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Abstract: The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome 

was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. 

Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was 

carried out on the same trees at two different stages of the infections: In Spring 2017 when plants 

were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly 

showed desiccations. The progression of the infections detected in both cultivars clearly unraveled 

that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the 

endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring 

lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and 

a higher -diversity. Host cultivar had a negligible effect on the community composition and no 

clear associations of a single taxon or microbial consortia with the resistance cultivar were found 

with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on 

factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, 

Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota 

those of Fungi. 

Keywords: Xylella fastidiosa; bacteria; fungi; archaea; 16S/ITS sequencing; shotgun metagenomic 

sequencing; kalamata; FS17; resistance 

 

1. Introduction 

Xylella fastidiosa is a Gram-negative gamma proteobacterium in the family Xanthomonodaceae, of 

which three main subspecies are described, multiplex, fastidiosa, and pauca [1], all originating from the 

Americas. The bacterium is a major threat for European and Mediterranean agriculture, being capable 
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of infecting different crop species and to establish itself in different Mediterranean agro-ecosystems, 

causing in some cases severe diseases [2]. Infections of this polyphagous and xylem-dwelling 

bacterium may prove asymptomatic in several host species while they can induce severe diseases in 

crops of agricultural importance. Citrus variegated chlorosis (CVC), affecting fruit size and quality 

of oranges and Pierce’s Disease (PD), inducing leaf scorching and grapevine decline, are among the 

most destructive and economically important diseases caused by Xylella [3]. The olive quick decline 

syndrome (OQDS), a novel disease described for the first time in 2013 in southern Italy [4], represents 

an example of the detrimental impacts associated to this pathogen spreading on the Mediterranean 

territories and infecting a traditional and widespread species. A hitherto uncharacterized genotype 

(namely the sequence type ST53) of X. fastidiosa subspecies pauca was found to be the causal agent of 

OQDS, which, coupled with abundant populations of the local xylem-feeding insects (primarily the 

so-called “spittlebugs”), determined an epidemic spread of the pathogen, currently affecting an area 

of approximately 750,000 ha [2]. The ability to infect up to 595 plant species [5], together with the 

insect transmission [6] and the lack of effective treatments to cure infected plants [2], make the control 

of Xylella infections very challenging, requiring a compendium of integrated strategies relying on 

reducing vector population, eliminating sources of infections, and search for resistance traits in the 

affected species. Proofs of genetic resistance have been found in grape [7,8] and citrus [9–12] and 

more recently in olive cultivars Leccino and FS17 [13–17]. Even so, mechanisms underlying 

differential host responses to Xylella infections are still largely unknown. As for PD, a broad 

consensus indicates that symptoms are the result of the systemic colonization of the bacterium which 

blocks the xylem vessels and causes a progressive deficit in water transport. In this scenario, 

anatomical features and abundant bacterial populations have major roles in impairing xylem 

conductivity as vascular occlusions are caused by the occurrence of bacterial aggregates and by 

tyloses, which are outgrowths of parenchyma cells of the xylem produced by plants in response to 

biotic or abiotic stresses [3,18,19]. 

While genetic [8,20] and/or anatomo-physiological [7,21] studies have contributed to unravel 

some of the mechanisms that contribute to constraining Xylella multiplication and movement in 

resistant grapevines, very little is known about the relationships of X. fastidiosa with all other 

microorganisms inhabiting the xylem vessels and their potential role in limiting infections, i.e., 

contributing to modulate the response in resistant phenotypes. In this framework, we studied the 

dynamics of Xylella plant colonization in relation to the whole olive microbiome to shed light on the 

complex network of interactions occurring among microorganisms inhabiting the same niche, the 

xylem vessels. 

Strategies to study the plant microbiome compositions rely on the isolation and identification of 

cultivable microorganisms (cultivation-dependent), or massive sequencing (cultivation-

independent) [22–24]. The majority of the currently available studies rely on the analysis of next 

generation sequencing (NGS) datasets from 16S ribosomal RNA gene (16S rRNA) sequences from 

bacteria or fungi (internal transcribed spacer, ITS) [25]. However, information on the whole 

microbiome can be also obtained through whole metagenome shotgun sequencing (WMSS) [26,27], a 

strategy that allows gathering microbial data at very high depth. A combination of both cultivation-

dependent and independent approaches can be effectively exploited for identifying beneficial 

microorganisms or consortia potentially antagonizing known plant pathogens to be used as 

biocontrol agents. 

Studies of the microbial endophytes were reported in Xylella pathosystems from citrus, 

grapevine, and more recently, from olive. Several authors [28–32] described differences in the 

endophyte populations of asymptomatic and symptomatic citrus plants affected by CVC and 

proposed that the development of symptoms is the result of an unbalanced ratio among 

Methylobacterium and Curtobacterium species, and X. fastidiosa. In particular, Curtobacterium 

flaccumfaciens was found to inhibit the growth of X. fastidiosa subspecies pauca in vitro and to prevent 

or reduce the symptoms in Catharanthus roseus plants when it was co-inoculated with Xylella [32]. 

Similarly, a citrus-isolated strain of Methylobacterium mesophilicum inhibited the growth of Xylella in 

vitro and reduced its population in C. roseus plants [31]. Cultivation-dependent or independent 
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approaches were similarly used to characterize the grapevine-associated endophyte microbiome 

inhabiting debarked cane tissues or sap [33,34]. Proteobacteria and Ascomycota were found to be 

predominant while the bacterium Pseudomonas fluorescens and the fungus Achromobacter xyloxidans 

were found to be inversely correlated with the X. fastidiosa subspecies fastidiosa populations in 

grapevine escaping the Pierce’s Disease [34]. 

The dynamics of the microbial communities in the xylem sap of grapevines under high Pierce’s 

Disease pressure was described in three different phenological stages over two growing seasons [33]. 

This study led to the identification of the grapevine core bacterial and fungal microbiomes of plants 

showing mild, moderate, or severe Pierce’s Disease symptoms. Furthermore, the microbial diversity 

richness in the grape xylem sap was highest during bloom while the disease condition, as well as the 

phenological stage, shaped the microbial communities. 

The majority of studies on the olive microbiome based on cultivation-dependent or independent 

sequencing, independently of Xylella infections, targeted the rhizosphere compartment [35–38] while 

they are limited for endophytes of aboveground tissues. Using 16S rRNA gene amplicon sequencing, 

Müller et al. [39] found that the bacterial endophyte communities from leaves and boughs of wild 

and cultivated olives were largely shaped by the plant genotype and correlated with the geographic 

origin. Interestingly, these authors detected a high proportion of Archaea, whose ecological 

significance remains elusive. Similar to the finding from Müller et al. [39], a predominance of 

Proteobacteria, Firmicutes, Bacteriodetes, and Actinobacteria phyla were found by Fausto et al. [40] in the 

olive xylem sap. However, differently from Müller et al. [39], in their 16S rRNA gene analysis, no 

traces of Archaea were found in the xylem sap while these microorganisms were present with low 

abundances in leaves and soil fractions. A comparison between cultivation-dependent and 

independent approaches to study the xylem microbiome of olive cultivars Picual, Arbequina, and 

Acebuche [41] showed that the main factor shaping the xylem-inhabiting microbiome was the olive 

genotype. Interestingly minor variations in the microbiome composition were detected between the 

xylem-sap (recovered using the Scholander pressure chamber) and the whole homogenized xylem 

tissue. A large fraction of bacteria were only detected by culturing (58.8%) and not by amplicon 

sequencing (16S rRNA gene NGS). 

Studies of fungal endophyte communities in olive were mainly performed in aboveground 

organs by using cultivation-dependent methods [42–45], while metabarcoding analysis was less 

frequently used. All these studies indicated Ascomycota as the most abundant fungal endophytes in 

olive leaves, twigs, and fruits. Different factors have been shown to shape olive-associated fungal 

endophytic composition, including host genotype (at cultivar level), plant organ, seasonality, and 

presence of pathogens [42,44,45]. 

Because of OQDS novelty, understanding the pathogen-host interactions and the epidemiology 

of the infections in the affected area became crucial to develop effective containment measures. A 

major finding of the studies to contrast the OQDS epidemic in olives was the discovery of olive 

cultivars showing resistance towards X. fastidiosa subspecies pauca ST53, namely FS17 and Leccino, 

as opposed to the susceptible Ogliarola salentina, Cellina di Nardò, and Kalamata [13,14]. Both 

resistant cultivars were found harboring lower bacterial population sizes and showed less severe 

symptoms, as compared to Ogliarola salentina and Kalamata [13,14]. Recently, Vergine et al. [46] 

explored the potential role of microbial endophytes in protecting olive cultivar Leccino from the 

OQDS, in comparison with Cellina di Nardò. Interestingly, they observed a drastic dysbiosis in 

response to X. fastidiosa infection in Cellina di Nardò, while Leccino maintained microbial 

communities more stable, and with higher diversity than Cellina di Nardò, in both infected and 

uninfected plants. 

