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Abstract: As a model pathogen, Salmonella invades both phagocytic and non-phagocytic host
cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection.
Therefore, a systemic overview of Salmonella adaptations to distinct host cells together with host
remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the
Salmonella-host interplay are bacterial virulence factors (effectors) that are injected into host cells by
type III secretion systems (T3SSs). Despite great progress, functional studies of bacterial effectors have
experienced daunting challenges as well. In the last decade, mass spectrometry-based proteomics
has evolved into a powerful technological platform that can quantitatively measure thousands of
proteins in terms of their expression as well as post-translational modifications. Here, we will
review the applications of high-throughput proteomic technologies in understanding the dynamic
reprogramming of both Salmonella and host proteomes during the course of infection. Furthermore,
we will summarize the progress in utilizing affinity purification-mass spectrometry to screen for host
substrates of Salmonella T3SS effectors. Finally, we will critically discuss some limitations/challenges
with current proteomic platforms in the context of host-pathogen interactions and highlight some
emerging technologies that may offer the promise of tackling these problems.
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1. Introduction

As a group of Gram-negative bacilli that parasitize in human and animal intestines, Salmonella can
cause local intestinal disease (enteritis and diarrhea) in humans or, in some cases, systemic disease
(enteric/typhoid fever). The group of typhoidal Salmonella contains serovars Typhi, Paratyphi A,
Paratyphi B, and Paratyphi C, whereas other serovars are referred as non-typhoidal Salmonella,
including Salmonella Typhimurium [1]. Here in this review, we focus on Salmonella Typhimurium
which we will refer to as Salmonella unless otherwise indicated. As an intracellular pathogen,
Salmonella can invade different types of human cells including epithelial cells and macrophages,
which is essential for bacterial virulence. Salmonella pathogenesis is largely mediated by two type III
secretion systems (T3SSs) encoded within Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2).
These nanomachines are able to transport virulence factors (called effector proteins) directly into host
cells to manipulate diverse cellular processes. The SPI-1 effectors mostly mediate the initial bacterial
invasion into host cells, while those encoded within SPI-2 contribute to pathogen intracellular survival
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and multiplication. Upon internalization, Salmonella resides in a membrane-bound compartment
known as Salmonella-containing vacuoles (SCVs).

As one of the model bacterial pathogens, Salmonella pathogenesis has been extensively studied by
using various genetic, biochemical and cell biology methods. These approaches have built up most of
our knowledge of Salmonella infection biology. Nevertheless, there are notable obstacles that hamper us
from further understanding host-pathogen interactions on the molecular level. For instance, we often
lack a systemic snapshot of the host-pathogen interplay in that the bulk of research has focused on
characterizing individual pathogen genes/proteins. In addition, among the 40–60 Salmonella type III
effectors identified so far, only a handful of those are well characterized in terms of their biochemical
activities, host targets, and functional roles in pathogenesis. In reality, the function of many more
effectors (particularly those encoded by SPI-2) are yet to be defined. Another unfortunate truth is that
they are often more challenging to work with, or in other words, difficult to tackle by using traditional
methods (otherwise they would have been found and studied already).

Recently, mass spectrometry (MS)-based proteomics has witnessed major technical breakthroughs.
Owing to highly efficient nanoflow liquid chromatography (nano LC) and modern mass spectrometers
with high sensitivity, throughput and resolution, current proteomic platforms have achieved enormous
progress in analytical depth as well as the proteome coverage of complex samples. In the last decade,
the number of detected proteins by LC-MS techniques has increased from 1000 to almost 10,000 in a
single cell type [2].

We believe that it has come to the moment when MS-based proteomics can make substantial
impact on the research of Salmonella-host interactions. Herein, we intend to summarize the utilization
of proteomic technologies on elucidating the functional interplay between Salmonella and host cells.
With respect to proteomic applications in the broader area of host-pathogen interactions (e.g., various
bacteria and viruses), there are some excellent reviews published lately [3,4]. Furthermore, we would
also like to discuss some pitfalls and/or limitations of current technologies in the context of the
challenges they encounter. Last, we will envision some future directions of MS-based proteomics in
shaping our understanding of Salmonella-host interactions.

