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Abstract: Persistent infection with certain types of human papillomaviruses (HPVs), termed high
risk, presents a public health burden due to their association with multiple human cancers, including
cervical cancer and an increasing number of head and neck cancers. Despite the development of
prophylactic vaccines, the incidence of HPV-associated cancers remains high. In addition, no vaccine
has yet been licensed for therapeutic use against pre-existing HPV infections and HPV-associated
diseases. Although persistent HPV infection is the major risk factor for cancer development, additional
genetic and epigenetic alterations are required for progression to the malignant phenotype. Unlike
genetic mutations, the reversibility of epigenetic modifications makes epigenetic regulators ideal
therapeutic targets for cancer therapy. This review article will highlight the recent advances in the
understanding of epigenetic modifications associated with HPV infections, with a particular focus
on the role of these epigenetic changes during different stages of the HPV life cycle that are closely
associated with activation of DNA damage response pathways.
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1. Introduction

Human papillomaviruses (HPVs) are small, non-enveloped, double-stranded DNA viruses that
exhibit a strict tropism for cutaneous and mucosal (e.g., oropharynx, anogenital tract) epithelium [1].
More than 200 HPVs have been identified and sequenced [2]. Approximately one-third of all HPV
types are classified as mucosal HPVs that specifically target the genital mucosa and can be categorized
into high risk and low risk based on their oncogenicity [3]. The low-risk HPVs (e.g., HPV6 and 11)
induce hyperproliferative lesions, often resulting in genital warts, but rarely progress into high-grade
neoplasia and invasive malignant cancer. In contrast, there are approximately 12–15 high-risk genotypes
(e.g., HPV16, 18, 31, and 45) that are etiological agents of cervical cancers [4–6], with 99% of cervical
cancers containing high-risk HPV DNA and expressing the viral oncogenes E6 and E7 [4]. High-risk
HPVs are also associated with the development of other anogenital malignancies such as penile, vulvar
and anal carcinomas, as well as an increasing number of head and neck cancers, with oropharyngeal
squamous cell carcinoma becoming the major HPV-associated cancer in recent years [7,8]. The incidence
of HPV-associated oropharyngeal cancers constitutes up to 90% of all new cases of oropharyngeal
cancers in the U.S. [8]. While the current FDA-licensed HPV vaccines appear to be highly efficacious in
decreasing HPV-associated diseases, they are not therapeutic against pre-existing HPV infections or
malignant progression [9].
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2. The HPV Life Cycle

2.1. HPV Genome Structure

In infected cells, the HPV genome exists as an extrachromosomal element (episome) of
approximately 8 kilobase pairs that encodes for six to eight open reading frames (ORFs) (Figure 1A).
Due to their limited coding capacity, HPVs support viral replication by manipulating host cell
DNA replication and repair machinery [10]. The HPV life cycle is tightly associated with epithelial
differentiation of host keratinocytes, in which the productive phase of the viral life cycle is restricted to
the terminally differentiating suprabasal cells of the epithelium (Figure 1B). HPV infects the actively
proliferating, undifferentiated basal keratinocytes of the stratified squamous epithelium that are
thought to become exposed through a microlesion [11]. Two viral promoters, early and late, regulate
viral gene expression and are active at different stages in the life cycle (Figure 1A) [12]. The early
promoter (p97 for HPV16 and 31, p105 for HPV18) is located upstream of the E6 ORF and directs
expression of early viral genes in undifferentiated cells, but remains active throughout differentiation
(Figure 1A) [12]. The late promoter (p742 for HPV31, p670 for HPV16, p811 for HPV18) is located
within E7 ORF and is activated upon epithelial differentiation to induce expression of late viral genes,
including the L1 and L2 capsid genes [12]. The Long Control Region (LCR), also known as the Upstream
Regulatory Region (URR), is an untranslated regulatory region that contains the keratinocyte enhancer
(KE) region, origin of replication, and the early promoter. This region also contains binding sites for
various transcription factors and the viral helicase E1 as well as the viral protein E2, which contributes
to viral replication and regulation of viral gene expression [13].
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site (pAE) is located at the 3’ end of the E5 ORF, and the late polyadenylation site (pAL) is located at
the end of the L1 ORF. The E8ˆE2 transcript is expressed from a promoter located in the E1 ORF (PE8).
The Long Control Region (LCR) is an untranslated region that contains the keratinocyte enhancer (KE),
origin of replication (ori), E1- (E1BS) and E2-binding sites (E2BS), as well as binding sites for various
transcription factors. (B) Uninfected epithelium is shown on the left and HPV-infected epithelium
is shown on the right. HPV infects the proliferating basal cells of the stratified epithelium exposed
through a microwound. Upon entry, viral genomes are established in the nucleus of infected cells
as episomes, early viral genes (E1, E2, E6, E7) are expressed, and the virus quickly amplifies to
50–100 copies per cell in an E1- and E2-dependent manner. HPV episomes are maintained at low-copy
number in actively dividing basal keratinocytes by replicating along with cellular DNA. As infected
cells divide, one cell remains in the basal layer, whereas the other cell migrates upward and initiates
epithelial differentiation. Differentiation triggers the productive phase of the viral life cycle, resulting
in viral genome amplification to thousands of copies per cell, late gene expression and virion assembly
and release. The early promoter remains active, allowing for continued expression of E6 and E7 in
differentiating cells. While differentiation normally results in an exit from the cell cycle, the E6 and E7
proteins deregulate cell cycle control to push differentiating cells back into the cell cycle, providing
HPV access to cellular substrates required for productive viral replication. E4 and E5 also contribute to
productive viral replication. Expression of L1 and L2 in the uppermost layers of the epithelium results
in the assembly and release of virions.