In the present work, we studied the microbiomes of 15 years-old trees of the cultivars FS17 and 

Kalamata, co-cultivated in the same orchard located in the core outbreak area of Apulia, in southern 

Italy, by using WMSS and 16S/ITS rRNA gene sequencing. Trees were run under the same 

agricultural practices and subjected to the same environmental conditions. Tissues were sampled in 

two seasons from plants being initially, during 2017, symptomless and showing, during 2018, 

advanced or limited symptoms in the cultivars Kalamata and FS17, respectively (Figure 1). The 
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analysis aimed to investigate the changes in the olive xylem microbiome upon Xylella infection and 

to assess whether correlations exist between the composition of the xylem microbiome and the 

differential phenotypical responses of the two cultivars to X. fastidiosa infections. Based on the 

gathered information, a final goal is to identify bacterial/fungal microbes or consortia associated with 

the resistant phenotypes to be exploited as potential biocontrol agents. 

 

Figure 1. Effect of X. fastidiosa infection on olive trees sampled for the aims of this study, in the Apulian 

outbreak area (Sannicola, Lecce, Italy), as observed in November 2018. Desiccations on the canopy of 

the susceptible cultivar Kalamata (a) were very evident, while the resistant cultivar FS17 (b) still 

appeared without or with very mild symptoms. 

2. Results 

To describe the xylem microbiome of olive trees showing differential response to X. fastidiosa, a 

total of 72 libraries were successfully sequenced, respectively, 24 by WMSS (i.e., six samples per two 

cultivars per two seasons) and the same number by amplicon sequencing of the 16S/ITS rRNA gene. 

2.1. Description of the Microbiome by Whole Metagenome Shotgun Sequencing (WMSS) 

Initial attempts to classify the WMSS data using Kraken, with default k-mer size and databases, 

proved to be unsuccessful in the correct reads assignment, with the majority of those associated to 

the fungal kingdom, corresponding to plant sequences, as assessed by BLASTn analysis (not shown). 

We, therefore, re-mapped the sequenced reads with Kraken 2 using a custom database, built using 

the kraken2-build option, from nucleotide sequences of archaeal, bacterial, viral, fungal, and plant 

complete genomes within the NCBI Reference Sequence (RefSeq) datasets. 

Library sizes from April 2017 sampling, ranged between 38,656,227 and 54,871,547 raw reads, of 

which 97.5% to 98.5% were classified by Kraken 2 as belonging to plant, bacteria, fungi, archaea, and 

viruses. Similarly, library sizes from trees sampled in November 2018 ranged between 25,255,482 and 

48,745,550, of which 97.6% to 98.2% were classified by Kraken 2 as belonging to plant, bacteria, fungi, 

archaea and viruses (Table 1). A fraction from 1.42% to 2.41% was not classified by Kraken 2 among 

the 24 libraries. Kraken 2-classified reads were then parsed with MEGAN that assigned 24,597,096–

51,202,008 reads (98.31–99.92% of the total, Table 1) to the plant kingdom. 

Given the different sizes of the libraries, microbial reads (i.e., bacteria, fungi, archaea and 

viruses) were normalized according to Regalado et al. [27], by using plant reads as internal spike-in 

to which microbial reads are referred to. Briefly, normalization takes into account either the average 

size of all plant reads or the relative abundance of each microbial taxon in the original library. 

Normalized microbial reads ranged from 38,374 to 1,198,439, whose major fraction was represented 

by bacteria that, in all libraries were 88.91–99.15% of all microbes (total microbes, Table 1, followed 

by fungi (0.48–6.40%), viruses (0.21–3.21%), and a(0.11–2.09%) (Table 1). In addition, reads from 

Cyanobacteria were also eliminated as they were found corresponding to rDNA from chloroplasts by 

BLASTn analysis (data not shown). 
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Table 1. Summary of the Illumina sequencing and reads classification in the two phenological stages (spring: April 2017, autumn: November 2018). * Numbers are 

from Kraken 2 classification. (**) Numbers are from MEGAN classification and successive (***) normalization to Plants reads. Percentages of bacteria, fungi, archaea, 

and viruses are related to the total reads microbes. 

Season Cultivar 
Sample 

Name * 

Raw Total 

Reads * 

Reads 

Classified * 

(%) 

Reads 

Unclassified * 

(%) 

Plants  

Reads ** 

(%) 

Total Reads 

Microbes ** 

Bacteria *** 

(%)  

Fungi *** 

(%) 

Archaea 

*** 

(%) 

Viruses 

*** 

(%) 

Xylella  

Cq 

Xylella 

CFU/ml 

% Xylella/Bacteria 

Reads 

% Average 

Xylella/ 

Bacteria 

Spring  

April 2017 

FS17 

FS1-1 50,852,732 49,963,303(98.2) 889,429(1.75) 49,808,696 (99.69) 259,160 249,675 (96.34) 6,893 (2.66) 1,735 (0.67) 857 (0.33) 28.30 34,100 0.37 

2.32 

FS1-3 46,489,102 45,588,956(98.0) 900,146(1.94) 45,428,720 (99.65) 261,865 251,689 (96.11) 7435 (2.84) 1,932 (0.74) 809 (0.31) 31.20 4430 0.06 

FS1-10 52,171,471 51,356,470(98.4) 815,001(1.56) 51,202,008 (99.70) 268,515 261,563 (97.41) 4474 (1.67) 1,623 (0.60) 855 (0.32) 27.00 84,900 0.40 

FS1-18 54,871,547 53,962,289(98.3) 909,258(1.66) 53,845,628 (99.78) 205,545 198,322 (96.49) 4550 (2.21) 1,801 (0.88) 872 (0.42) 30.10 9610 0.18 

FS1-43 42,746,629 42,110,247(98.5) 636,382(1.49) 42,020,764 (99.79) 158,999 154,117 (96.93) 2764 (1.74) 1,277 (0.80) 841 (0.53) 22.90 1,520,000 12.87 

FS1-45 39,194,825 38,375,168(97.9) 819,657(2.09) 38,227,260 (99.61) 240,666 230,319 (95.70) 7825 (3.25 1,548 (0.64) 974 (0.40) 35.10 286 0.02 

Kalamata 

Kal1-53 38,656,227 38,101,308(98.5) 554,919(1.44) 38,028,096 (99.81) 130,362 126,247 (96.84) 2375 (1.82) 980 (0.75) 760 (0.58) 36.10 142 0.05 

8.69 

Kal1-54 44,921,146 43,839,640(97.5) 1,081,506(2.41) 43,586,856 (99.42) 405,349 391,036 (96.47) 11,283 (2.78) 2135 (0.53) 895 (0.22) 28.50 29,600 0.10 

Kal1-55 39,692,637 39,116,264(98.5) 576,373(1.45) 39,009,116 (99.73) 178,457 172,754 (96.80) 2438 (1.37) 1077 (0.60) 2188 (1.23) 33.10 1170 0.02 

Kal1-57 42,445,268 41,813,669(98.5) 631,599(1.49) 41,711,976 (99.76) 181,331 176,926 (97.57) 2647 (1.46) 1203 (0.66) 555 (0.31) 31.10 4760 0.22 

Kal1-65 45,136,293 44,493,779(98.5) 642,514(1.42) 44,384,016 (99.75) 194,201 186,304 (95.93) 2783 (1.43) 4058 (2.09) 1056 (0.54) 34.10 577 0.04 

Kal1-89 44,631,934 43,883,925(98.3) 748,009(1.68) 43,692,880 (99.56) 343,522 337,244 (98.17) 3490 (1.02) 1417 (0.41) 1371 (0.40) 20.40 8,790,000 51.73 

Autumn  

November 2018 

FS17 

FS2-1 33,462,404 32,788,919(97.9) 673,485(2.01) 32,749,304 (99.88) 65,201 59,793 (91.71) 3284 (5.04) 989 (1.52) 1135 (1.74) 35.10 286 0.95 

31.48 

FS2-3 32,092,733 31,396,019(97.8) 696,714(2.17) 31,371,784 (99.92) 38,374 34,366 (89.56) 2222 (5.79) 770 (2.01) 1016 (2.65) 29.96 10,600 4.89 

FS2-10 33,465,333 32,683,674(97.6) 781,659(2.34) 32,631,210 (99.84) 90,038 84,585 (93.94) 3636 (4.04) 934 (1.04) 883 (0.98) 25.50 244,000 46.82 

FS2-18 32,789,969 32,080,877(97.8) 709,092(2.16) 32,029,304 (99.84) 86,409 79,573 (92.09) 4305 (4.98) 957 (1.11) 1574 (1.82) 31.10 4760 15.42 

FS2-43 42,453,647 41,659,140(98.1) 794,507(1.87) 41,142,644 (98.76) 938,782 923,823 (98.41) 10,798 (1.15) 1082 (0.12) 3,079 (0.33) 24.57 469,000 83.11 

FS2-45 31,955,583 31,276,525(97.8) 679,058(2.13) 31,230,648 (99.85) 77,562 7,2841 (93.91) 2862 (3.69) 857 (1.10) 1002 (1.29) 26.60 112,000 37.68 

Kalamata 

Kal2-53 48,745,550 47,873,736(98.2) 871,814(1.79) 47,214,900 (98.62) 1,198,439 1,188,286 (99.15) 5768 (0.48) 1299 (0.11) 3086 (0.26) 24.20 608,000 90.05 