2. Large-Scale Analyses of Salmonella and Host Proteomes during Infection

Bacteria in general can sense environmental cues and quickly adapt to their surroundings.
Such adaptations are ultimately reflected in alterations on the molecular level and, in particular,
the protein level. Therefore, the Salmonella proteome exhibits high plasticity upon interactions with its
mammalian host. Conversely, host cells will have to reprogram their gene expression to fight against
bacterial invasion and their intracellular proliferation [5]. Therefore, dynamic proteomes of both
Salmonella and host cells upon infection would allow us to chart a panoramic view of the host-pathogen
interplay and generate hypotheses that warrant further investigations.

2.1. Research on Salmonella Proteome during Infection

Given Salmonella as a facultative intracellular pathogen, it would be most informative to examine
the proteome of bacteria isolated from infected host cells. For a long time, however, it had been
technically challenging to physically isolate intracellular pathogens [6]. Therefore, a substantial body
of work has focused on proteomic analyses of bacteria grown in bacteriological media or in conditions
that mimic the host environment [7]. These studies have been extensively reviewed elsewhere [8].
Herein we will focus on proteomic analyses of Salmonella recovered from cultured cell lines or in vivo
infection models.

The seminal work on the Salmonella proteome during infection was reported by the Bumann and
Mann groups in 2006 [9]. Prior to this, such work had not been carried out for any pathogen as it is
technically challenging to measure minimal amounts of bacterial proteins together with overwhelming
excess of host contaminants. They managed to isolate bacterial pathogens from infected mouse
tissues by using flow cytometry with an engineered Salmonella strain expressing green fluorescent
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protein (GFP). In total, they identified 370 and 835 Salmonella proteins from mouse spleen and caecum,
respectively, most of which were metabolic enzymes nonessential for Salmonella virulence. In addition
to in vivo studies, in the same year Shi et al. quantitatively analyzed the intracellular Salmonella
proteome by using cell culture models, in which 315 bacterial proteins were identified from infected
RAW 264.7 macrophages with 39 up-regulated proteins after infection [10]. Follow-up genetic studies
established that STM3117 contributes to Salmonella proliferation inside macrophages.

Given that Salmonella encodes ~4500 proteins, the proteome coverage of the above two studies still
awaits further improvement to increase the analytical depth. In 2013, the Bumann group extended the
previous work and detected 1182 bacterial proteins from an infected mouse spleen by using improved
sorting and proteomic technologies [11]. They further focused on 477 metabolic enzymes, of which
they performed absolute quantification and determined copy numbers. Eventually, they developed
a computational model of Salmonella metabolism in infected host tissues and demonstrated that the
pathogen exploits diverse host nutrients available only in scarce amounts. Though not reported in
this study, it would be interesting as well to analyze bacterial proteins in the in vivo dataset other
than metabolic enzymes (e.g., virulence factors, transcriptional regulators and etc.). In particular,
quantitative assessment of the in vivo proteome together with control groups can be quite illuminating
from the perspective of bacterial pathogenesis.

Recently, we took advantage of a proteomic strategy developed previously for intracellular
Campylobacter by the Galán group [12] and reported the dynamic remodeling of the Salmonella proteome
within infected epithelial cells [13,14]. With optimized conditions for cell lysis and differential
centrifugation, we detected close to 2000 bacterial proteins with minimal host contaminants (comprising
<15% of all identified proteins). Intracellular bacteria were isolated at distinct stages of Salmonella
infection (i.e., 1, 6 and 18 h post infection (hpi)) and their proteomes were quantitatively profiled
together with extracellular populations. We reasoned that time-course analyses of the pathogen
proteome are likely to reveal Salmonella’s adaptations to its intracellular niche within the host. At 6 hpi
(the onset of bacterial replication), the most striking alteration was the massive induction of bacterial
metal uptake (e.g., iron, zinc, and manganese) and phosphate utilization systems, unveiling an overall
shortage of metal and phosphate within the SCV (Figure 1). At 18 hpi, the datasets revealed prominent
reprogramming of bacterial metabolism. Notably, the tricarboxylic acid (TCA) cycle and respiration
(both aerobic and anaerobic pathways) were repressed whereas glycolysis, the pentose phosphate
pathway (PPP), and mixed acid fermentation were either constitutively expressed at high levels or
further induced (relative to 6 hpi). Other proteomic signatures of intracellular Salmonella include
differential regulation of virulence factors (i.e., mostly SPI-1 and -2 T3SSs) as well as severe degeneration
of bacterial flagellar and chemotaxis systems (Figure 1). Overall, these large-scale proteomic datasets
not only reveal broad adaptations of an intracellular pathogen to its mammalian host, but also provide
us a rich resource for further studies of those protein hits with functions not well understood.

