Supplementary Information

Synthesis and evaluation of novel ellipticines and derivatives as inhibitors of P. Infestans growth.

1. Synthesis of Isoellipticine framework S-2
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data S-4

3-(1H-Indole-2-carbonyl)isonicotinic acid

3-(1-(Phenylsulfonyl)-1H-indole-2-carbonyl)isonicotinic acid (17.86 g, $43.9 \mathrm{mmol})$, potassium carbonate ($24.3 \mathrm{~g}, 175.7 \mathrm{mmol}$), methanol (480 ml) and water (160 ml) were heated to reflux for 4.5 hours. The solvent was removed under reduced pressure, the residue dissolved in water (450 ml), cooled on ice and acidified to pH 2 with 37% aqueous hydrochloric acid. A pale yellow solid formed which was filtered and washed with water. Recrystallisation from acetone yielded the product in two crops (combined yield $10.86 \mathrm{~g}, 92.8 \%$). m.p. 241 $-243{ }^{\circ} \mathrm{C}$ (Lit. m.p. $\left.247-250^{\circ} \mathrm{C}\right)^{1}$; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}): 3337,2420,1884,1715,1633,1600,1572,1524,1344,1297$, $1256,1231,1129,1065,745$; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 6.74[1 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{C}(3) \mathrm{H}], 7.08$ [1H, overlapping ddd, J $7.8,7.1,0.8, \mathrm{C}(5) \mathrm{H}], 7.32[1 \mathrm{H}$, overlapping ddd, $J 8.0,6.9,1.0, \mathrm{C}(6) \mathrm{H}], 7.49[1 \mathrm{H}, \mathrm{dd}, J 8.4,0.6, \mathrm{C}(7) \mathrm{H}], 7.64$ [1H, d, J 8.0, C $(4) \mathrm{H}], 7.86\left[1 \mathrm{H}, \mathrm{d}, J 4.7, \mathrm{C}\left(5^{\prime}\right) \mathrm{H}, 8.85\left[1 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(2^{\prime}\right) \mathrm{H}\right], 8.93\left[1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{C}\left(6^{\prime}\right) \mathrm{H}\right], 12.07\right.$ [1H, s, $\mathrm{N}(1) \mathrm{H})], 13.80[1 \mathrm{H}$, br s, C(4')COOH]; m/z (ESI-): 265 [(M-H)-, 100\%]

Indolo[1,2-b][2,6]naphthyridine-5,12-dione

3-(1H-Indole-2-carbonyl)isonicotinic acid ($10.95 \mathrm{~g}, 0.041 \mathrm{~mol}$) in acetic anhydride ($770 \mathrm{ml}, 831.6 \mathrm{~g}, 8.15 \mathrm{~mol}$) was heated to $85^{\circ} \mathrm{C}$ under nitrogen for 18 hours and to $90{ }^{\circ} \mathrm{C}$ for a further 6 hours. The solution was allowed to cool, concentrated to one third volume and placed on ice for 3 hours. The product precipitated as green needles which were separated by suction filtration and washed with copious water. Recrystallisation from acetone provided the pure product ($8.05 \mathrm{~g}, 78.8 \%$). m.p. $213-215{ }^{\circ} \mathrm{C}$ (Lit. m.p. $216-218.5^{\circ} \mathrm{C}$) ${ }^{1}$; $v_{\max } / \mathrm{cm}^{-1}$ (KBr): 3123, 3053, 3025, 1708, 1699, 1667, 1552, 1379, 1341, 1242, 751, 729; סн (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 7.44[1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{C}(9) \mathrm{H}], 7.65[1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{C}(8) \mathrm{H}], 7.78[1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(11) \mathrm{H}], 7.88[1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{C}(7) \mathrm{H}], 8.17[1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{C}(4) \mathrm{H}], 8.48[1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{C}(10) \mathrm{H}], 9.14[1 \mathrm{H}, \mathrm{d}, J 5.0$, $\mathrm{C}(3) \mathrm{H}], 9.33[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right): 249\left[(\mathrm{M}+\mathrm{H})^{+}, 30 \%\right]$.

