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Abstract: This paper considers the problem of stabilizing switched time-delay linear systems through
a state-dependent switching strategy. In contrast to the existing works, we adopt a less restrictive
assumption of the system, and show that this assumption is sufficient to guarantee asymptotic
stability of the considered system under the min-projection switching strategy. Our results also imply
that the min-projection switching strategy, originally designed for delay-free switched systems, is
robust with respect to small state delays. An optimization problem is formulated to estimate the
upper bound of the tolerable time delay. Numerical examples are presented to show that our method
is applicable to a larger class of switched systems and leads to a greater delay bound.

Keywords: asymptotic stability; delay bound; sliding motion; state-dependent switching; switched
system; time-varying delay

1. Introduction

The study of switched systems has attracted considerable attention in recent decades
due to its engineering background in power systems, networked control systems and
mechanical systems, etc. One of the basic problems of switched systems is the design of a
switching strategy that guarantees asymptotic stability of the considered system [1]. Many
efficient approaches have been proposed in the literature to handle this problem, such as
the min-projection approach [2,3] and the dwell time approach [4,5].

On the other hand, time delay often occurs in practical systems. For example, in net-
worked control systems, the control signals transmitted through communication networks
usually suffer from non-negligible time delays, which leads to degradation of the stability
and performance of the control system [6]. It is thus necessary to investigate the effect of
time delay on the stability of switched systems. In [7], a delay-dependent approach was
proposed to solve the stability and weighted L2-gain problem for switched systems with
time varying delays under switching signals with an average dwell time. This method was
further extended in [8] to switched linear systems with interval time-varying delays and
unstable subsystems. The stability problem of feedback switched linear systems with both
state and switching delays is considered in [9], where, by exploiting the merging technique
of switching signals, it is shown that switched linear systems with average dwell time
switching signals are robust with respect to both state delays and switching delays. For
more results of stability analyses of switched delay systems under arbitrary switching or
under switching signals with dwell time constraints, readers may refer to [10,11] and the
references therein.

In particular, the stabilization of switched systems with small constant delays via
a state-dependent switching strategy was considered in [12]. On the premises of the
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existence of a stable convex combination, the authors partitioned the state space into
several regions and assigned a corresponding subsystem to each region, such that the
switched system without time delay is asymptotically stable. They further established
that stability is preserved in the presence of a sufficiently small constant delay. This result
was improved in [13] by using a less conservative Lyapunov functional and extending
it to switched systems with time-varying delays. More recently, in [14], a new stability
criterion was derived by introducing slack variables into the partition of state space and by
introducing a novel convex combination technique to deal with the delay terms. However,
in all the aforementioned works, the results are restricted to switched linear systems with a
stable convex combination, and, to reduce the complexity, the parameters in the convex
combination are fixed in the analysis. In view of this observation, we are motivated to
explore results that are applicable to switched systems that do not satisfy a stable convex
combination assumption and to establish less conservative estimates of the delay bound.

In this paper, we revisit the problem of stabilizing switched time-delay linear systems
by means of a state-dependent switching strategy. The main contributions of this paper
can be summarized as follows.

1. Differently from the existing works, the commonly adopted convex stable combi-
nation assumption is relaxed in this paper. It is shown that the relaxed assumption
guarantees the stability of the switched systems with a small time delay under the
min-projection switching strategy. Hence, the method we are to develop can be
applied to a larger class of switched systems;

2. In contrast to existing works, some of the main sources of conservatism in the stability
analysis are overcome by introducing slack variables into the relaxed assumption
and using a reciprocally convex inequality (Lemma 6) to handle the terms associated
with the delay arising in the Lyapunov analysis. Therefore, our method leads to a less
conservative delay bound, as will be shown by the numerical examples in Section 4;

3. The stability issues associated with possible sliding motion are carefully addressed in
this paper, whereas these issues are usually circumvented in the existing literature.
Moreover, by utilizing the memory of switching signals, a modified min-projection
switching strategy is proposed to avoid the occurrence of sliding motion;

4. Our results reveal that the min-projection switching strategy, originally designed for
switched systems without time delay in [15] and [3], is robust with respect to small
state delays.

Partial results from this paper will be presented at a workshop [16].
Organization. The remainder of this paper is organized as follows. Section 2 contains

the problem formulation and some preliminary results needed for the solution of the
problem. Section 3 presents the main results of the paper. Section 4 provides numerical
examples. Section 5 concludes the paper.

Notation. For two integers i and j with i ≤ j, I[i, j] = {i, i + 1, · · · , j}. For a set X ,
Int(X ) denotes its interior and ∂X denotes its boundary. For a symmetric matrix P, P > 0
(P ≥ 0) means that P is positive definite (positive semi-definite). The Hermitian operator
on a square matrix P is defined as He(P) = P + PT. For a piecewise continuous function
g(x) : Rn → R, the directional derivative of g(x) along v is defined as

Dg(x; v) = limδ→0+
g(x + δv)− g(x)

δ
.