2.2. The HPV Life Cycle Consists of Three Stages of Replication

Following initial infection of exposed basal cells, the early promoter becomes active, resulting in
expression of the E1 viral helicase, which along with E2, facilitates establishment replication, whereby
viral episomes are quickly amplified to 50–100 copies per cell [14,15]. In these undifferentiated cells,
viral genomes are subsequently maintained at low copy number by replicating along with cellular
DNA. As the infected basal cells divide, viral DNA is partitioned to daughter cells—one of which
migrates away from the basal layer and begins terminal differentiation. Epithelial differentiation
induces the productive phase of the viral life cycle, leading to activation of the late promoter and
expression of late viral genes (E4, E5, L1, L2), as well as high levels of E1 and E2 that drive viral genome
amplification to thousands of copies per cell [12,16–18]. Virion assembly and release are restricted to
uppermost layer of the epithelium as the immunogenic capsid proteins L1 and L2 are only expressed
in highly differentiated suprabasal cells [19,20]. While normal epithelial cells exit the cell cycle upon
differentiation, the E6 and E7 proteins deregulate normal cell cycle checkpoints to push differentiating
cells back into the cell cycle, resulting in a G2 environment that provides cellular factors necessary for
productive viral replication [10]. The E6 and E7 proteins deregulate cellular proliferation and apoptotic
machinery in large part by targeting the tumor suppressor proteins p53 and pRb, respectively [21–23].
E7 promotes the degradation of pRb, leading to aberrant activity of E2F transcription factors that
promote S phase re-entry of differentiating cells to provide a replication-competent environment [24,25].
Unscheduled cell cycle re-entry activates p53 to induce cell cycle arrest or apoptosis of infected cells;
however, E6 circumvents these events by targeting p53 for degradation [26–28].

3. Epigenetic Regulation of HPV Gene Expression

3.1. Epigenetic Modifications of HPV Chromatin Regulate Viral Gene Expression Throughout the Viral
Life Cycle

Epigenetics is defined as a post-translational modification process that affects gene expression
but does not alter the underlying DNA sequence. In the virion and infected cells, HPV genomes are
organized in the form of nucleosomes packaged into chromatin [29,30]. HPV genomes are epigenetically
regulated by post-translational modifications of histones, including acetylation, phosphorylation
and methylation, as well as by DNA methylation [31,32]. Histone modifications associated with
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distinct transcriptional states are controlled via a balance between histone readers such as histone
acetyltransferase (HATs) and histone methyltransferases (KMTs) and histone erasers, including histone
deacetylases (HDACs) and histone demethylases [33]. Regulation of viral gene expression in the
different layers of the epithelium is critical to completion of the viral life cycle, and this control is
achieved in large part through regulation of viral chromatin structure.