Among those differentially regulated proteins of intracellular Salmonella, YdcR, a putative
transcriptional regulator, caught our attention because it was highly induced upon bacterial
internalization into host cells (barely expressed extracellularly). To illuminate its potential roles
in bacterial pathogenesis, in collaboration with the Song group, we again exploited intracellular
bacterial proteomics [15]. Given its annotation as a transcription factor, we reasoned that contrasting
the proteome of a mutant lacking ydcR (∆ydcR) to that of its parental strain would reveal those candidate
proteins under the regulatory controls of YdcR. Such a strategy turned out to be quite successful
in nailing down the target proteins. The expression of SrfN, a known virulence factor, was found
to be strictly dependent on YdcR during infection, and further biochemical assays validated the
direct regulation of srfN by YdcR. Importantly, competitive infection reveals that the loss of YdcR
largely phenocopied that of SrfN and led to reduced bacterial fitness in a murine infection model,
thereby suggesting a physiological role in pathogenesis.

After breaching the intestinal epithelium, Salmonella can be further internalized by phagocytic
cells, such as macrophages [16] where it disseminates to internal organs. Expectedly, Salmonella
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encounters different host environments in macrophages; therefore, it would be intriguing to uncover
those differences to which pathogens further adapt. Our group profiled the intracellular Salmonella
proteome inside infected murine macrophages (RAW 264.7 cells) [17]. Upon comparison to our
previous data (infection of epithelial cells), many host-specific proteomic signatures were revealed for
intracellular Salmonella (in addition to shared patterns). Notably, differential regulation of bacterial
T3SSs, chemotaxis and flagellar systems showed substantially faster kinetics in macrophages relative
to epithelial cells. Most strikingly, we noted massive induction of a complete set of Salmonella proteins
encoded on his operon in RAW 264.7 cells while these bacterial enzymes were barely detectable during
infection of HeLa cells. Follow-up experiments further established that markedly lower histidine
levels in RAW 264.7 cells together with a hisG mutation of the strain (SL1344) drove up the abnormally
high expression of the His enzymes. In other words, the defective biosynthetic pathway renders the
bacterial strain hypersensitive to histidine shortage in host macrophage cells.

A recent study by the Hensel group employed intracellular bacterial proteomics in murine
macrophages to study the roles of Salmonella-induced filaments (SIFs) [18]. While residing in the
Salmonella-containing vacuoles (SCVs), Salmonella establishes an intertwined tubular network of
SIFs connected to SCVs. The authors examined the proteome of two bacterial mutants, ∆ssaV and
∆sseF, which either lack a tubular network or have a defective one. In comparison to the WT strain,
both mutants had elevated expression of bacterial proteins in response to nutritional starvation.
In addition, the SPI-2-deficient mutant (∆ssaV) exhibited features indicative of higher stress levels due
to host antimicrobial defenses such as reactive oxygen species (ROS). These proteomic findings further
support the roles of SIFs in the Salmonella intracellular lifestyle. Importantly, remodeling of the host
endosomal system by SPI-2 T3SS effectors allows the pathogen to acquire nutrients and defend against
host antimicrobial molecules.Pathogens 2020, 18, x FOR PEER REVIEW 4 of 14 
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2.2. Research on Host Proteome during Infection-Expression Profiling

