can be observed that
the control input v(t) reliably compensates for the disturbance soon after the initial time
moment for a stochastic system as well.
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Figure 11. Time history of the compensator control input (22) v(t), based on the estimates produced
by the observer (16), against the disturbance ξ(t) = K5uq = 4024.14(0.1t + 0.001 cos(10t)), in the
presence of a white noise with diffusion v0.75

2 .

7. Conclusions

This paper has presented a predefined-time convergent robust control algorithm that
allows the control designer to set the convergence time in advance, independently of
initial conditions, deterministic disturbances, and stochastic noises. In contrast to most
existing finite- and fixed-time control techniques, a predefined-time convergent control
law enables one to explicitly assign the desired convergence time equal to the true one in
disturbance-free cases and make it closer to the true one in the presence of deterministic
disturbances and/or stochastic noises. The simulation results obtained for a full-scale
4D PMSM system show that the designed control law is capable of driving the PMSM
system states to an equilibrium point for a pre-assigned time and operates with control
magnitudes suitable for practical applications such as electrical vehicles, trains, industrial
robots, unmanned autonomous vehicles, and others. Our ongoing research focuses on
further improving the performance of predefined-time convergent control algorithms and
designing predefined-time convergent adaptive control laws for multi-dimensional systems
with uncertain parameters.
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