52.67 

Kal2-54 33,545,651 32,875,120(98.0) 670,531(2.00) 32,841,592 (99.90) 56,343 51,642 (91.66) 2265 (4.02) 738 (1.31) 1698 (3.01) 21.50 4,060,000 34.41 

Kal2-55 38,914,006 38,071,869(97.8) 842,137(2.16) 37,429,772 (98.31) 1,162,983 1,152,955 (99.14) 6234 (0.54) 1318 (0.11) 2476 (0.21) 22.10 2,660,000 88.65 

Kal2-57 30,275,514 29,663,797(97.9) 611,717(2.02) 29,635,620 (99.91) 45,484 40,442 (88.91) 2912 (6.40) 902 (1.98) 1228 (2.70) 21.80 3,290,000 0.45 

Kal2-65 29,620,002 29,066,308(98.1) 553,694(1.87) 29,033,788 (99.89) 52,570 47,964 (91.24) 2148 (4.09) 771 (1.47) 1687 (3.21) 22.20 2,480,000 19.94 

Kal2-89 25,255,482 24,756,720(98.0) 498,762(1.97) 24,597,096 (99.36) 287,446 281,221 (97.83) 2430 (0.85) 729 (0.25) 3066 (1.07) 22.40 2,150,000 82.53 
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Taxa were further filtered by MicrobiomeAnalyst to eliminate those that could be artifacts (i.e., 

appearing in only one sample) and those having an identical value (i.e., 0) across all samples. Only 

taxa having a 20% prevalence with a minimum of 10, 50, 10, and 10 reads for Archaea, Bacteria, Fungi 

and Viruses, respectively, were retained. All libraries were further normalized according to centered 

log-ratio (clr) transformation. Rarefaction curves of all data reached the plateau and Good’s coverage 

estimation averaged 99.74%, 98.34%, and 100% (Table S1) for Bacteria, Archaea, and Fungi, 

respectively, indicating that the majority of diversity was captured with the sequencing effort. 

However, this result was not achieved for Viruses (see below). 

After data filtering and normalization, 12 phyla, 23 classes, 62 orders, 115 families, and 225 

bacterial genera (Figure 2a and File S1); three phyla, 10 classes, 13 orders, 19 families, and 29 fungal 

genera (Figure 3a and File S2); three phyla, 11 classes, 16 orders, 20 families and 34 archaeal genera 

(Figure 4 and File S3); and 15 viral genera (File S4) were classified. Kraken 2 classification of virus-

associated reads was only referred to viruses having a DNA genome and was limited to the genus 

level, as many taxa had been classified as unassigned. Because of these limited and partial 

information viruses were not further analyzed. 

Proteobacteria (86.8%) largely dominated the Bacteria kingdom, while Actinobacteria (4.9%), 

Firmicutes (4.4%), Bacteroidetes (2.4%), Tenericutes (0.7%), Fusobacteria (0.4%), and Spirochaetes (0.3%) 

phyla, were limitedly represented (Figure 2a). Xylella genus occupied 72.1% of the whole endophytic 

microbiome, followed by Methylobacterium (2.5%), Sphingomonas (1.8%), Pseudomonas (1.7%), 

Staphylococcus (1.3%), Bradyrhizobium (1.1%), Streptomyces (1.0%), Clostridium (0.9%), and 

Friedmanniella (0.8%). 

 

Figure 2. Pie chart representations of the bacteria by (a) whole metagenome shotgun sequencing 

(WMSS) and (b) 16S rRNA gene sequencing, in all FS17 and Kalamata olive trees at phylum and genus 

level. Only taxa with an abundance greater than 1% are reported, while those below this threshold 

are grouped in the category “Others.”. 

Ascomycota was the major (77.9%) fungal phylum with Basidiomycota and Microsporidia 

accounting for 21.4% and 0.7% of total reads, respectively (Figure 3a). At genus level, Malassezia 

(18.2%), Pyricularia (10.4%), and Fusarium (9.2%) were the most represented, followed by Botrytis 

(6.2%), Cercospora (5.5%), Aspergillus (5.5%), Tetrapisispora (5.0%), Neurospora (4.8%), Colletotrichum 

(4.2%), and Zymoseptoria (3.2%). 
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Figure 3. Pie chart representations of the fungal community by (a) WMSS and (b) ITS1 rRNA gene 

sequencing in all FS17 and Kalamata olive trees at phylum and genus level. Only taxa with an 

abundance greater than 2% are reported, while those below this threshold are grouped in the category 

“Others.”. 

Among the 10 largely represented Archaea genera were Methanosarcina (12.9%), 

Methanobrevibacter (12.7%), Methanothermobacter (11.3%), Methanococcus (10.2%), Methanobacterium 

(5.1%), Thermococcus (4.7%), Methanosphaera (4.7%), Nitrosopumilus (4.7%), Methanocaldococcus (3.4%), 

and Acidianus (3.4%), in the majority belonging to the major phylum Euryarchaeota (80.1%), followed 

by Crenarchaeota (11.2%) and Thaumarchaeota (8.7%) (Figure 4). Plant begomoviruses having a DNA 

genome were largely the most represented, covering 72% of the viral taxon microbiome (File S4). 

These initial filtering and clr normalization were used for all successive studies regarding 

bacterial, fungal, and archaeal microbiomes. 

 

Figure 4. Pie chart representations of the archaeal community by WMSS sequencing in all FS17 and 

Kalamata olives at phylum and genus level. Only taxa with an abundance greater than 1% are 

reported, while those below this threshold are grouped in the category “Others.”. 

2.2. Description of the Microbiome by 16S and ITS1 rRNA Gene Sequencing 

Approximately 99% of a total of 2,056,937 quality-filtered bacterial reads (98.2% of the total 

reads) were plant-derived sequences (i.e., mitochondrial and plastidial DNA) (Table 2). Whereas in 
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the fungal sequence datasets, no plant sequences were retrieved, in contrast, the percentage of 

unclassified reads was lower in bacterial (1.8% of the total) than in fungal datasets (27.2%). After 

removing the operational taxonomic units (OTUs) with low abundance (i.e., less than five or 10 reads 

for Bacteria and Fungi, respectively), it was observed that there was a larger consortium of Fungi 

associated with olive tree xylem (535 OTUs, 92 genera, 70 families, 42 orders, 16 classes, and two 

phyla) than of Bacteria (348 OTUs, 44 genera, 38 families, 29 orders, 16 classes, and 10 phyla), and 

most of the relatively dominant members within the microbial communities were Fungi (1,756,830 

fungal reads), accounting for 99.7% of the total reads. Bacterial communities were predominantly 

composed by Proteobacteria (79.8% of the total bacterial reads), Bacteroidetes (8.7%), and Actinobacteria 

(7.3%) phyla (Figure 2b), that translates, at the genus level, with the 39.9% abundance of Xylella, 

followed by Methylobacterium (10.5%), Sphingomonas (9.4%), Pseudomonas (4.7%), Acidiphilium (3.5%), 

Hymenobacter (3.2%), Amnibacterium (2.9%), Pantoea (2.2%), and Kineosporia (2.0%), as the most 

represented taxa. The xylem-inhabiting fungal communities were predominantly dominated by 

members belonging to Ascomycota (87.1% of the total fungal reads) and Basidiomycota (8.3%) phyla, 

while 4.6% was unclassified (Figure 3b). Conversely, 42.4% of the reads could not be assigned to a 

genus, while most represented genera were Kabatiella (13.9%), Pyrenochaeta (9.1%), Neococurbitaria 

(7.6%), and Rhinocladiella (5.5%). 

Comparing the bacterial microbiome composition from the WMSS and the 16S rRNA gene 

approaches, a strong concordance was found at phylum, class, and order levels (Pearson’s r = 0.99, 

0.87, and 0.93, respectively) considering the 10 dominant taxa (File S1). Conversely, a more distant 

agreement was found among fungal microbiome compositions obtained with both approaches, likely 

because of the very limited number of sequences (107,821) classified following the metagenome 

approach (Table 1) comparing to those (1,756,830) obtained with the amplicon sequencing (Table 2; 

File S2). 

2.3. Olive Xylem Microbiome Composition by WMSS Analysis 

The normalization of the different WMSS libraries against the plant reads allowed to estimate 

the Xylella abundances within each bacterial microbiome and to make comparative analysis among 

different trees, without any PCR-biases which conversely may occur with 16SrRNA gene approach. 

The minimum number of normalized reads detected in the sequenced libraries (Table 1) and 

classified as Xylella by Kraken 2 corresponded to 43 in the tree “Kal1-55” and were confirmed by 

BLASTn analysis. The qPCR assay of the same DNA template yielded a negative result, suggesting a 

possible higher sensitivity of the high-throughput sequencing technology compared to qPCR. 