2. Problem Statement and Preliminaries
2.1. Problem Statement

Consider a switched time-delay system:

ẋ(t) = Aσ(x)x(t) + Bσ(x)x(t− d(t)),

x(t) = ϕ(θ), θ ∈ [−h, 0],
(1)
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where x(t) ∈ Rn denotes the state, σ(x) : Rn → I[1, N] is the state dependent switching
signal, N is the number of subsystems in the switched system, Ai ∈ Rn×n and Bi ∈ Rn×n,
i ∈ I[1, N], are constant matrices, ϕ(θ) is a continuously differentiable initial function, h is
a positive number and d(t) is the time-varying delay satisfying the following assumption.

Assumption 1. d(t) is differentiable and satisfies 0 ≤ d(t) ≤ h, ḋ(t) ≤ µ for some positive
number µ.

To design a state-dependent switching strategy, in [12–14], the switched system (1)
is assumed to have a Hurwitz stable convex combination of Ai + Bi, i ∈ I[1, N], i.e.,
there exists α = [α1 α2 · · · αN ] with αi ≥ 0 and ∑N

i=1 αi = 1, such that ∑N
i=1 αi(Ai + Bi)

is Hurwitz stable. Differently from the aforementioned works, we adopt the following
assumption that can be satisfied by a larger class of switched systems.

Assumption 2. For the switched system (1), there exist matrices Pj > 0, Q > 0, and scalars
αij ≥ 0, β jk ≥ 0, i ∈ I[1, N], j, k ∈ I[1, J], such that ∑N

i=1 αij = 1, j ∈ I[1, J] and

He
(
∑N

i=1αijPj(Ai + Bi)
)
≤∑J

k=1β jk(Pj−Pk)−Q, j ∈ I[1, J]. (2)

Clearly, when J = 1, Assumption 2 is equivalent to the stable convex combination
assumption made in [12–14]. If we take N = 2, J = 2 and α11 = 1, α22 = 1, then (2) reduces
to the following coupled Lyapunov inequalities:

P1(A1 + B1) + (A1 + B1)
TP1 ≤ β12(P1 − P2)−Q, (3)

P2(A2 + B2) + (A2 + B2)
TP2 ≤ β21(P2 − P1)−Q. (4)

As pointed out in [17], the coupled Lyapunov inequalities (3) and (4) can be satis-
fied even if there is no stable convex combination over Ai + Bi, i ∈ I[1, 2]. Therefore,
Assumption 2 is more general than the stable convex combination assumption.

In [14], some slack variables were introduced in the stable convex combination as-
sumption to improve the estimate of the delay bound. Following their ideas, we add slack
matrices Wij into Assumption 2 and rewrite it as follows.

Assumption 3. For the switched system (1), there exist matrices Pj > 0, Q > 0, Wij = WT
ij, and

scalars αij > 0, β jk > 0, j, k ∈ I[1, J], i ∈ I[1, N], such that ∑N
i=1 αij = 1, j ∈ I[1, J], and

He
(

∑N
i=1 αij

(
Pj(Ai + Bi) +

1
2

Wij

))
≤∑J

k=1 β jk(Pj − Pk)−Q, j ∈ I[1, J], (5)

∑N
i=1 αijWij = 0, j ∈ I[1, J]. (6)

Note that (5) is equivalent to (2) since 1
2 ∑N

i=1 αijWij = 0. That is, if a switched system
satisfies Assumption 3, then it also satisfies Assumption 2, and vice versa. However,
Assumption 3 provides us with the freedom of designing Wij to achieve a larger estimate
of delay bound in the optimization problem considered later. Therefore, in what follows,
we will adopt Assumption 3 in the stability analysis of the switched system. When
Assumption 3 is adopted, Wij in Assumption 3 will represent additional design variables
constrained by (6).

In this paper, we investigate the problem of stabilizing switched time-delay systems
that take the form of (1) and satisfy Assumptions 1 and 3 through a state-dependent
switching strategy. In particular, we are interested in achieving less conservative estimates
of the delay bound.



Actuators 2021, 10, 261 4 of 15

2.2. The Min-Projection Switching Strategy and Its Properties

For the set of positive definite matrices Pj, j ∈ I[1, J], given in Assumption 3, we
construct the min composite quadratic function as:

Vmin(x) = minj∈I[1,J] Vj(x) = minj∈I[1,J] xTPjx.

Then, we recall from [3,15] the min-projection switching strategy that has been de-
signed for delay-free switched systems, i.e.,

σ(x) = arg mini∈I[1,N] DVmin(x, (Ai + Bi)x). (7)

It has been established in [15] that, if Assumption 3 is satisfied, then the switched sys-
tem (1) with d(t) = 0 is exponentially stable at the origin under the switching strategy (7).
In this paper, we are going to show that the switching strategy (7) is robust with respect
to time delays, i.e., the switched system (1) under (7) is also asymptotically stable at the
origin in the presence of a sufficiently small delay d(t) if Assumption 3 is satisfied.

We would like to note that the min-projection switching strategy (7) relies only on the
current state x(t), and thus can be easily implemented even if the exact knowledge of the
time delay is unknown.