Host-pathogen interactions are a two-way street. Surveying the host proteome can help understand
host defense mechanisms during bacterial infection. Due to the greater complexity of mammalian
proteomes, proteomic profiling of host cells, in general, is lagging behind that of pathogens. In 2009,
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Shi et al. reported the first proteomic analyses of host cells upon S. Typhimurium infection [19].
They conducted a time-course study of infected RAW 264.7 macrophages (at 0, 2, 4 and 24 hpi) together
with uninfected controls. Among 1006 identified proteins, 244 host proteins were significantly altered
after Salmonella infection. Notably, iNOS and prostaglandin (PG)-endoperoxide synthase 2 (also known
as COX-2) were up-regulated, and their induction was previously shown to contribute to host defenses.
Recently, our group examined protein expression of host epithelial cells (i.e., HeLa) during Salmonella
infection [20]. In total, we measured 1558 proteins in nuclear fractions and 3916 proteins in post-nuclear
fractions. Despite the increased proteome coverage, largely due to extensive sample fractionation,
host proteomic datasets, at least in our hands, are yet to be as informative as those of pathogens.
Nevertheless, host glucose transporters and glycolytic enzymes were markedly induced, which seems
to resonate with elevated bacterial glycolysis as previously reported [14]. Other proteins of higher
levels upon bacterial infection include integrins (e.g., ITGA2) and poly [ADP-ribose] polymerases
(e.g., PARP1), yet their functional roles, if there are any, in Salmonella-host interactions remain to
be defined.

Rather than profiling the whole proteome, subsets of the host proteome (called subproteomes)
can be analyzed as well in response to bacterial infection. In principle, such analyses often afford
greater details at the price of comprehensiveness. It has been shown that intact Golgi membranes
are required for efficient Salmonella replication [21]. To investigate their roles, Vogels et al. analyzed
Golgi-enriched fractions of infected HeLa cells and found 105 altered host proteins [22]. To further
study the functional relevance, interestingly, small interfering RNA (siRNA) experiments identified
five host factors (PRDX6, ITGB4, ERBB2IP, STOM and TBC1D10B), whose knockdown led to increased
bacterial replication. Salmonella infection of host cells often accompanies the formation of extensive
membrane networks extending from the mature SCV for nutrient supply. To understand the source
and function of these networks, Vorweck et al. immunoprecipitated SseF, a SPI-2 effector embedded
in such membranes [23]. Using a mutant lacking this membrane structure as a control, they found
247 specifically enriched host proteins, suggesting that Salmonella redirects ER membrane trafficking to
its intracellular niche.

Due to their vital function for intracellular Salmonella, SCVs have also been an intense subject
of study, though their physical isolation is still technically challenging. Santos et al. examined the
proteome of SCVs purified from HeLa cells at 30 min and 3 h, representing the early and maturing SCVs,
respectively [24]. With non-infected fractions as controls, in total 392 host proteins were specifically
enriched at SCVs. Interestingly, distinct sets of proteins were associated with the early and late stages,
suggesting dynamic communications between diverse host organelles and SCVs (to promote bacterial
intracellular survival). During Salmonella infection of macrophages, bacterial pathogens induce
secretion of specific cytokines from these phagocytes and interfere with the host secretory pathways.
For example, IL-4 and IL-10 suppress the host immune responses against Salmonella, while cytokines
such as IL-1β and IL-18 are able to activate inflammasome. Hui et al. analyzed the extracellular
proteome of macrophages (human THP-1 cells) upon Salmonella infection [25]. Their proteomic
findings revealed for the first time the formation of proinflammatory exosomes in the early phase of
macrophage infection, which can be further utilized to transport specific protein cargoes from infected
cells to stimulate naive cells. Interestingly, one of these cargoes delivered via this pathway is a human
deubiquitinating enzyme, OTUB1.

In a recent study, the Typas and Krijgsveld groups performed host spatiotemporal proteomics
during macrophage infection by combining click chemistry and pulsed stable isotope labeling of
amino acids in cell culture (SILAC) [26]. They monitored newly synthesized host proteins across
different infection stages and cell compartments (i.e., extracellular, lysosomal, and nuclear factions).
Intriguingly, many lysosomal proteases (e.g., cathepsins) exhibited hypersecretion and higher levels in
the nucleus. They further demonstrated that abnormal nuclear trafficking of cathepsins was mediated
by Salmonella SPI-2 T3SS. Importantly, cathepsin inhibition was able to suppress Salmonella-induced
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cell death and reduce gasdermin D expression, thus illustrating a functional role of cathepsin in
non-canonical inflammasome regulation.