It could be observed that during both sampling periods the proportion of Xylella vs. the total 

bacterial reads was always lower in trees of cultivar FS17 than in Kalamata and it increased in both 

cultivars as infections progressed in time (i.e., 2.32% FS17 vs. 8.69% Kalamata in Spring 2017 and 

31.48% FS17 vs. 52.67% Kalamata in Autumn 2018) (Table 1). Data from WMSS showed that all 

selected trees contained Xylella-derived sequences, although at the start of the study in most of the 

trees the bacterium was close to the threshold of detectability by qPCR (i.e., Cq > 30). The 

Xylella/Bacteria relative read abundance significantly correlated (r = 0.63, p < 0.001) with Xylella 

population size (CFU/mL) estimated by qPCR detection (Figure S1). Indeed, a one-way ANOVA 

comparison of the average estimated sizes of X. fastidiosa populations (Figure S2) revealed that 

significant differences existed among plants of the two cultivars when considered in the two 

sampling periods (Table S2). Moreover, the Tukey’s HSD post-hoc pairwise comparison showed that 

X. fastidiosa populations: (1) Were similar between the two cultivars at the start of the experiment; (2) 

did not significantly change in FS17 between the two years and the two sampling periods (compare 

FS17 April 2017 vs. November 2018); (3) increased more rapidly in Kalamata (compare Kalamata 

April 2017 vs. November 2018). 
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Table 2. Summary of the Illumina 16S and ITS1 rRNA gene sequencing and reads classification in the two phenological stages. 

Season Cv. 
Sample 

Name 

Total  

Raw Reads 

Sequences  

Classified (%) 

Sequences  

Unclassified (%) 

Plant  

Sequences (%) Bacteria (%) Fungi (%) 

% 

Xylella/ 

Bacteria 

% Average 

Xylella/Ba

cteria 16S ITS 16S ITS 16S ITS 16S 

Spring 

April  

2017 

F
S

1
7

 

FS1-1 13,604 110,867 13,137 (96.6) 88,348 (79.7) 467 (3.4) 22,519 (20.3) 12,753 (97.1) 384 (2.9) 88,338 (100) 0.8 

10.3 

FS1-3 14,415 25,801 13,859 (96.1) 17,759 (68.8) 556 (3.9) 8042 (31.2) 13,386 (96.6) 473 (3.4) 17,759 (100) 0.4 

FS1-10 14,930 77,958 14,440 (96.7) 59,012 (75.7) 490 (3.3) 18,946 (24.3) 14,253 (98.7) 187 (1.3) 59,012 (100) 1.6 

FS1-18 12,303 62,221 11,899 (96.7) 31,172 (50.1) 404 (3.3) 31,049 (49.9) 11,826 (99.4) 73 (0.6) 31,172 (100) 2.7 

FS1-43 10,505 64,245 10,259 (97.7) 34,647 (53.9) 246 (2.3) 29,598 (46.1) 10,125 (98.7) 134 (1.3) 34,647 (100) 56.0 

FS1-45 12,735 90,246 12,250 (96.2) 63,942 (70.9) 485 (3.8) 26,304 (29.1) 11,772 (96.1) 478 (3.9) 63,942 (100) 0.0 

K
a

la
m

a
ta

 

Kal1-53 11,780 22,772 11,335 (96.2) 15,618 (68.6) 445 (3.8) 7,154 (31.4) 11,296 (99.7) 39 (0.3) 15,618 (100) 0.0 

13.2 

Kal1-54 15,279 26,9041 14,598 (95.5) 174,764 (65) 681 (4.5) 94,277 (35.0) 13,807 (94.6) 791 (5.4) 174,761 (100) 0.0 

Kal1-55 12,827 26,740 12,407 (96.7) 18,577 (69.5) 420 (3.3) 8163 (30.5) 12,156 (98.0) 251 (2.0) 18,577 (100) 0.0 

Kal1-57 9,529 18,716 9,259 (97.2) 12,313 (65.8) 270 (2.8) 6403 (34.2) 9222 (99.6) 37 (0.4) 12,313 (100) 0.0 

Kal1-65 10,275 111,806 9,936 (96.7) 67,804 (60.6) 339 (3.3) 44,002 (39.4) 9897 (99.6) 39 (0.4) 67,804 (100) 0.0 

Kal1-89 12,140 17,612 11,612 (95.7) 15,966 (90.7) 528 (4.3) 16,746 (95.1) 10,808 (93.1) 804 (6.9) 15,966 (100) 79.2 

Autumn 

November 

2018 

F
S

17
 

FS2-1 151,666 88,600 151,475 (99.9) 78,642 (88.8) 191 (0.1) 9958 (11.2) 15,1200 (99.8) 275 (0.2) 78,642 (100) 0.0 

20.5 

FS2-3 246,844 209,701 246,317 (99.8) 188,116 (89.7) 527 (0.2) 21,848 (10.4) 246,201 (99.9) 116 (0.05) 187,853 (99.9) 6.9 

FS2-10 195,548 219,077 195,319 (99.9) 203,699 (93.0) 229 (0.1) 15,975 (7.3) 195,168 (99.9) 150 (0.1) 203,102 (99.7) 46.0 

FS2-18 175,303 91,227 175,011 (99.8) 73,264 (80.3) 292 (0.2) 18,023 (19.8) 174,853 (99.9) 158 (0.1) 73,204 (99.9) 12.7 

FS2-43 92,265 103,006 92,257 (100) 97,801 (94.9) 8 (0) 5205 (5.1) 92,062 (99.8) 195 (0.2) 97,801 (100) 44.1 

FS2-45 131,843 65,534 131,659 (99.9) 23,987 (36.6) 184 (0.1) 41,709 (63.6) 131,416 (99.8) 243 (0.2) 23,825 (99.3) 13.2 

K
al

am
at

a
 

Kal2-53 168,034 54,316 167,912 (99.9) 23,089 (42.5) 122 (0.1) 31,227 (57.5) 167,418 (99.7) 494 (0.3) 23,089 (100) 77.9 

45.0 

Kal2-54 243,771 69,589 243,266 (99.8) 58,880 (84.6) 505 (0.2) 10,728 (15.4) 243,189 (99.9) 77 (0.03) 58,861 (100) 39.0 

Kal2-55 121,959 199,625 121,878 (99.9) 143,056 (71.7) 81 (0.1) 56,569 (28.3) 121,179 (99.4) 699 (0.6) 143,056 (100) 81.4 

Kal2-57 162,670 47,373 162,263 (99.7) 47,368 (100) 407 (0.3) 244 (0.5) 162,224 (99.9) 39 (0.02) 47,129 (99.5) 0.0 

Kal2-65 69,232 78,285 69,182 (99.9) 39,009 (49.8) 50 (0.1) 39,276 (50.2) 69,143 (99.9) 39 (0.1) 39,009 (100) 15.4 

Kal2-89 155,471 84,249 155,407 (100) 81,875 (97.2) 64 (0) 2374 (2.8) 155,219 (99.9) 188 (0.1) 81,875 (100) 56.4 
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Low rates of Xylella-reads were found in cultivar FS17, with only one sample yielding values 

higher than 50%, while values higher than 50% were frequent in the libraries prepared from the trees 

of the cultivar Kalamata (Table 1), for which one of the libraries exhibited value higher than 90% 

(Kal2-53). In detail, and considering every single plant throughout the two sampling seasons, only in 

one FS17 tree, FS2-43, Xylella relative abundance represented more than 50% of the total Bacteria, 

while this occurred in four olives (Kal1-89, Kal2-53, Kal2-55, and Kal2-89) of the cultivar Kalamata 

(Table 1). These high Xylella relative abundances, which particularly in the cultivar Kalamata reached 

even 90.05% of total Bacteria (Kal2-53), suggest that this bacterium tends to occupy the whole 

bacterial niche. A finding that is demonstrated by the existence of a linear correlation (R2 coefficient: 

0.92) among Xylella and total Bacteria (Figure S2 and Table 1) reads, showing that when total bacterial 

reads increase in a sample, the increase was mainly due to Xylella reads. 

Based on the existence of a linear correlation between Xylella average population size (CFU/mL) 

and Xylella/Bacteria relative abundance (Figure S3) an arbitrary threshold, corresponding to 5% of 

Xylella-reads over the whole Bacteria, was selected and used to categorize the samples with high (FS1-

43, FS2-10, FS2-18, FS2-43, FS2-45, Kal1-89, Kal2-89, Kal2-53, Kal2-54, Kal2-55, Kal2-65) or low (FS1-1, 

FS1-3, FS1-10, FS1-18, FS1-45, FS2-1, FS2-3, Kal1-53, Kal1-54, Kal1-55, Kal1-57, Kal1-65, Kal2-57) 

Xylella populations. The threshold was selected based on the occurrence of at least one of the two 

criteria, 5% WMSS Xylella abundance and/or population size higher than 5 Log CFU/mL (1.0E + 05, 

Table 1). This distinction/condition has been used in all following analyses. 

Analysis of similarities (ANOSIM) was performed on bacterial, fungal and archaeal 

communities inhabiting FS17 and Kalamata xylem, to assess the statistical significance of sample 

groupings and evaluate factors having a major role in shaping the microbiomes. Principal component 

analysis (PCA) and ANOSIM significantly (R = 0.5165, p = 0.0001. Figure 5c; Table S3) separated olives 

sampled in Spring 2017 from those sampled in Autumn 2018, indicating that season was the main 

factor shaping bacterial communities either considering all olives or separately those of the two 

cultivars (R = 0.5481, p = 0.0052 in cultivar FS17; R = 0.6111, p = 0.002 in cultivar Kalamata). A further 

factor driving bacterial community composition was Xylella that significantly distinguishes trees with 

low and high abundance (R = 0.2376, p = 0.0055; Table S3), although its effect was different when 

cultivars were separately considered. Indeed, a significant separation was observed in cultivar 

Kalamata (R = 0.4611, p = 0.0081; Table S3) while it was not (R = 0.2424, p = 0.0774; Table S3) in cultivar 

FS17, indicating that microbiomes of the latter cultivar are not heavily affected by the presence of 

Xylella. No significant differences occurred among olives sampled in Spring 2017 either considering 

Xylella abundance or between the two cultivars (Table S3). While Xylella makes a significant 

difference among samples analyzed during Autumn 2018 (R = 0.3504, p = 0.0155; Table S3), this was 

not related to the cultivar (R = 0.1093, p = 0.1541; Table S3). 