To establish the property of the min-projection switching strategy (7), we first need
to state some properties of the directional derivative of Vmin(x). Let Φj = {x : Vj(x) <
Vk(x), j 6= k} and J (x) = {j ∈ I[1, J] : Vmin(x) = Vj(x)}. Clearly, for any x ∈ Φj,
J (x) = {j}, and for any x ∈ ∂Φj, J (x) is multi-valued. It has been established in [15,18]
that the directional directive of Vmin(x) has the following properties.

Lemma 1 ([15]). For a given vector v ∈ Rn, the directional derivative of Vmin(x) along v satisfies

DVmin(x; v) = min
{

DVj(x; v), j ∈ J (x)
}

.

Lemma 2 ([18]). For a point x ∈ ∂Φj, j ∈ I[1, J], let T (x) be a subset of J (x) with more than
one element. Suppose that ζ ∈ Rn is tangential to

⋂
j∈T (x) ∂Φj; then, we have

DVmin(x; ζ) = DVj(x; ζ), j ∈ T (x).

Now, we are ready to establish an important property of the min-projection switching
strategy (7).

Lemma 3. Suppose that Assumption 3 is satisfied; then, for any x ∈ Rn×n and i ∈ σ(x), we can
find a j ∈ J (x) such that DVj(x, (Ai + Bi)x) ≤ −xT(Q + Wij)x.

Proof. Clearly, from the definition of Φj and J (x), we have x ∈ Φ̄j if, and only if, j ∈ J (x),
where Φ̄j denotes the closure of Φj. Moreover, note that xT(Pj − Pk)x ≤ 0 for any x ∈ Φ̄j,
and β jk ≥ 0, j, k ∈ I[1, J]. Hence, it follows from (5) that

xT ∑N
i=1 αijHe

(
Pj(Ai + Bi) +

1
2

Wij

)
x ≤ −xTQx, j ∈ J (x).

Since αij ≥ 0, i ∈ I[1, N], we have

mini∈I[1,N] xTHe(Pj(Ai + Bi))x ≤ −xT(Q + Wij)x, j ∈ J (x). (8)

In view of Lemma 1 and (8), for any x ∈ Rn, we can always find a j ∈ J (x) such that

mini∈I[1,N] DVmin(x; (Ai + Bi)x) = mini∈I[1,N] DVj(x; (Ai + Bi)x) ≤ −xT(Q + Wij)x.
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Recall the min-projection switching strategy from (7). Clearly, for any x ∈ Rn and
i ∈ σ(x), we can find a j ∈ J (x) such that DVj(x, (Ai + Bi)x) ≤ −xT(Q + Wij)x. This
completes the proof.

2.3. Some Technical Lemmas

Lemma 4. Consider system (1) and suppose that Assumption 3 holds true, with Wij being variables
constrained by (6). Then, there exist a positive number h̄ > 0, matrices R ≥ 0, U ≥ 0, Z > 0 and
X of appropriate dimensions, and scalars ηjk ≥ 0, j, k ∈ I[1, J], such that the matrix inequalities

Ξij =


Ξ11

ij PjBi +
1
h (Z− XT) 1

h XT AT
i Z

? Ξ22
ij

1
h (Z− XT) BT

i Z
? ? −U − 1

h Z 0
? ? ? − 1

h Z

<0, (9)

[
Z X
? Z

]
>0, (10)

are feasible for any h ∈ [0, h̄], where

Ξ11
ij = −Q− PjBi − BT

i Pj −Wij + R + U − 1
h

Z−∑J
k=1 ηjk(Pj − Pk), (11)

Ξ22
ij = −(1− µ)R− 1

h
(2Z− X− XT). (12)

Proof. Since −Q < 0, there exists a sufficiently small hij1 > 0, such that

−Q + hij1PjBiZ−1(PjBi)
T < 0.

By Schur complements, we have[
−Q PjBi
? − 1

hij1
Z

]
< 0.

Since congruent transformation preserves the definiteness of a negative definite matrix,
we have

Θij =

I −I 0
0 I −I
0 0 I


−Q PjBi 0

? − 1
hij1

Z 0

? ? − 1
hij1

Z


 I 0 0
−I I 0

0 −I I



=


Θ11

ij PjBi +
1

hij1
Z 0

? − 2
hij1

Z 1
hij1

Z

? ? − 1
hij1

Z


< 0,

where Θ11
ij = −Q− PjBi − BT

i Pj − 1
hij1

Z.
Similarly, there exists a sufficiently small hij2 > 0 such that

Θij + hij2

[
AT

i
BT

i

]
Z
[
Ai Bi

]
< 0,
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which is equivalent to 
Θ11

ij PjBi +
1

hij1
Z 0 AT

i Z

? − 2
hij1

Z 1
hij1

Z BT
i Z

? ? − 1
hij1

Z 0

? ? ? − 1
hij2

Z

 < 0.

Let h̄ = mini∈I[1,N],j∈I[1,J]{hij1, hij2}. Then, for any h ∈ [0, h̄], the following matrix
inequalities always hold true:

Θ11
ij PjBi +

1
h Z 0 AT

i Z
? − 2

h Z 1
h Z BT

i Z
? ? − 1

h Z 0
? ? ? − 1

h Z

 < 0. (13)

In view of (13), inequalities (9) and (10) are satisfied with U = 0, X = 0, R = 0, ηjk = 0,
Wij = 0, i ∈ I[1, N], j, k ∈ I[1, J]. This completes the proof.