Lately, the Tao group developed a chemical probe that permits the capture of host proteins that
directly interact with the surface of intracellular Salmonella during infection [27]. Briefly, the probe
features three functionalities: a labeling aminooxy group that conjugates to the glycans on bacterial
surface, a photo-reactive diazirine group that crosslinks host-interacting proteins and a biotin group
for affinity purification. Murine macrophages (RAW 264.7 cells) were infected by labeled Salmonella
and harvested at 15 min, 1 h and 6 h post infection prior to affinity enrichment of crosslinked host
proteins. In total, 442 proteins were identified over three time points. Consistent with previous
findings, host proteins associated with early endocytosis were enriched at 15 min and 1 h, while late
endosomal and lysosomal proteins (e.g., LAMP1) were overrepresented at 6 h. In addition to known
SCV markers and/or interacting host components, this work also identified novel substrates that bind
to bacterial pathogens during early stages of infection, including CD98, CD180, CD147 and CD11b. It is
conceivable that the developed strategy can be broadly applied to understand the interplay between
hosts and other bacteria, as well as viruses.

2.3. Research on Host Proteome during Infection-PTM Profiling

Post-translational modifications (PTMs) play a crucial role in the interplay between pathogens and
host cells. In the last decade, significant advances have been made in proteomic technologies towards
large-scale profiling of several common PTMs such as phosphorylation, glycosylation, acetylation,
and ubiquitination. Among the proteomic studies of all PTMs, phosphoproteomics is arguably the
most established area in which diverse and robust enrichment strategies have been developed for
phosphoproteins or phosphopeptides, such as immobilized metal affinity chromatography (IMAC)
and TiO2 [28].

In 2011, the Foster group conducted quantitative phosphoproteomics of host epithelial cells
during the initial stages of Salmonella infection [29]. They measured 1973 phosphorylated proteins and
9508 phosphorylation events from the analyses of host cells infected by wild-type and ∆sopB strains
together with mock infection. Overall, they found higher phosphorylation levels of proteins related to
regulation of apoptosis, transmembrane transport, nuclear organization, and cell proliferation and
lower phosphorylation levels of those related to cytoskeleton organization, protein complex assembly,
and cell polarity. Further bioinformatic analyses revealed that phosphosites of differing levels during
infection were targeted by Akt, protein kinase C, and Pim. Moreover, they found that the SPI-1 T3SS
effector SopB could impact half of the host phosphorylation events upon bacterial infection. In a
subsequent study, the same group investigated the global impact of Salmonella SPI-2 effectors on the
host phosphorylation events [30]. They quantitatively analyzed the phosphoproteome of epithelial
HeLa cells and RAW 264.7 macrophage cells infected with either wild-type or SPI-2 T3SS-deficient
strains (∆ssaV). Intriguingly, they found differential modulation of host phosphorylation events and
cellular processes by SPI-2 effectors in a cell type-dependent manner. Furthermore, they identified
HSP27 as a kinase substrate of the type III effector SteC. Biochemical and cellular assays demonstrated
that SteC induces actin rearrangement by phosphorylating multiple sites of HSP27.

In addition to phosphorylation, protein ubiquitination is central to many fundamental cellular
processes and is also an important player at the functional interface of host-pathogen interactions.
Indeed, the host ubiquitin system is a frequent target of many bacterial virulence factors [31,32].
For example, Salmonella encodes several T3SS effector proteins (e.g., SopA, SlrP, and SspH2),
which harbor E3 ubiquitin ligase activity and presumably directly target host ubiquitination processes.
The Behrends and Dikic groups utilized ubiquitinome profiling to measure the dynamic alterations in the
global ubiquitination events of host epithelial cells upon Salmonella infection [33]. Overall, they found
that host proteins of differing ubiquitination levels are functionally related to the actin cytoskeleton,
NF-kB and autophagy pathways, and the Ub and RHO GTPase systems. Notably, pathogen-induced



Pathogens 2020, 9, 581 7 of 13

ubiquitination contributes to CDC42 activity and linear ubiquitin chain formation, both of which are
necessary for the activation of NF-kB signaling pathways.