The exclusion of Xylella from the data did not change the overall clustering of samples in PCA 

analysis and significance in ANOSIM (not shown). Collectively, the analysis of these data showed 

that Xylella abundance and season played a major role in driving the olive bacterial microbiome in 

both cultivars and Xylella shaped mainly the microbiome of the susceptible cultivar Kalamata, while 

it did not significantly affect that of cultivar FS17. Moreover, our analysis was not biased by the 

inclusion of the data from Xylella, although this taxon occupies the majority of the bacterial niche in 

some plants indicating that clr transformation efficiently decreases the influence of highly abundant 

microorganisms. To reduce the bias of highly abundant bacterial taxa an alternative strategy for data 

normalization was attempted and was based on the fourth root transformation of the reads. However, 

the fourth root performed worse than clr transformation, as Xylella effect on shaping the microbiomes 

PCA distribution was very significant (not shown). Indeed, excluding Xylella from the PCA analysis, 

a significant separation according to the season of sampling and Xylella abundance were obtained 

(not shown), as observed with clr-transformed data. 

A major factor distinguishing the overall fungal microbiome was the period of sampling (Figure 

5f; Table S4). A very high ANOSIM R-value supported this distinction by very low p-values (R = 

0.9007, p = 0.0001) for both cultivars, as well as for FS17 (R = 0.9611, p = 0.0021) and Kalamata (R = 

0.8185, p = 0.0019) separately. This indicates that fungal communities are strictly related to the 
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seasonal physiological state of olives and environmental conditions. Moreover, Xylella significantly 

affected the fungal community of all plants (Figure 5d; R = 0.2872, p = 0.0049, Table S4) and this effect 

occurred significantly on the FS17 microbiomes (R = 0.3382, p = 0.025; Table S4) while moderately (R 

= 0.2296, p = 0.074; Table S4) on those of the cultivar Kalamata. No significant differences were found 

among microbiomes of the two cultivars either considering all olives or those having high or low 

Xylella abundances and plants sampled in Spring 2017 or Autumn 2018 (Figure 5e; Table S4). 

Archaeal communities were not substantially affected by the three considered factors: Cultivar, 

season, and Xylella. Although significant differences were observed among all plants belonging to 

the two cultivars (Figure 5h; R = 0.09238, p = 0.0504; Table S5) these were very small as can be inferred 

by the low value of the R-value. Only a slightly significant difference was determined among 

Kalamata communities sampled in the two seasons (R = 0.2185, p = 0.035; Table S5). While no 

significant differences were observed among FS17 and Kalamata microbiomes sampled in the two 

periods (Figure 5i and Table S5), neither among those having low or high Xylella abundances (Figure 

5g and Table S5). This lack of separation was reflected by the lack of specific Archaea genera driving 

the microbiomes (not shown), which further confirmed the independence of Archaea from any of the 

three variables (cultivar, season, and Xylella) considered. Because of these findings, no further 

analyses were carried out with Archaea. 

Considering both periods of sampling, the alpha diversity of bacteria (Figure 6a), fungi (Figure 

6b), and archaea (Figure 6c) FS17 microbiomes was higher than that of Kalamata, although these 

differences were not significant. Similarly, a lower diversity was found in bacterial and fungal 

microbiomes of plants sampled during Autumn 2018, as compared to those from Spring 2017, 

although this was significant only for Fungi. Conversely, intra-plants diversity significantly dropped 

in bacterial microbiomes of olives containing high Xylella populations, independently of the cultivars, 

as could be expected in plants were the bacterium tends to occupy the whole ecological niche (Figure 

6a). A lower and significant diversity was also found in fungal microbiomes of plants with high 

Xylella abundance, while it was not significant for Archaea, although following the same trend 

(Figures 5c and 6b). 
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Figure 5. Principal component analysis and ANOSIM test using clr-normalized data of bacterial (a–c), fungal (d–f), or archaeal (g–i) microbiomes from all FS17 and 

Kalamata plants. Clustering is according to Xylella abundance (high vs. low) (a,d,g), cultivar (FS17 vs. Kalamata) (b,e,h), and season (Spring vs. Autumn) (c,f,i). 

ANOSIM test showed the R-statistic (R) and the statistical significance (p). Olives sampled in Spring and Autumn are respectively in black and red colors, while 

dots and diamonds indicate FS17 and Kalamata olives, respectively. N.S.: Not significant. 
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Figure 6. Alpha diversity (Shannon diversity index) of (a) bacterial, (b) fungal, and (c) archaeal microbiomes from all sampled olives. Diversities were compared 

between plants harboring high or low Xylella infections, cultivars, or season of sampling. Boxplots depict medians (central horizontal lines), the interquartile ranges 

(boxes), and 95% confidence intervals (whiskers). ANOVA test showed the F-value (F) and the statistical significance (p < 0.05). 
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2.4. Olive Xylem Microbiome Composition by 16S and ITS1 rRNA Gene Analysis 

Nonmetric multidimensional scaling (NMDS) plotting was carried out using 16S rRNA gene 

data to describe similarities/differences among microbiomes from FS17 and Kalamata trees and the 

significance of clustering was tested by ANOSIM and PERMANOVA analysis. The NMDS plots and 

ANOSIM analysis showed that the whole bacterial (Figure 7a) and fungal (Figure 7b) communities 

composition differ significantly between seasons (Spring vs. Autumn; R = 0.836, p = 0.001 for Bacteria; 

R = 0.892, p = 0.001 for Fungi) and between trees (FS17 + Kalamata; R = 0.223, p = 0.01 for Bacteria; R = 

0.322, p = 0.003 for Fungi), with high and low abundance of Xylella, although these latter 

dissimilarities were less supported, as showed by a low R-value. In contrast, no significant differences 

were found on both bacterial and fungal community composition between cultivars (FS17 vs. 

Kalamata). The PERMANOVA analysis corroborated these results, by showing that the variability 

on bacterial composition was mainly explained by season (26.6%, p = 0.001) and abundance of Xylella 

(12.2%, p = 0.001), while the cultivar only explained 3.3% of the total bacterial variation, which was 

not statistically significant (p = 0.252). Similarly, the fungal composition in olive tree xylem was 

mainly explained by season and Xylella abundance, being responsible for 26.7% (p = 0.001) and 16.0% 

(p = 0.002) of the total variation, respectively. Cultivar explained 5.3% of the fungal variation, but the 

result was not statistically significant (p = 0.050). 

 

Figure 7. Nonmetric multidimensional scaling (NMDS) plots and ANOSIM test for the (a) bacterial 

and (b) fungal assemblages in the xylem of olive trees due to different Xylella abundance (high vs. 

low), host cultivar (FS17 vs. Kalamata), and season (Spring vs. Autumn). Bray–Curtis coefficient was 

used as a measure of similarity between populations and Kruskal’s stress values obtained for bacteria 

and fungi were 0.097 and 0.087, respectively. ANOSIM test showed the R-statistic (R) and the 

statistical significance (p). 

In addition, 16S rRNA gene sequencing confirmed the evidence recovered from the WMSS 

showing that Xylella tends to occupy the whole xylem niche negatively affecting the rest of the 

Bacteria community. Indeed, considering the two time points, the average ratio of Xylella over total 
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Bacteria increased from 10.3% to 20.5% for FS17 and from 13.2% to 45% for Kalamata (Table 2). Thus, 

as observed from WMSS analysis, FS17 was able to better restrain the multiplication of the bacterium 

than Kalamata. 

The bacterial species richness was significantly different between cultivars (LR chi-square = 7.05, 

p < 0.01) and seasons (LR chi-square = 105.57, p < 0.001), being higher in cultivar FS17 and in Spring, 

than in cultivar Kalamata and in Autumn, respectively (Figure 8a). The richness of fungal endophytes 

only differed significantly (LR chi-square = 120.14, p < 0.001) between seasons, being higher in Spring 

than in Autumn (Figure 8b). 

 

Figure 8. Richness of (a) bacterial and (b) fungal communities occurring in the xylem of olive trees in 

relation to Xylella abundance (high vs. low), host cultivar (FS17 vs. Kalamata), and season (Spring vs. 

Autumn). Boxplots depict medians (central horizontal lines), the interquartile ranges (boxes), and 95% 

confidence intervals (whiskers). Statistical differences between pairs of values are showed (n.s., not 

significant; ** p < 0.01; *** p < 0.001). 