Lemma 5 ([19]). For scalars t, τ > 0, a positive definite matrix N ∈ Rn×n and a vector-valued
function w : [t− τ, t]→ Rn such that the following integration is well-defined, we have(∫ t

t−τ
ω(s)ds

)T

N
∫ t

t−τ
ω(s)ds ≤ τ

∫ t

t−τ
ωT(s)Nω(s)ds.

Lemma 6 ([20,21]). Given a scalar κ ∈ (0, 1), a positive definite matrix Z ∈ Rm×m and two

matrices E1, E2 ∈ Rm×n, if there exists a matrix X ∈ Rm×m such that
[

Z X
? Z

]
> 0, then the

following inequality holds for any x ∈ Rn:

1
κ

xTET
1RE1x+

1
1− κ

xTET
2RE2x≥

[
E1x
E2x

]T[Z X
? Z

][
E1x
E2x

]
.

3. Results

In the following theorem, we establish the main result of this paper.

Theorem 1. Under Assumptions 1 and 3, there exists h > 0 such that the switched time-delay
system (1) with d(t) ∈ [0, h] is asymptotically stable at the origin under the min-projection
switching strategy (7).

Proof. Notice that sliding motion may occur when the switched system (1) switches
among its subsystems according to the switching strategy (7). When sliding motion occurs,
the dynamics of the switched system does not coincide with the dynamics of any of its
subsystem. Specifically, let the index of subsystems actively involved in the sliding motion
at x(t) be dented by Ism(x). Then, the sliding motion can be described as

ẋ(t) = ∑i∈Ism(x) ρi(Aix(t) + Bix(t− d(t))), (14)

where ρ is a certain vector satisfying ρi ∈ (0, 1) and ∑i∈Ism(x) ρi = 1, such that ẋ(t) is
tangential to the sliding surface [22].

Since the dynamics of the sliding motion is distinct from the dynamics of individual
subsystems, we have to pay particular attention to the possible occurrence of sliding
motion. In what follows, we detail the stability analysis of the switched time-delay system
in three cases: no sliding motion occurring, sliding motions occurring within Φj, and
sliding motion occurring along ∂Φj.
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Consider the following piecewise Lyapunov–Krasovskii functional:

V(xt) = Vmin(x) + V2(xt), (15)

where

Vmin(x) = min
j∈I[1,J]

xT(t)Pjx(t), (16)

V2(xt) =
∫ t

t−d(t)
xT(s)Rx(s)ds +

∫ t

t−h
xT(s)Ux(t)ds +

∫ 0

−h

∫ t

t+θ
ẋT(s)Zẋ(s)dsdθ, (17)

with Pj > 0, j ∈ I[1, J] defined in Assumption 3 and R ≥ 0, U ≥ 0, Z > 0.
Case 1: No sliding motion occurs. In this case, the dynamics of the switched system is

governed by (1). Without loss of generality, we assume that i ∈ σ(x) and x(t) ∈ Φ̄j with
DVj(x; (Ai + Bi)x) ≤ −xT(t)(Q + Wij)x(t). This is possible because of Lemma 3. Since
Vmin(x) may not be differentiable when x(t) ∈ ∂Φj, in what follows, we use the directional
derivative of Vmin(x) along (1) to analyze the stability of the switched time-delay system.
By Lemma 1, we have

DVmin(x; ẋ) ≤ 2xT(t)Pj(Aix(t) + Bix(t− d(t))), (18)

V̇2(xt) ≤ xT(t)(R + U)x(t)− xT(t− d(t))((1− µ)R + U)x(t− d(t))

+ hẋT(t)Zẋ(t)−
∫ t

t−h
ẋT(s)Zẋ(s)ds, (19)

where the inequality in V̇2(xt) follows from the assumption ḋ(t) ≤ µ. Denote

ξ(t) =
[
xT(t) xT(t− d(t)) xT(t− h)

]T,

Γij =

He(Pj Ai) + R + U PBi 0
? −(1− µ)R 0
? ? −U

,

∆i =
[
Ai Bi 0

]TZ
[
Ai Bi 0

]
.

Then, the non-integral term in DVmin(x; ẋ) + V̇2(xt) can be written as ξT(t)(Γij +

h∆i)ξ(t). For the integral term in V̇2(xt), it follows from Lemmas 5 and 6 that

−
∫ t

t−h
ẋT(s)Zẋ(s)ds

= −
∫ t−d(t)

t−h
ẋT(s)Zẋ(s)ds−

∫ t

t−d(t)
ẋT(s)Zẋ(s)ds

≤ − 1
h− d(t)

(∫ t−d(t)

t−h
ẋ(s)ds

)T

Z
∫ t−d(t)

t−h
ẋ(s)ds− 1

d(t)

(∫ t

t−d(t)
ẋ(s)ds

)T

Z
∫ t

t−d(t)
ẋ(s)ds

= − 1
h− d(t)

ξT(t)ET
1ZE1ξ(t)− 1

d(t)
ξT(t)ET

2ZE2ξ(t)

≤ −1
h

ξT(t)(ET
1ZE1 + ET

2ZE2 + ET
1XE2 + ET

2XTE1)ξ(t),

where E1 =
[
0 I −I

]
, E2 =

[
I −I 0

]
and X satisfies[

Z X
? Z

]
> 0.