Small ubiquitin-related modifier (SUMO) is a ubiquitin-like protein and SUMOylation can regulate
a variety of protein functions in many cellular pathways [34]. The Srikanth group reported a dynamic
host SUMOylation profile in response to Salmonella infection by using immunoblotting assays [35].
Moreover, they provided evidence that the intracellular survival of Salmonella was profoundly impacted
by host SUMO status, suggesting a crucial role of this PTM in bacterial pathogenesis. In a following
study, the same group enriched and analyzed the SUMOylated proteins from Salmonella-infected host
cells as well as uninfected controls [36]. Among the diverse SUMO substrates, they followed up on the
small GTPase Rab7 which was modified at K175. Furthermore, a SUMOylation-deficient Rab7 mutant
exhibited longer half-life and was beneficial to SCV dynamics. Therefore, they concluded that the
down-regulation of Rab7 SUMOylation by Salmonella promotes long-lived yet functionally deficient
Rab7 for its own benefit of intracellular survival and proliferation.

Recently, the Hartland group employed glycoproteomics to screen for host glycosylation substrates
of Salmonella type III effectors SseK1 and SseK3. These two effectors are arginine glycosyltransferases
that can covalently attach N-acetyl glucosamine (GlcNAc) to protein substrates. By taking advantage
of an antibody that can recognize and enrich GlcNAcylated peptides, they aimed to globally
identify glycosylated host proteins during Salmonella infection. They found that SseK1 modified the
signaling adaptor TRADD, while SseK3 modified the signaling receptors TNFR1 and TRAILR [37].
In collaboration with the Li group, we applied the same strategy to comprehensively map the
GlcNAcylated substrates of SseK3 upon bacterial infection. Our study revealed the modification
of several Rab GTPases such as Rab1, consistent with the effector’s co-localization with the Golgi
apparatus. Furthermore, the GlcNAcylated arginine residue was mapped to the switch II region and
the third α-helix, and its modification severely disrupted the function of Rab1. Together, these studies
demonstrate the utility of PTM profiling as a powerful screen for host targets of bacterial effectors.

3. Proteomic Tools Assist in the Study of Bacterial Virulence Factors

In addition to the global profiling of protein expression and PTMs, MS-based proteomics has also
evolved into a powerful technique for studying protein-protein interactions. In the context of Salmonella
infection, secreted toxins and effectors are the bacterial factors that directly engage in host-pathogen
interactions. Therefore, identifying these virulence factors and understanding how they work is a
fundamentally important theme in bacterial pathogenesis. In fact, proteomic tools can make substantial
contributions to such endeavors.

Over the years, many Salmonella type III effectors have already been reported by various
biochemical, genetic, and bioinformatic methods. Nevertheless, we often lack a comprehensive
survey of these effectors and whether we are still missing some effectors remains to be answered.
Proteomic profiling of bacterial culture supernatant (or secretome analysis) can be utilized as a
high-throughput screen for novel effector candidates. In 2011, the Heffron group analyzed bacterial
secretome from Salmonella culture under SPI-2-inducing conditions [38]. By using the ∆ssaL mutant as
a control, they were able to identify 20 known SPI-2 effectors. Among 12 candidate proteins for novel
effectors, they successfully validated six proteins as bona fide substrates translocated by SPI-2 T3SS.
Almost at the same time, the groups of Finlay and Foster collaboratively applied secretome analysis
and identified several novel substrate candidates of SPI-2 T3SS as well [39]. In addition, they used
quantitative mass spectrometry to examine the host targets of these bacterial effectors, which we will
further discuss later in this section.