2.5. Bacteria/Fungi Genera Shaping the Olive Xylem Microbiome 

To identify factors shaping the bacterial microbiomes, a random forest (RF) analysis, which 

allows ranking the importance of bacterial genera, was carried out using data from WMSS. The RF 

graphical output shows that Spring 2017 and Autumn 2018 microbiomes were strongly characterized 

by 12 microbial features (genera). Indeed, Bradyrhizobium, Peptoniphilus, Plantactinospora, 

Corynebacterium, and Rhodopseudomonas genera characterize the Autumn microbiomes, while 

Streptomyces, Friedmanniella, and Frankia those of Spring (Figure 9a). Besides the obvious Xylella, all 

other identified genera Brochotrix, Hydrogenophaga, Klebsiella, Micrococcus, Ralstonia, and Pantoea were 

significantly but weakly associated with olives with high Xylella abundance. Conversely, only 

Bifidobacterium (Figure 9b) moderately associates with olives having a low Xylella abundance. 

Whereas not significant genera were identified by the comparison of the two cultivars (not shown). 

Similar results were obtained excluding Xylella from the dataset. 
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Figure 9. Graphical summary of the random forest analysis of the bacterial community. Significant 

genera are ranked in decreased order according to their mean decrease accuracy. Color map indicates 

abundance (red)/scarcity (blue) of genera characterizing samples with high or low Xylella abundances 

according to (a) the season or (b) Xylella experimental factors tested. The out-of-bag (OOB) values are 

reported, and the analysis was trained with 5000 trees. 

Random forest analysis perfectly confirmed the main role of the season in differentiating the 

olive fungal microbiomes as the performance of the test was very significant (i.e., the grown trees 

early overlap and the out-of-bag (OOB) value is 0) (Figure 10a). The genus Malassezia was 

significantly associated with the Autumn 2018 microbiomes while the genera Fusarium and 

Pyricularia were found among the Spring 2017-associated microbiomes. Moreover, Xylella role in 

shaping the Fungi microbiome was present although limited, as shown by the low performance (OOB 

= 0.417) of RF analysis (Figure 10b). However, also testing Xylella abundance as an experimental 

factor, Malassezia was identified as an associated genus, in addition to Debaromyces. Conversely, 

fungal genera associated to microbiomes having a low Xylella abundance belonged to 

Thermothelomyces, Fusarium, Yarrowia, and Naumovozyma (Figure 10b). Similarly, to identify a set of 

bacterial/fungal genera associated to Xylella (high vs. low), host cultivar (FS17 vs. Kalamata), and 

season (Spring vs. Autumn), a co-inertia analysis was performed either for bacteria (Figure 11a) or 

fungi (Figure 11b) using data from 16S and ITS1 rRNA gene sequencing, respectively. The results 

showed a set of bacterial genera positively associated with a high abundance of Xylella, with Thermus, 

Paracoccus, Sarcina, Neisseria, and Streptococcus being the predominant genera. Members of these 

genera were also found to be positively correlated with Autumn 2018. In contrast, olive tree samples 

from Spring 2017 and with low abundance of Xylella, were found to be positively correlated with the 

presence of members belonging mostly to Mucispirillum, Lachnospiraceae, Blautia, Staphylococcus, and 

one unknown bacteria (S24-7). Olive cultivars could not be differentiated based on the association of 
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specific bacterial endophytes. Co-inertia analysis also revealed that a set of fungal genera were 

positively correlated to each season or Xylella abundance (high/low), whereas host plant cultivars 

were not differentiated by fungal endophytes (Figure 11b). In particular, the fungal genera 

Peniophoraceae, Malassezia, Alternaria, Neocucurbitaria, and Elsinoaceae were found to be the most 

positively correlated to trees with a high abundance of Xylella and collected in Autumn 2018. In 

contrast, the fungal genera Catenulostroma, Monticola, Arthrocatena, and Didymella were the most 

positively correlated to trees with a low abundance of Xylella and with Spring 2017. 

Figure 10. Graphical summary of the random forest analysis of the fungal community. Significant 

genera are ranked in decreased order according to their mean decrease accuracy. Color map indicates 

abundance (red)/scarcity (blue) of genera characterizing samples with high or low Xylella abundances 

according to (a) the year or (b) Xylella experimental factors tested. The OOB values are reported, and 

the analysis was trained with 5000 trees. 
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Figure 11. Co-inertia factorial map showing positive (■) and negative (□) relationships between (a) 

bacterial and (b) fungal genera from olives with different Xylella abundance (high vs. low), from 

different cultivar (FS17 vs. Kalamata), and diverse seasons (Spring vs. Autumn). Square size is 

proportional to correlation intensity. The Fungi co-inertia factorial map shows only the genera with 

correlations higher than 0.25 (both positive and negative). 

3. Discussion 

An in silico analysis of the xylem microbiome of field-grown olives exposed to natural X. 

fastidiosa infection was performed with two sequencing approaches, a classical 16S/ITS rRNA gene 

amplicon sequencing and WMSS. Both approaches have their pros and cons, which mainly rely on 

the analysis of a single gene, consolidated pipelines for the analysis, and low costs for 16S/ITS rRNA 

gene, opposed to higher sequencing depths, costs, and data recovery using WMSS [47–50]. 

To the best of our knowledge, this is the first study investigating the WMSS analysis of the xylem 

microbiomes of trees infected with X. fastidiosa, using non-targeted sequencing. Although the 

recovered sequence data largely originated (up to 99.92%) from the olive genome, the depth of WMSS 

was exhaustive of the bacterial, fungal, and archaeal endophytic microbiome of these plants, as 

shown by the rarefaction analysis and the taxa identified, which are similar to those reported in other 

studies in olive (see below). WMSS returned reads classified in the Bacteria, Archaea, and Eukarya 

kingdoms, this latter composed of plant and fungal taxa. Virus-associated reads were found, but their 

study was abandoned not only for the paucity of the viral-sequences recovered, but also considering 

that the majority (~65%) of the plant-associated viruses are RNA-viruses, and localize in the phloem 

or the parenchyma of the infected hosts, while our analysis targeted the xylem tissues. Indeed, the 

presence of viruses in the xylem is a poorly investigated subject of research and evidence reports the 

release in the extracellular space of “virus-replication factories” of RNA-genome species which, 
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however, seems to contribute to the systemic Virus spread, while the presence of intact viral particles 

is not completely demonstrated [51,52]. 

Bacteria were found to be the main class of microorganisms inhabiting the olives endophyte 

microbiome, reaching 99.14% of all microbe-associated reads, a finding previously reported in WMSS 

analyses of Arabidopsis thaliana microbiome [27,53] and likely explained by the larger size of fungal 

genomes that, together with the lack of sufficient fungal genomic data available in databases, limit 

their classification. Conversely, 16S/ITS rRNA gene analysis returned the opposite picture, showing 

that the majority of classified reads were from fungi, a result likely biased by the high percentage (up 

to 99%) of reads amplified by the 16SrRNA gene primers that indeed belonged to the olive genome. 

The same problem has been reported by many other researchers being most critical in plant above-

ground green tissues, including in olive trees [39]. Despite the differences in bacteria/fungi relative 

composition, both sequencing approaches (WMSS and 16S rRNA gene) identified Proteobacteria, 

Actinobacteria, Firmicutes, and Bacteriodetes as the most dominant phyla, in agreement with previous 

studies [39,40]. A good correlation in the classification of the bacterial taxa was obtained between the 

two sequencing approaches at higher taxonomical levels (phylum, order, and class), while it 

decreased when lower levels were considered, likely due to the different depth of the data. These 

four dominant phyla were indeed found to be predominant in the microbiomes recovered from 

Xylella-infected Leccino and Cellina di Nardò trees [46], as well as in the endophytic microbiome of 

healthy olive trees [41]. The dominant fungal phyla were Ascomycota and Basidiomycota, confirming 

previous ITS microbiome analyses [42,44,46,54], but the agreement between WMSS and ITS rRNA 

gene approaches was not maintained as different taxa abundances were classified at all taxonomic 

levels. The occurrence of Archaea was confirmed by WMSS analysis and, as in the study of Müller et 

al. [39], Euryarchaeota, Crenarchaeota, and Thaumarchaeota were the most represented phyla. Little is 

known about the role of these microbes in plant microbiomes, in which they have been found as main 

constituents [55]. Perhaps, the xylem microbiome is an appropriate ecological niche for these 

extremophiles and notably, in our analysis, it is particularly rich in several methanogenic genera that 

thrive in these conditions. 