Let χ = ET
1ZE1 + ET

2ZE2 + ET
1XE2 + ET

2XTE1. Then, we have

DVmin(x; ẋ) + V̇2(xt) ≤ ξT(t)
(

Γij + h∆i −
1
h

χ

)
ξ(t). (20)
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Note that i ∈ σ(x) and x(t) ∈ Φ̄j with DVj(x; (Ai + Bi)x) ≤ −xT(t)
(
Q + Wij

)
x(t).

Thus, we have

xT(t)He
(

Pj(Ai + Bi)
)
x(t) ≤ −xT(t)

(
Q + Wij

)
x(t),

which implies that

xT(t)
(
He(Pj Ai) + R + U

)
x(t) ≤ −xT(t)

(
Q + Wij + He(PjBi)− R−U

)
x(t). (21)

Substituting (21) into (20), we have

DV1(x; ẋ) + V̇2(xt) ≤ ξT(t)
(

Γ̃ij + h∆i −
1
h

χ

)
ξ(t),

where

Γ̃ij =

−Q−Wij −He(PjBi) + R + U PjBi 0
? −(1− µ)R 0
? ? −U

.

Notice that xT(t)(Pj − Pk)x(t) ≤ 0 when x(t) ∈ Φ̄j. Let E3 =
[
I 0 0

]
. Then, to

guarantee the stability of the switched time-delay system, it suffices to have

ξT(t)
(

Γ̃ij + h∆i −
1
h

χ

)
ξ(t) < ξT(t)ET

3 ∑J
k=1 ηjk(Pj − Pk)E3ξ(t) (22)

for some ηjk ≥ 0. By Schur complements, Γ̃ij + h∆i − 1
h χ − ET

3 ∑J
k=1 ηjk(Pj − Pk)E3 < 0

is equivalent to Ξij < 0, where Ξij is as defined in (9). Hence, it follows from Lemma 4
that, with a proper choice of the parameters, the Lyapunov–Krasovskii functional (15)
decreases strictly within Φ̄j along the trajectory of the switched system (1) for some h > 0.
On the other hand, the continuity of Vmin(x) and V2(xt) guarantees that the Lyapunov–
Krasovskii functional (15) is non-increasing when x traverses from Φj to Φk. In conclusion,
if sliding motion does not occur, there always exists a number h > 0 such that the switched
system (1) with d(t) ∈ [0, h] is asymptotically stable at the origin under the min-projection
strategy (7).

Case 2: Sliding motion occurs within Φj, j ∈ I[1, J]. In this case, the dynamics of
the switched system is governed by (14). Also note that, when x(t) ∈ Φj, Vmin(x) is
differentiable and has continuous directional derivative. Hence, we have

V̇min(x) = 2xT(t)Pj ∑i∈Ism(x) ρi(Aix(t) +Bix(t− d(t))). (23)

Following the same procedure as in Case 1, the time derivative of the Lyapunov–
Krasovskii functional (15) along the trajectory of the sliding motion (14) can be calculated
as

V̇(xt) = V̇min(x) + V̇2(xt) ≤ ξT(t)
(

∑i∈Ism(x) ρi(Γij + h∆i)−
1
h

χ

)
ξ(t)

= ∑i∈Ism(x) ρiξ
T(t)

(
Γij + h∆i −

1
h

χ

)
ξ(t). (24)

We next establish the relationship between Ism(x) and σ(x). Note that DVmin(x, v) =
DVj(x, v) = 2xT(t)Pjv is continuous in Φj for any v ∈ Rn. Hence, for a point x(t) ∈ Φj, if
i ∈ σ(x) = arg mink∈[1,N] 2xT(t)Pj(Ak + Bk)x(t), then the ith subsystem must be activated
by the switching strategy in a small neighborhood of x(t). Therefore, the indices of
subsystems actively involved in the sliding motion at x is a subset of σ(x), i.e., Ism(x) ⊆
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σ(x). Moreover, since x(t) ∈ Φj, j is the unique element of J (x). Then, according to
Lemma 3, we have

2xT(t)Pj(Ai + Bi)x(t) ≤ −xT(t)(Q + Wij)x(t), i ∈ Ism(x),

which implies

∑i∈Ism(x) ρixT(t)Pj(Ai + Bi)x(t) ≤ −∑i∈Ism(x) ρixT(t)(Q + Wij)x(t). (25)

Similarly, substituting (25) into (24), we have

V̇(xt) ≤∑i∈Ism(x) ρiξ
T(t)

(
Γ̃ij + h∆i −

1
h

χ

)
ξ(t).