The viral promoters are bound by nucleosomes in an ordered arrangement and are subjected
to chromatin remodeling at different stages of the viral life cycle [34,35]. DNase I hypersensitivity
analysis of HPV31 chromatin demonstrated a major chromatin rearrangement around the late promoter
region that coincides with epithelial differentiation, marking readily accessible DNA regions for
recruitment of transcriptional machinery [35]. Studies by Wooldridge et al. demonstrated that the
early and late promoters of HPV31 exhibit a transcriptionally active chromatin configuration as
indicated by the presence of dimethylated forms of H3K4 (H3K4me2) and acetylated H3 and H4 [34].
Upon differentiation, the levels of H3K4me2 and acetylated H3 around both promoter regions increase
significantly. In addition, these histone modifications are associated with increased C/EBP-β binding
to the KE/early promoter region and C/EBP-α binding to the late promoter upon differentiation [34],
indicating a differentiation-dependent change in transcription factor binding to HPV promoter regions
to regulate viral gene expression at different stages of the viral life cycle. Additionally, the C/EBP-β
isoforms LAP and LIP have been shown to positively and negatively regulate expression of viral
transcripts from the late promoter, respectively, upon differentiation in keratinocytes stably maintaining
HPV31 episomes [36]. For HPV16 and HPV18, the KE/promoter region has been shown to be negatively
regulated by YY1, which facilitates the recruitment of the polycomb repressor complexes 1 and 2
(PRC1 and PRC2) to viral chromatin [37–42]. PRC1 and PRC2 bind to the HPV18 LCR region and
are associated with the enrichment of the repressive marks H3K27me3 and ubiquitinated H2AK199
(H2AK199Ub), respectively, leading to repression of early promoter activity and viral oncogene
expression [42]. Interestingly, epithelial differentiation results in reduced YY1 expression and loss
of epigenetic repression of the early promoter region, resulting in upregulation of HPV18 E6 and
E7 expression [42]. These studies demonstrate that viral transcription is coordinated with histone
modifications throughout the differentiation-dependent viral life cycle.

3.2. Histone Acetylation

Histone acetylation is a dynamic and reversible process that modulates gene expression by
altering the spatial density of chromatin and is regulated by histone-modifying enzymes, including
histone acetyltransferases (HATs) and histone deacetylases (HDACs) [43]. The activity of HATs and
HDACs is tightly regulated to control the turnover of histone acetylation. Acetylation of lysine
residues by HATs leads to transcriptionally active chromatin, whereas HDACs remove acetyl residues,
thus marking transcriptionally repressed chromatin [43]. The HPV E6 and E7 oncoproteins promote a
replication-competent environment in infected cells in part by modulating the expression and activities
of HATs and HDACs [44]. The CREB-binding protein (CBP) and p300 are paralogous transcriptional
coactivators with intrinsic HAT activity [45]. HPV16 E2 requires p300 to efficiently activate the early
promoter and early gene expression [46]. Bernat et al. demonstrated using GST pull-down assays that
high-risk HPV16 E7, and to a lesser extent, low-risk HPV11 E7 directly interact with p300 in vitro [47].
Using co-immunoprecipitation and mammalian two-hybrid assays, these authors also showed that
HPV16 E7 interacts with p300 in vivo [48]. Additionally, they found that HPV16 E7’s interaction with
p300 is necessary to inhibit p300’s ability to co-activate E2-driven transcription [47]. CBP mediates
H3K14 acetylation and upregulates the transcriptional activity of the HPV18 URR [48]. HPV16 E7
associates with histone deacetylases HDAC1 and HDAC2 indirectly through Mi2β, a member of the
nucleosome remodeling and histone deacetylation (NURD) complex [49,50], and this association is
independent of Rb binding [50]. The binding of type I HDACs (HDACs 1, 2, 3) to HPV31 E7 directly
modulates viral replication by activating E2F2-mediated transcription in suprabasal keratinocytes,
which may promote S-phase re-entry of differentiating cells [21]. Additionally, mutation of the
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HPV31 E7 HDAC-binding domain in the context of the viral genome reduces episomal maintenance
in undifferentiated cells and blocks productive replication upon differentiation [49]. Whether the
E7–HDAC interaction impacts viral replication through modification of viral chromatin is currently
unclear. HDAC1 and HDAC2 expression are also found to be elevated in cervical dysplasia and
invasive carcinoma [51], suggesting that E7-dependent histone acetylation may be important for
transcription regulation processes that drive HPV-induced tumorigenesis.