When the whole microbial communities are considered, in contrast with previous studies 

[56,57], no cultivar effect on bacterial and fungal endophytic assemblages was found using both 

sequencing approaches. However, our result is in agreement with the results of a recent microbiome 

investigation on the Verticillium-olive pathosystem showing similar root endosphere and rhizosphere 

microbial communities between susceptible and tolerant cultivars [37]. In our study, the negligible 

host cultivar effect on microbiome composition might be explained by the high presence/abundance 

of Xylella in the orchards surveyed that seems to have overshadowed the effect of host cultivar in 

shaping endophytic microbial communities. Indeed, the level of Xylella abundance showed to have a 

strong effect on endophytic assemblage, explaining 12.2% or 16.0% of the variance in bacterial and 

fungal diversity across samples, respectively in the 16S/ITS1 rRNA gene analysis, while in WMSS 

analysis Xylella represented 72.14% of the bacterial endophytic microbiome in the orchard. Our 

analysis shows that Xylella abundance largely increased over time, tending to occupy the whole 

bacterial niche of the xylem. However, a major and significant effect of Xylella is exerted on the 

bacterial community of the cultivar Kalamata, thus showing that FS17, although infected, is more 

resilient to the presence of X. fastidiosa. Thus, we hypothesized that olive tree-associated microbial 

assemblages are probably shaped by niche-based processes, being the interaction between Xylella and 

the native microbiome a key driver of these selective forces, as previously suggested by McNally and 

Brown [58]. In both olive cultivars, an increase in Xylella abundance over time was observed, which 

seems to have a large impact on the rest of the microbial community, except for Archaea. It is possible 

that during the colonization of plant tissues, Xylella utilizes methods to displace resident species from 

their established niches to create its own niche. Such microbes that are likely to exert a high influence 

on the structure of microbial communities have recently been termed as keystone species [59]. 

Season was the most important parameter for shaping the bacterial and fungal communities in 

both WMSS and 16S/ITS1 rRNA gene analyses. Likewise, seasonal variations were found to affect 

bacterial [60] and fungal [61] endophytic communities of other plant species, including olive trees 
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[44]. The highest abundance and richness of Bacteria and Fungi observed during Spring may be due 

to climatic conditions that favor the growth or dispersal of microorganisms, as previously suggested 

[44]. However, the decrease of microbial diversity in Autumn might also be a response to the increase 

in Xylella abundance on the endophytic community of olive trees from Spring 2017 to Autumn 2018. 

Within these communities, Xylella may compete with their neighbors for space and resources, which 

may lead to changes in microbial diversity [62]. Archaea communities, only detected in WMSS, did 

not significantly change according to the season, X. fastidiosa infection status, and cultivars, perhaps 

because of their higher ability to adapt to changing environmental conditions. Any conclusion about 

their role and microbial interactions in the olive microbiome is very speculative. 

Unfortunately, we did not find a consensus between both sequencing strategies concerning the 

identification of bacterial and fungal consortia strongly associated with Xylella abundance, the olive 

cultivar, or the season. With 16S/ITS1 rRNA gene a set of bacterial (Thermus, Paracoccus, Sarcina, 

Neisseria, and Streptococcus) and fungal (Peniophoraceae, Malassezia, Alternaria, Neocucurbitaria, and 

Elsinoaceae) taxa, at genus/family level, highly positively correlated with the high abundance of 

Xylella, was found. The genus Thermus can be found in many diverse habitats [63] including insects’ 

gut microbiome [64], and plants’ microbiome [65] with no specifically recognized function. Paracoccus 

genus includes species with plant growth-promoting traits [66]. Sarcina has been identified as part of 

animals’ gut microbiota [67]. Members of the genera Neisseria [68], Streptococcus [69], Malassezia [70], 

and Neocucurbitaria [71] are mostly described as human pathogens, being not mentioned in literature 

for their association to plants. The genus Alternaria includes both plant-pathogenic and saprophytic 

species and is one of the most well-known fungal genera that produces diverse secondary 

metabolites, including toxins [72] and antimicrobial compounds [73]. The family Peniophoraceae 

comprises saprophytic Fungi, whose role in plants is still not known [74]. The Elsinoaceae family is 

not well-studied but it is known to include plant pathogens [75]. This lack of consistency in cultivar- 

or resistance-associated Bacteria was also revealed in a companion paper [76] where endophytes, and 

among the others, members of the Methylobacterium and Curtobacterium genera previously indicated 

as potential biocontrol endophytes [31,32], were isolated from the same FS17 and Kalamata olives. 

All the isolated genera (Methylobacterium, Sphingomonas, Curtobacterium, Novosphingobium, 

Frondihabitans, Agrococcus, and Micrococcus) were identified in WMSS and the majority of them in 16S 

rRNA gene analysis, but none were found having in vitro antagonistic activity against Xylella [76]. In 

addition, the present work does not identify the association of microbial consortia with the host 

resistance, leaving open the possibility that other plant traits are responsible for controlling Xylella 

population size and its pathogenic effects. 

Among the season-associated Bacteria, WMSS identified the nitrogen-fixing Bradyrhizobium 

genus [77], already reported in olive by [41], the anaerobes Peptoniphilus [78], which include human 

pathogenic species, and the Streptomyces genus, whose members are known as bioremediators and 

plant-growth-promoters [79]. The only WMSS and 16S/ITS rRNA gene shared genus was Malassezia 

that was positively associated to plants with high Xylella abundance. 

In conclusion, the bacterial and fungal communities in olive trees xylem appeared to be more 

tightly structured by season and Xylella abundance, than by host cultivar, probably due to the high 

pressure of inoculum in the orchard where olive trees were sampled. We hypothesized that Xylella 

interacts with the host and the native microbiome dynamically, being responsible for shaping the 

whole microbial community. However, this effect was variable depending on host cultivar, being 

microbiome-associated Kalamata was more prone to change than those of cultivar FS17, due to the 

presence of Xylella. Indeed, Xylella colonization is significantly more extensive in Kalamata than FS17, 

which confirms, together with the limitedness of symptoms, the traits of resistance identified in the 

latter cultivar. Altogether, these results suggest that other mechanisms, likely controlling Xylella 

population size and its pathogenic effects by genetic [13] or anatomic [7] traits, may be responsible 

for this phenotype. 
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4. Materials and Methods 

4.1. Collection of Plant Samples 

The endophytic microbiome colonizing the xylem tissues was analyzed from 12 field-grown 

olive trees of the susceptible (Kalamata) and resistant (FS17) cultivars (six each) exposed to natural 

X. fastidiosa infections. Trees were sampled and analyzed twice, in Spring 2017 when infections were 

still confined with the bacterium in most cases close or under the limit of detection of the qPCR assay 

and trees being mostly symptomless, and then in Autumn 2018 when the infections reached 

detectable population levels in trees of both cultivars, with trees of the cultivar Kalamata showing 

manifest branch desiccations while canopies of the FS17 trees were still symptomless or showing very 

mild desiccations (i.e., tree FS43). More specifically, samples were collected during April 2017 and 

November 2018 to take into account the incubation period of the infections [80], and concomitantly 

to evaluate the change in the microbiomes of resistant and susceptible cultivars with respect to Xylella 

infections. 

Samples, consisting of young olive twigs (approximately 0.5 cm diameter), were collected in 

April 2017 (Spring) and November 2018 (Autumn) from olive trees located in the X. fastidiosa-

outbreak area in Apulia, in the municipality of Sannicola (40°07′13.77” N, 18°02′40.51” E, Lecce, Italy). 

Trees from the cultivars FS17 and Kalamata, approximately of the same age (15 years old), were in 

distinct rows of the same orchard, under the same agricultural management practices. Samples were 

collected from six trees of each cultivar in 2017 and the same trees in 2018. Following EPPO PM 7/24 

(4) standard guidelines [81], 10 twigs of about 0.5 cm in diameter were collected from each tree in the 

mid part of the canopy, from the four cardinal points, avoiding tissues in an advanced stage of 

desiccation. Samples were immediately stored in sealed plastic bags and kept refrigerated at 4 °C to 

avoid dehydration until later processing in the laboratory. 

4.2. Extraction of Total DNA and Detection of Xylella Fastidiosa 

For microbiome DNA extraction from xylem tissue, twigs from each tree sample were cut into 

10-cm-long pieces and washed with running tap water, before surface sterilization by sequential 

dipping in 2% sodium hypochlorite for 2 min, 70% ethanol for 2 min, and three rinses in sterile 

distilled water. Aliquots of the sterile distilled water used in the final rinse were plated onto tryptic 

soy agar (TSA). After incubation at 25 °C for 15 days no colonies were apparent, thus confirming the 

efficacy of the disinfection procedure [82]. After surface disinfection, the end of each twig section and 

the bark were removed and the debarked tissue was scraped until the hard xylem was exposed, with 

a sterile scalpel. A total of 1 g of xylem chips was weighed from each tree, placed in a sealed sterile 

bag (BIOREBA AG, Switzerland) containing 10 mL of hexadecyltrimethylammonium bromide 

(CTAB), and macerated with a Homex homogenizer (BIOREBA AG, Switzerland). Sample processing 

was performed in sterile conditions within a flow hood chamber. Samples were further processed for 

total DNA extraction, performed according to Loconsole et al. [83] and followed by treatment with 

50 µg/mL RNase A (Zymo Research Corporation, Orange, CA, USA). 

The presence of X. fastidiosa in the DNA extracts was assessed by quantitative polymerase chain 

reaction (qPCR) according to the protocol previously described by Harper et al. [84], using primers 

XF-F (5′-CACGGCTGGTAACGGAAGA-3′), XF-R (5′-GGGTTGCGTGGTGAAATCAAG-3′), and XF-

P probe (5′-FAM-TCGCATCCCGTGGCTCAGTCC-BHQ1-3′). The qPCR reactions were performed 

on a CFX 96™ Real-Time System (BioRad Laboratories, Hercules, CA, USA), with TaqMan® Fast 

Advanced Master Mix (Thermo Fisher Scientific, Waltham, MA, USA), using the following cycling 

conditions: 95 °C for 5 min, then 40 cycles of 94 °C for 10 s and 62 °C for 40 s. Estimated X. fastidiosa 

population size, corresponding to each Cq value, was inferred by a standard calibration curve. The 

linear regression equation was computed from a triplicate assay using DNA extracted from 10-fold 

serial dilutions of bacterial suspension, ranging from 107 to 102 CFU/mL, and spiked in homogenized 

tissues of non-infected olives. 