To ensure that the Lyapunov–Krasovskii functional (15) decreases strictly along the
trajectory of the sliding motion (14), it suffices to have

∑i∈Ism(x) ρiξ
T(t)

(
Γ̃ij + h∆i −

1
h

χ

)
ξ(t) < ξT(t)ET

3 ∑J
k=1 ηjk(Pj − Pk)E3ξ(t), (26)

for some ηjk ≥ 0. Since ∑i∈Ism(x) ρi = 1, we obtain that

∑i∈Ism(x) ρi

(
Γ̃ij+h∆i−

1
h

χ

)
< ET

3 ∑J
k=1ηkj(Pj−Pk)E3

is equivalent to ∑i∈Ism(x) ρiΞij < 0, where Ξij is as defined in (9). Moreover, it is shown
in Lemma 4 that there always exists a positive scalar h̄, such that Ξij < 0, which implies
that (26) can be satisfied for any h ∈ (0, h̄]. Therefore, if sliding motion occurs within Φj,
j ∈ I[1, J], the Lyapunov–Krasovskii functional (15) decreases strictly along the trajectory
of the sliding motion (14) with d(t) ∈ [0, h].

Case 3: Sliding motion occurs along ∂Φj. Specifically, the sliding motion occurs along
the the sliding surface

⋂
j∈T (x) ∂Φj, where T (x) is a subset of J (x). Note that Vmin(x) may

not be differentiable in this case, which implies that the equality (23) cannot be trivially
obtained from the differentiability of Vmin(x). However, since ẋ(t) = ∑i∈Ism(x) ρi(Aix(t) +
Bix(t− d(t)) is tangential to the sliding surface, it follows from Lemma 2 that

DVmin(x; ẋ) = DVj(x; ẋ) = 2xT(t)∑i∈Ism(x) ρiPj(Aix(t)+Bix(t−d(t))), j∈T (x). (27)

Choose a j from T (x). Then, the one-sided incremental variation of the Lyapunov–
Krasovskii functional (15) along the trajectory of the sliding motion (14) can be evaluated as

DVmin(x; ẋ) + V̇2(xt) ≤∑i∈Ism(x) ρiξ
T(t)

(
Γij + h∆i −

1
h

χ

)
ξ(t). (28)

Note that, for any x(t) in the sliding surface, if i ∈ Ism(x), then the ith subsystem
must be activated in a small neighborhood of x(t), and its vector field is directed to the
sliding surface. That is, if we choose an i from Ism(x), then there exists a k ∈ T (x) such
that x1(t) = x(t)− ε(Aix(t) + Bix(t− d(t)) ∈ Φk and i ∈ σ(x1) for sufficiently small ε > 0.
Since k is the unique element in J (x1), it follows from Lemma 3 that

DVk(x1; (Ai + Bi)x1) = 2xT
1(t)Pk(Ai + Bi)x1(t) ≤ −xT

1(t)(Q + Wik)x1(t).

Additionally, notice that DVk(x; v) is continuous in x(t) for any v ∈ Rn and x1(t) can
be arbitrary close to x(t). Hence, we have

DVk(x; (Ai + Bi)x) ≤ −x(t)T(Q + Wik)x(t). (29)
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Moreover, since Vj(x) = Vk(x), Vj(x1) ≥ Vk(x1) and ε can be sufficiently small, it
follows from the definition of directional derivative that

DVk(x; Aix(t) + Bix(t− d(t))) = − lim
ε→0+

Vk(x1)−Vk(x)
ε

≥ − lim
ε→0+

Vj(x1)−Vj(x)
ε

= DVj(x; Aix(t) + Bix(t− d(t))). (30)

Combining (29) and (30), we have

2xT(t)Pj(Aix(t) + Bix(t− d(t)))

≤ −xT(t)(Q+Wik)x(t) + 2xT(t)PkBi(x(t− d(t))− x(t)). (31)

Note that the index k in (29)–(31) is determined by i. To distinguish the index k for dif-
ferent i ∈ Ism(x), we will write ki instead of k in the subsequent analysis. Substituting (31)
into (28), we have

DVmin(x; ẋ) + V̇2(xt) ≤∑i∈Ism(x) ρiξ
T(t)

(
Γ̃iki

+ h∆i −
1
h

χ

)
ξ(t).

Hence, The Lyapunov–Krasovskii functional (15) decreases strictly along the trajectory
of the sliding motion (14) if the following inequality holds true for some ηjl ≥ 0,

∑i∈Ism(x) ρiξ
T(t)

(
Γ̃iki

+h∆i −
1
h

χ

)
ξ(t) < ξT(t)ET

3 ∑J
l=1 ηjl(Pj − Pl)E3ξ(t). (32)

Since ki ∈ T (x(t)) ⊆ J (x(t)), we have xT(t)Pjx(t) = xT(t)Pki
(x), which implies that

ξT(t)ET
3 ∑J

l=1 ηjl(Pj − Pl)E3ξ(t) = ∑i∈Ism(x) ρiξ
T(t)ET

3 ∑J
l=1 ηjl(Pki

− Pl)E3ξ(t).

Hence, Equation (32) can be rewritten as

∑i∈Ism(x) ρiξ
T(t)

(
Γ̃iki

+ h∆i −
1
h

χ− ET
3 ∑J

l=1 ηjl(Pki
− Pl)E3

)
ξ(t) < 0. (33)

Note that, by Schur complements, Γ̃iki
+h∆i − 1

h χ− ET
3 ∑J

l=1ηjl(Pki
−Pl)E3 is equivalent

to Ξiki
, defined in (9). Therefore, it follows from Lemma 4 that the Lyapunov–Krasovskii

functional (15) decreases strictly along the trajectory of the sliding motion (14) for some
h > 0 and d(t) ∈ [0, h].