In 2017, our group undertook quantitative secretome profiling to catalogue Salmonella effectors
delivered by SPI-1 T3SS [40]. By using a SPI-1-deficient mutant (∆invA) as a control, we identified
STM1239 (which we renamed SopF) as a novel substrate of T3SS. Further immunoblotting
and β-lactamase reporter assays confirmed T3SS-dependent secretion and translocation of SopF.
In collaboration with the Zhou group, we performed some initial characterization of this newly
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identified effector, ascertaining its contribution to bacterial virulence. Recently, an independent study
from the Shao group confirmed the discovery of SopF as a novel type III effector [41]. Remarkably,
they unveiled that SopF inhibits Salmonella-induced autophagy (xenophagy) by covalently modifying
a component of host vacuolar ATPase via its ADP-ribose transferase activity. We also contributed in
this work to mapping the ADP-ribosylation site (s) of this host factor by tandem mass spectrometry.

As for bacterial virulence factors, a significant bottleneck of their functional studies is the discovery
of host-interacting partners. When one embarks on such tasks, affinity purification-mass spectrometry
(AP-MS) is arguably one of the most practiced methods. Indeed, AP-MS has helped uncover many
host substrates of Salmonella effectors, which are scattered throughout the literature and include SopB,
SopE, GogB, SteE, SifA, and SopA [42–48].

Next, we would like to review some reports in which large-scale AP-MS experiments were
conducted to reveal host interactome for a panel of bacterial effectors. In 2011, the Finlay and Foster
groups collaboratively screened a total of 24 SPI-2 effectors using strategies combining overproduction
in mammalian cells or E. coli, immunoprecipitation of protein complexes, and MS analyses. In addition
to previously described interactions, they were able to identify 11 novel protein interactions, three of
which were further validated by reciprocal co-immunoprecipitation [39]. In 2016, another group
reported AP-MS analyses of a subset of Salmonella effectors (GogA, GtgA, GtgE, SpvC, SrfH, SseL,
SspH1, and SssB) and collectively identified 54 high-confidence host interactors [49]. Among those
interactions, they further confirmed biochemically the interaction of SrfH and host kinase ERK2.

Despite the large body of the work discussed above, the overall success rate of AP-MS is not
particularly encouraging, at least in some cases, in identifying host targets of individual effectors.
There are two major complications, in our opinion, that could account for an unsuccessful practice.
First of all, stable protein interactions/complexes (that can withstand and survive the whole purification
scheme) have been assumed for positive outcomes. We know in reality that many effector-substrate
interactions can be relatively weak or transient, which would be most likely lost during AP-MS
experiments. Secondly, due to the sensitivity of MS measurements, one would pick up many
non-specific binding partners (in particular when overexpression occurs) that mask the real targets
from being identified.

Some emerging methods have shown promise in addressing the issues discussed above. Proximity
labeling is one of these techniques. A prototype of this tool is BioID for proximity-dependent biotin
identification [50]. Conceptually, BioID fuses a promiscuous biotin ligase with the bait protein
(i.e., an effector) and upon expression in cells the fusion protein can biotinylate neighboring proteins in
close proximity (Figure 2). Then, those biotin-labeled candidate interactors can be affinity purified
under harsh conditions (to minimize non-specific interactions) for MS identifications. In principle,
this approach also permits the isolation of weak and/or transient protein interactions. The Brumell
group systematically compared BioID and traditional immunoprecipitation in analyzing host targets of
Salmonella effectors that modulate host intracellular trafficking (SifA, PipB2, SseF, SseG and SopD2) [51].
Notably, BioID exclusively identified a subset of interacting proteins, among which SifA interacts with
BLOC-2, a protein complex modulating dynein motor activity. Furthermore, they demonstrated the
requirement of BLOC-2 for SifA-mediated positioning of SCVs. Their work therefore highlights the
utility of BioID as a powerful tool to study effector–host protein interactions.
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4. Concluding Remarks and Future Perspectives