Statistical comparison of the average estimated X. fastidiosa population size among the four 

different samplings (i.e., FS17 April 2017, Kalamata April 2017, FS17 November 2018, Kalamata 
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November 2018) was performed by one-way analysis of variance (ANOVA), followed by Tukey’s 

post-hoc pairwise comparison. To ensure that the assumptions required for standard parametric 

analysis of variance were satisfied, the normal distribution of data had been preliminarily ascertained 

by the Shapiro–Wilk’s test, and homogeneity of variance assessed according to Levene’s test. In all 

analyses, the null hypothesis was rejected at the 0.05 -level. 

4.3. Whole Metagenome Shotgun Sequencing and Bioinformatic Analysis 

WMSS was performed with the Illumina 2 × 150 bp format using the TruSeq DNA PCR-free 

protocol (Illumina Inc., San Diego, CA, USA) that allows a representation of the underlying species 

composition and relative abundances in a sample without the introduction of PCR bias. Library 

preparation and sequencing were outsourced to Macrogen Europe (the Netherlands) for tissues 

sampled in 2017 and to LGC Biosearch Technologies (Germany) for tissues sampled in 2018. The raw 

reads obtained were quality checked and, whenever required, adaptor sequences were trimmed out 

using FastQC tool (Andrews, 2010) and reads with a final length <20 bases were discarded. 

Taxonomic profiling of the raw Illumina read dataset was carried out with Kraken, an ultrafast 

metagenomic sequence classification tool (Wood and Salzberg, 2014), toward a Kraken database, built 

using a custom Perl script [85] and the default 31 k-mer. The obtained database consisted of 687 

sequences from Archaea, 1337 chromosome sequences plus 8078 complete genome sequences from 

Bacteria, 249 sequences from Fungi, and 7540 complete genome sequences of Viruses. This initial 

analysis classified the majority of reads as belonging to the Fungi kingdom, but an in-depth BLASTn 

search of this fraction disclosed that these reads indeed corresponded to plant DNA sequences. We, 

therefore, discarded these data and successively re-classified reads with Kraken 2, the newest version 

of the software [86], using a custom-made Kraken database that includes: 533 (Archaea), 38,758 

(Bacteria), 11,953 (Viruses), 1472 (Fungi), and 621,633 (plant) sequences, respectively, and a longer 41 

k-mer. Raw reads from each sample were searched against this custom-made Kraken database, 

resulting in their classification at different taxonomic levels. 

Plant reads corresponding to ribosomal RNAs were manually eliminated from the Kraken files 

after being identified by BLASTn analysis. Kraken 2.mpa files were imported in MEGAN [87] from 

which separate Bacteria, Fungi, Archaea, and Viruses comparison.txt files were produced by using 

absolute read counts and ignoring all unassigned reads. To correct for the different sequencing depth 

of libraries, microbial reads (i.e., Bacteria, Fungi, Archaea, and Viruses) from the respective 

comparison.txt files were normalized according to Regalado et al. [27], by using plant reads as 

internal spike-in. Briefly, Kraken 2-classified data were normalized according to the formula 

i

i
i

P

Xraw
PXnorm  ˆ   

were Xnormi, P, Xrawi, and Pi stand respectively for the normalized reads in samplei, the average 

number of plant reads among all samples, the raw number of reads assigned to a microbial taxon, 

and the number of plant reads in that sample. Microbe-normalized comparison.txt files containing 

data from all libraries were imported in MicrobiomeAnalyst [88,89] where taxa having less than a 

20% prevalence and with a minimum of 10, 50, 10, and 10 reads for Archea, Bacteria, Fungi, and 

Viruses, respectively, were filtered out (a 20% prevalence filter with a minimum of 50 reads means 

that at least 20% of its values should contain at least 50 reads in the case of Bacteria). Data having a 

low variance (i.e., taxa constant throughout the samples) were filtered by applying a 10% inter-

quantile range measure of variance and were further normalized according to clr transformation, to 

take into account the compositional nature of the metagenomic data [90]. 

Good’s coverage index (which estimates the probability that the next read will belong to an 

existing taxon) and biomarkers characterizing Xylella abundance (high vs. low), cultivar (FS17 vs. 

Kalamata), and season (Spring vs. Autumn), were estimated by random forest analysis, by using 

MicrobiomeAnalyst with default parameters of 5000 trees to grow and randomness setting 

parameters. Clr-transformed data were ordinated by principal component analysis (PCA) using a 

variance-covariance matrix and the significance of the clustering was tested by analysis of group 
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similarities (ANOSIM), computed using the Euclidean index of distance similarity, by the PAST3 

software [91]. 

Pearson’s correlation analysis was performed to analyze the correlation between the proportion 

of Xylella to total bacterial reads and the population size, as estimated by qPCR. The assumption of 

normal distribution was preliminarily assessed by the Shapiro–Wilk’s test. Statistical significance was 

accepted at the  = 0.05 level. 

4.4. 16S and ITS1 rRNA Gene Library Sequencing and Bioinformatic Analysis 

The DNA was analyzed by high throughput sequencing using Illumina MiSeq platform with the 

paired-end option (2 × 250 bp). Bacterial community present in xylem wood shavings were assessed 

by sequencing the V4 region of the 16S gene of rRNA gene with the primer pairs 515f/806rB [92], 

using services available at the Instituto Gulbenkian de Ciência (IGC, Portugal). For the fungal 

community, the ITS1 region of rRNA gene was amplified with the primer pairs ITS1F/ITS2 [92] and 

custom sequenced at LGC Biosearch Technologies (Germany) facilities. The raw sequencing data 

were first subjected to a quality report visualized in FastQC. Based on the quality scores, read 

trimming was performed in Sickle [93] to eliminate the incorrectly placed bases in the 3′-end and 5′-

end regions, to obtain a greater read quality. Singles, i.e., unpaired reads, for which only the reverse 

or forward sequence was approved on the quality report, were also eliminated, keeping only good 

quality paired reads for the following analysis. After trimming, read errors constructed during the 

sequencing process were corrected using SPAdes [94]. The merge of overlapping paired-end reads 

was performed using USEARCH [95]. A new quality report was then performed with FastQC. From 

this report, read filtering parameters based on expected amplicon size were determined. The filtering 

was applied using ea-utils [96]. Clustering of reads in OTUs, and their taxonomic assignment at 97% 

similarity, was performed with MICCA [97]. Taxonomic classification was assigned by using the 

reference database SILVA version 132 [98,99] for the Bacteria and UNITE version 8.0 [100,101] for the 

Fungi. Unassigned OTUs and those that were identified as mitochondrial or plastid DNA, as well as 

OTUs with low abundance (i.e., less than five or 10 reads for Bacteria and Fungi, respectively), were 

removed from further analyses. All statistical analyses were performed by using this dataset, where 

the Xylella species data were excluded. 

The effect of the abundance of Xylella, host cultivar, and season in the microbiome diversity was 

determined by evaluating the richness by using the vegan package [102] and diversity function in R 

software [103]. To compare the differences between means, one-way ANOVA, followed by Tukey’s 

post-hoc test (significance level  = 0.05) was performed by using the same software. 

Non-metric multidimensional scaling (NMDS) was performed using Bray–Curtis index with 

normalized OTU matrix, to calculate the average dissimilarity in the composition of bacterial or 

fungal communities in olive tree xylem due to different Xylella abundance (high vs. low), host cultivar 

(FS17 vs. Kalamata), and season (Spring vs. Autumn). Kruskal’s stress was used to estimate the 

model’s goodness of fit, with a commonly accepted value when lower than 0.2 [104]. ANOSIM 

analysis of similarity was also performed, using Bray–Curtis distance matrices, to find significant 

differences between the bacterial or fungal community groups observed in NMDS ordination. This 

analysis generates a p-value (significant if ≤ 0.05) associated to an R-value, which ranges from 0 

(completely similar) to 1 (completely different) [105]. Both NMDS and ANOSIM analyses were 

performed using the vegan package (metaMDS and anosim functions, respectively) in R software. 

Contribution of Xylella abundance, host cultivar, and season to the xylem microbiome 

community structure was deciphered by using permutational multivariate analysis of variance 

(PERMANOVA), which was performed using the function adonis in the R vegan package. 

Additionally, a co-inertia analysis (CIA) was conducted to determine the relationship between 

bacterial/fungal genera and the abundance of X. fastidiosa, host cultivar, or season. This analysis was 

performed in R, using the ade4 package [106] and the table.value function to visualize the results. 

Raw sequence reads and related metadata were deposited at the Sequence Read Archive 

(National Center for Biotechnology Information, USA National Library of Medicine, Bioproject 

#PRJNA629675: https:// //www.ncbi.nlm.nih.gov/bioproject/PRJNA629675). 
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