Remark 1. Differently from [14], we employ a reciprocally convex inequality (Lemma 6) to handle
the terms arising in the Lyapunov analysis that contain the delay. This inequality involves fewer
free variables and leads to larger estimates of delay bound than the approach taken in [14].

We are interested in obtaining the largest tolerable time delay under the min-projection
switching strategy (7). The estimation of the delay bound can be reformulated into the
following constrained optimization problem:

min
Pj>0,Q>0,U>0,R>0,Z>0,X,Wij ,αij≥0,βij≥0,ηjk≥0

τ, (34)

(a) Inequalities (5), (6) and (10),

(b)


Ξ̂11

ij PjBi 0 AT
i Z

? Ξ̂22
ij 0 BT

i Z
? ? −U 0
? ? ? 0

<τ


Z X−Z −X 0
? 2Z−X−XT X−Z 0
? ? Z 0
? ? ? Z

, i ∈ I[1, N], j ∈ I[1, J],
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where τ = 1/h, Ξ̂11
ij = −Q − PjBi − BT

i Pj −Wij + R + U − ∑J
k=1 ηkj(Pj − Pk) and Ξ̂12

ij =

−(1− µ)R. Note that Constraints (a) and (b) of (34) contain the product of several unknown
variables, i.e., the constrained optimization problem (34) is bilinear. It is known that
solving an optimization problem subject to bilinear matrix inequality constraints is NP-
hard, and thus, searching for a global optimal solution to (34) may not be computationally
tractable. Following the works of [15,23], we develop a two-step iterative method to obtain
a suboptimal solution to (34). First, we need to find an initial solution to (34). Then, in
the first step of the iteration, we employ the path-following method to update all these
variables. In the second step of the iteration, all the variables, except Pj, are fixed and the
resulting problem is solved. The iteration continues until the optimization objective cannot
be further improved.

Remark 2. Sliding motion causes infinitely many switches within a finite time interval, and it is
thus not desirable in practical situations. Inspired by [12,15], we modify the switching strategy (7)
by allowing full dimensional overlap between adjacent switching regions to avoid the practical
difficulties incurred by sliding motion. For switched system (1) satisfying Assumption 2, the
modified min-projection switching strategy is given as follows.

(1) Specify the initial mode i according to min-projection switching strategy (7), i.e., i ∈
arg mini∈I[1,N] DVmin(x; (Ai + Bi)x);

(2) Stay in the ith mode as long as

DVmin(x;(Ai + Bi)x) ≤ mink∈I[1,N],i 6=j DVmin(x; (Ak + Bk)x) + $xTQx,

where $ < 1 is a positive number;
(3) Otherwise, switch to the next mode according to the min-projection switching strategy (7)

and go back to Step 2.

The switched time-delay system (1) behaves like hysteresis under the modified min-projection
switching strategy, and sliding motion is avoided, as will be seen in the numerical simulation later.
However, notice that the modified min-projection switching strategy depends not only on the current
state x(t), but also on the previous value of σ(x); that is, the memory of the switching signal is
utilized to avoid the occurrence of sliding motion.

4. Numerical Examples

Example 1. Consider a switched system with time varying delay from [12] in the form of (1) with

A1 =

[
−2 2
−20 −2

]
, B1 =

[
−1 −7
23 6

]
, A2 =

[
−2 10
−4 −2

]
, B2 =

[
4 −5
1 −8

]
.

Notice that there exists a Hurwitz convex combination of Ai + Bi, i ∈ I[1, 2], e.g., 0.6(A1 +
B1) + 0.4(A2 + B2) is Hurwitz stable. Hence, Assumption 3 is satisfied. By Theorem 1, there
exists h > 0 such that the switched system with d(t) ∈ [0, h] is asymptotically stable. Utilizing
the two-step iterative algorithm, we calculate the upper delay bound for various values of µ and
list the calculated results in Table 1. Clearly, our method leads to less conservative delay bounds in
comparison to the existing results.

Table 1. Delay bound h∗ calculated for Example 1.

Methods µ = 0 µ = 0.1 µ = 0.5

[12] 0.001573 - -
[13] 0.0202 0.0179 0.0176
[14] 0.0270 0.0251 0.0251
Theorem 1 (J = 1) 0.0314 0.0288 0.0286
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Particularly, the solution of the optimization problem (34) for µ = 0.5 is obtained as
h∗ = 0.0286 and

P1 =

[
2.1065 −0.2123
−0.2123 0.8758

]
, Q =

[
3.2978 0.1509
0.1509 3.8032

]
,

W11 =

[
−0.4622 0.8700

0.8700 −0.1412

]
, W12 =

[
0.5659 −1.0653
−1.0653 0.1729

]
,

U =

[
13.2075 0.7318

0.7318 0.0405

]
, X =

[
1.0008 −0.0001
1.6753 0.0540

]
,

Z =

[
6.0287 3.5913
3.5913 3.3377

]
, R =

[
0.9074 −0.7358
−0.7358 0.6004

]
× 10−4,

α11 = 0.5505, α12 = 0.4495.