As discussed above, proteomic analyses offer us a global and systemic view of the delicate balance
of Salmonella-host interactions. Regarding proteome-wide expression profiling, the analyses of bacterial
pathogens seem to provide us more insights into bacterial pathogenesis largely owing to relatively
compact pathogen proteomes (and higher coverage). Though isolation of intracellular bacteria used to
be technically challenging, we have perfected a differential centrifugation-based approach, permitting
routine analyses of bacteria recovered from host cells. With such proteome datasets, we are able to
chart a dynamic overview of pathogen biology during infection based on current knowledge of known
protein functions. Nonetheless, we believe the better utility of such data is to formulate hypothesis,
from which new studies can be initiated. We would like to raise attention in this regard because many
altered proteins are not well characterized or cannot be classified into known pathways/networks
(omitted from the main text). Furthermore, we would like to encourage the practice of analyzing
intracellular proteome of bacterial mutants, particularly when a mutant fails to exhibit observable
phenotypes in traditional assays. With WT bacteria as a reference, large-scale proteomic analysis
of mutant strains can provide valuable clues by generating a molecular phenotype. Another future
direction would be bacterial proteomes from in vivo infections, though we have seen a few successful
examples as discussed early in Section 2.1. There are still some technical hurdles (e.g., limited amounts
of samples, contamination from host and other resident bacteria) that we need to overcome.

On the host side, the proteome coverage in expression profiling has been expanded largely
due to significantly improved proteomic platforms in the last decade. That being said, the covered
proteome is still not as comprehensive as we would like it to be. In many cases, greater coverage comes
with the price of extensive sample fractionations before LC-MS measurements, which substantially
drives up the analysis time and lowers the throughput. Prior to the arrival of mass spectrometers
with superb sequencing rates, we may have more success with subproteome analyses with reduced
sample complexity and greater analytical depth. Subproteomes can be either organelles or other
subcellular structures. Furthermore, PTMs can be considered as subproteomes as well. We have
summarized some great applications of PTM profiling in the context of Salmonella-host interactions.
In addition to generating networks of signaling pathways (e.g., phosphorylation) and new hypotheses,
another direction we would like to encourage is the utilization of PTM profiling as a powerful screen
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for effector substrates. For example, Salmonella (and many other bacterial pathogens as well) encodes
type III effectors harboring enzymatic activities that can directly engage in host phosphorylation
and ubiquitination pathways. Quantitative PTM profiling of host cells infected by Salmonella WT
and mutant strains can help us tease out candidate host targets. In the future, we would anticipate
expansion of PTM profiling to other less common modifications when more enrichment tools become
available. Though less prevalent than their mammalian counterparts, PTM profiling of bacterial
pathogens can be explored as well. Indeed, large-scale analyses of protein acetylation in Salmonella
have been reported [52,53].

A center stage of Salmonella-host interactions is the functional study of bacterial effectors.
A common rate-limiting step in such endeavors is the relentless search for their host targets. Traditional
AP-MS has fulfilled its duty to some extent in interrogating effector-target interactions, and smarter
tools are definitely needed with the hope of better precision and accuracy. As discussed above,
the efficiency of regular AP-MS would drop substantially when weak and/or dynamic protein-protein
interactions are involved. Several emerging techniques can potentially overcome this difficulty
including proximity-labeling methods such as BioID, as discussed above (Figure 2). A recently
developed strategy involving engineered ascorbate peroxidase (APEX) can be exploited as well for
proximity labeling and capturing candidate interactors [54,55]. APEX can convert biotin-phenol
derivatives to short-lived radicals capable of reacting with electron-rich amino acids, thus biotinylating
proteins within a small radius (<20 nm) (Figure 2). Lately, the Ting group further enhanced the labeling
efficiency of BioID via directed evolution of the biotin ligase (now named TurboID) [56]. Thus far,
proximity-labeling methods have contributed the discovery of several novel protein-protein interactions
at the host-pathogen interface [57–59]. Last but not least, chemical crosslinking in principle can stabilize
protein complexes by introducing covalent interactions. Indeed, we have successfully utilized
formaldehyde crosslinking to pull down host targets of a Legionella type IV effector SetA harboring
glycosyl-transferase activity [60]. Regardless of daunting challenges ahead, therefore, we should
remain optimistic about constantly evolving new technologies. We will certainly envision in the future
more prevalent practice of MS-based proteomics in unraveling molecular mechanisms governing the
interplay of Salmonella and host cells as well as the broad field of host-pathogen interactions.
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