5,11-Dimethyl-10H-pyrido[3,4-b]carbazole (isoellipticine) 30

Indolo[1,2-b][2,6]naphthyridine-5,12-dione (3.24 g, 13.1 mmol$)$ in tetrahydrofuran (500 ml) was cooled to $-100{ }^{\circ} \mathrm{C}$ under nitrogen. Methyllithium ($19.9 \mathrm{ml}, 1.45 \mathrm{M}, 28.8 \mathrm{mmol}$) was added dropwise whilst ensuring the temperature did not rise above $-100{ }^{\circ} \mathrm{C}$. The reaction was maintained at $-100^{\circ} \mathrm{C}$ for one hour after addition was completed and then allowed warm to room temperature overnight. The solvent was removed under reduced pressure and the residue dissolved in absolute ethanol (420 ml). Sodium borohydride (7.40 $\mathrm{g}, 196 \mathrm{mmol}$) was added and the mixture refluxed under nitrogen for a total of 24 hours with a second portion of sodium borohydride $(7.40 \mathrm{~g}, 196 \mathrm{mmol})$ added after 6 hours. The mixture was allowed to cool and solvent removed under reduced pressure. The residue was dissolved in water (350 ml) and extracted with dichloromethane - methanol 90:10 ($3 \times 200 \mathrm{ml}$). The pH of the aqueous fraction was adjusted sequentially to pH 7 and pH 2 with 37% aqueous hydrochloric acid and extracted both times with dichloromethane - methanol 90:10 ($1 \times 50 \mathrm{ml}$). Combined organic layers were washed with water $(2 \times 200$ $\mathrm{ml})$ and brine $(1 \times 100 \mathrm{ml})$, dried over magnesium sulfate and solvent removed under reduced pressure. Purification by column chromatography eluting with dichloromethane - methanol (98:2-95:5) gave the product as a yellow solid ($2.67 \mathrm{~g}, 83.2 \%$) m.p. $274-276^{\circ} \mathrm{C}$ (Lit. m.p. $\left.270-283^{\circ} \mathrm{C}\right)^{1}$; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}): 3145$, 3077, 2978, 2923, 2870, 1614, 1598, 1464, 1407, 1382, 1319, 1308, 1275, 1231, 1014, 740; бн (300 MHz, DMSO$\left.d_{6}\right): 2.96\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(11) \mathrm{CH}_{3}\right], 3.14\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(5) \mathrm{CH}_{3}\right], 7.26[1 \mathrm{H}$, overlapping ddd, J 8.1, 6.3, 1.8, C(7)H], $7.51-7.61$
[2H, m, C(8)H, C(9)H], $8.12[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1, \mathrm{C}(4) \mathrm{H}], 8.37-8.45[2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 9.59[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}], 11.35$ [1H, s, N(10)H]; m/z (ESI+): 247 [(M+H)+, 100\%]

1. G.W. Gribble, M.G. Saulnier, J.A. Obaza-Nutaitis, D.M. Ketcha, A versatile and efficient construction of the 6H-pyrido[4,3-b]carbazole ring system. Syntheses of the antitumor alkaloids ellipticine, 9 -methoxyellipticine, and olivacine, and their analogs, The Journal of Organic Chemistry 57(22) (1992) 5891-5899.
${ }^{1} \mathrm{H}$ NMR Data of 20

${ }^{13}$ C NMR Data of 20

${ }^{1} \mathrm{H}$ NMR Data of 21

${ }^{13}$ C NMR Data of 21

${ }^{1} \mathrm{H}$ NMR of 22

${ }^{13}$ C NMR Data of 22

${ }^{1} \mathrm{H}$ NMR Data of 23

${ }^{13}$ C NMR Data of 23

$\left.\left.\right|^{\infty}\right|^{\circ} V^{\circ}$
${ }^{1} \mathrm{H}$ NMR Data of 24

${ }^{13} \mathrm{C}$ NMR Data of 24

${ }^{1} \mathrm{H}$ NMR of Data 25

${ }^{13} \mathrm{C}$ NMR Data of 25

${ }^{1} \mathrm{H}$ NMR Data of 26

${ }^{13}$ C NMR Data of 26

${ }^{1} \mathrm{H}$ NMR Data of 27

${ }^{13} \mathrm{C}$ NMR Data of 27

${ }^{1} \mathrm{H}$ NMR Data of 28

${ }^{13} \mathrm{C}$ NMR Data of 28

${ }^{1} \mathrm{H}$ NMR Data of 29

${ }^{13} \mathrm{C}$ NMR Data of 29

${ }^{1} \mathrm{H}$ NMR Data of 31 and 32

C(8)H $\mathrm{C}(9) \mathrm{H}$

Comparison of aromatic region of 7-formyl-10-methylisoellipticine with 10methylisoellipticine (both recorded in $\mathrm{DMSO}-\mathrm{d}_{6}$ at 300 MHz)
${ }^{1} \mathrm{H}$ NMR Data of 33a and 33

33