We next use this result to validate our switching strategy by a numercial simulation. Let
the initial condition be ϕ(θ) = [3 − 2], θ ∈ [−h, 0], and d(t) = 0.014− 0.014 sin(t). Clearly,
µ = 0.014 and h = 0.028. The evolution of the switched time-delay system under the min-projection
switching strategy (7) is depicted in Figure 1, in which it can be seen that the system enters a sliding
mode and is asymptotically stable at origin. To avoid the occurrence of sliding motion, we next adopt
the modified min-projection switching strategy and take $ = 0.8. Figure 2 illustrates the evolution
of the switched time-delay system under the modified min-projection switching strategy, from which
the effectiveness of the modified min-projection switching strategy in preventing sliding motion
is verified.

(a) State trajectories and switching signal of the
switched time-delay system.

(b) Phase portrait of the switched time-delay
system.

Figure 1. Example 1: evolution of the switched system under the min-projection switching strategy (7).

Example 2. Consider a switched system with time varying delay in the form of (1) with

A1 =

 −3 −2 1
1 1 −1
1 0 0

, B1 =

 0 −4 1
1 1 −2
0 0 −2

,

A2 =

 −1 1 2
−2 −2 −1
−1 2 −1

, B2 =

 2 2 1
1 −1 −2
1 −2 −1

.

By sweeping over the values of α, we find that there is no stable convex combination of Ai+Bi,
i∈ I[1, 2]. Hence, the switching strategy proposed in [12–14] is not applicable to this system. On
the other hand, the constrained optimization problem (34) is feasible when J = 2. The calculated
upper delay bounds for various values of µ are listed in Table 2.
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Table 2. Delay bound h∗ calculated for Example 2.

Methods µ = 0 µ = 0.1 µ = 0.5

[12] - - -
[13] - - -
[14] - - -
Theorem 1 (J = 2) 0.0415 0.0337 0.0337

In particular, when µ = 0.5, we obtain from the two-step iterative algorithm that h∗ = 0.0337 and

P1 =

 5.31 11.10 −8.62
11.10 34.15 −29.76
−8.62 −29.76 30.31

, P2 =

 6.17 7.75 −2.74
7.75 13.28 −8.81
−2.74 −8.81 14.58

,

Q =

 3.68 8.29 −3.31
8.29 20.79 −6.82
−3.31 −6.82 12.61

, U =

 3.57 3.18 −2.93
3.18 15.21 −9.69
−2.93 −9.69 6.45

,

X =

 7.20 7.01 −6.45
12.77 15.93 −13.46
−8.91 −17.69 13.20

, R =

 1.24 2.95 −1.89
2.95 7.00 −4.49
−1.89 −4.49 2.88

×10−2,

W11 =

 −0.84 −1.46 0.01
−1.46 −8.70 −1.15

0.01 −1.15 −19.21

×10−7, W21 =

 1.75 0.48 −0.35
0.48 1.77 −0.85
−0.35 −0.85 1.10

,

Z =

 21.69 22.20 −15.28
22.20 38.92 −30.45
−15.28 −30.45 30.03

,
α11 = 1, α21 = 0,
β12 = 1.1568, β21 = 0.5924,
η12 = 0.0051, η21 = 0.0777.

We next validate our switching strategy using this result. Let d(t) = 0.016 + 0.016 sin(t).
The state evolution of the switched time-delay system with the initial condition taken as
ϕ(θ) = [−3 2 2], θ ∈ [−h, 0], is plotted in Figure 3. Clearly, the switched time-delay sys-
tem is asymptotically stable at the origin under the min-projection switching strategy (7).

(a) State trajectories and switching signal of the
switched time-delay system.

(b) Phase portrait of the switched time-delay
system.

Figure 2. Example 1: evolution of the switched system under the modified min-projection switching strategy.
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(a) State evolution of the switched time-delay
system.

(b) Switching signal of the switched time-delay
system.

Figure 3. Example 2: evolution of the switched system under the min-projection switching strategy (7).

5. Conclusions and Future Work

In this paper, we studied the problem of stabilizing a switched time-delay linear
system via a state-dependent switching strategy. We established that the min-projection
switching strategy, originally designed for delay-free switched linear systems, is robust with
respect to a small state delay. Compared to existing works, we imposed a less restrictive
assumption on the considered system, and thus, our method could be applied to a larger
class of switched systems. For systems satisfying the relaxed assumption, an algorithm
was developed to estimate the upper bound of the tolerable time delay and a modified
switching strategy was proposed to avoid the occurrence of sliding motion. Numerical
examples verified our theoretical results.

In recent years, new bounding techniques for cross terms in (17) and (19) have emerged
to derive less conservative stability criteria for linear systems with time-varying delays,
e.g., [24–27]. Thus our future work will focus on (1) investigating how to incorporate these
new techniques into the method we developed in this paper, and (2) conducting comparison
studies on conservatism and computational complexity among these new techniques.
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