Several HPVs express an E8ˆE2C protein, which functions as a transcriptional repressor from
both promoter-proximal and distal E2-binding sites (E2BS) in the LCR and also negatively affects viral
replication [52–58]. Ammermann et al. demonstrated using GST pull-down assays that HPV31 E8ˆE2C
directly interacts with HDAC 1, 2, and 3 in vitro through the E8 domain, with inhibition of HDAC
activity partially alleviating transcriptional repression mediated by the E8 domain [59]. In addition,
proteomic analyses revealed an interaction between the E8 domain of the HPV31 and HPV16 E8ˆE2C
proteins and the NCoR1/HDAC3 repressor complex, which is required for E8ˆE2C-mediated inhibition
of transcription and replication [60]. The multi-subunit TIP60 histone acetyltransferase complex
has also been implicated in the regulation of HPV gene expression. A genome-wide siRNA screen
established a role for EP400, a component of the TIP60 complex, as well as the histone reader Brd4 in
E2-mediated silencing of the HPV18 LCR and E6/E7 expression [61]. TIP60 and EP400 interact with
HPV16 E2 and contribute to E2-mediated transcriptional silencing of the HPV18 URR, resulting in
repression of E6 and E7 expression [61,62]. Whether E2’s interaction with TIP60 and EP400 is direct or
indirect is currently unclear. TIP60 can also bind to the HPV18 early promoter in a YY1-dependent
manner, resulting in histone acetylation that recruits Brd4 and represses E6/E7 expression [63]. E2 of
multiple HPV types also directly interacts with Brd4 to negatively regulate viral gene expression [64].

3.3. DNA Methylation

DNA methylation is a post-replicative DNA modification that involves methylation of
the 5’-position of cytosine residues located in CpG dinucleotides and is mediated by DNA
methyltransferases (DNMTs) [65]. HPV DNA can be modulated by methylation, which affects
viral gene transcription [66–69]. A key factor regulating transcriptional activity as well as replication
of HPV genomes is the E2 protein. E2 regulates these viral processes by binding to E2-binding sites
(E2BS) located within the LCR, which are partially palindromic sequences (5′-ACCGN4CGGT-3′)
(Figure 1A) [70]. High-risk HPV genomes contain four highly conserved E2BS located near
DNA-binding sites for several cellular transcription factors as well as the E1 viral helicase [70].
The binding of E2 to various E2BS activates or represses gene expression from the early promoter, as
well as the recruitment of E1 to viral DNA [71]. Occupancy of the E2BS is controlled in part by the
level of E2, with high levels of E2 binding to all E2BS, in turn repressing the early promoter as well as
viral replication [71]. Additionally, methylation of CpG dinucleotides within the E2BSs is thought to
inhibit E2 binding [66,67]. Upon differentiation, the three E2BS most proximal to the early promoter
(E2BS2, 3, 4) become methylated, which may prevent E2-mediated repression of the early promoter
during the productive phase of the life cycle [69]. Studies using HPV16-episome containing W12
cells, derived from a low-grade CIN1 cervical lesion, revealed that in contrast to the E2BSs, the early
promoter region of the LCR becomes hypomethylated upon differentiation [66]. Together, these data
indicate that the CpG methylation status of the viral DNA is dependent on the differentiation status of
the cell, which likely influences viral gene expression over the course of the viral life cycle.

4. HPV-Mediated Epigenetic Modifications of Cellular Chromatin

HPV infection can also induce modifications of host cellular chromatin, including DNA and
histone methylation, resulting in aberrant expression of cellular genes. In high-risk HPV-associated
lesions, epigenetic silencing of tumor suppressor genes such as p53 by DNA methylation in CpG
island regions of gene promoters is often observed [72]. Disruption of CpG island methylation has
been proposed as a potential biomarker for early detection or predicting the risk of cervical cancer
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precursors [73,74]. The activity of DNA methyltransferase 1 (DNMT1), the major methyltransferase
responsible for maintaining DNA methylation patterns following cellular replication, is elevated in
many tumors, including cervical cancers [65,75]. In addition, studies have shown that DNMT3A
and 3B are highly upregulated in high-risk episomal HPV and HPV-positive cervical cancer cell
lines, and many cellular genes are differentially methylated in cervical neoplasia [76,77]. Therefore,
DNA methylation status may be a useful prognostic marker for early detection of cancer precursors.
The HPV16 E6 and E7 oncoproteins regulate the expression and activity of DNMT1 through p53
degradation and direct binding, respectively, leading to aberrant DNA methylation of cellular and
possibly viral DNA [78,79].

The histone methylation status of cellular chromatin can also be modified by HPV proteins, leading
to aberrant cellular and viral gene expression. Studies by Smith et al. demonstrated that E2 recruits the
H3K4 demethylase SMCX (JARID1C/KDM5C) to the HPV18 URR to transcriptionally repress early
promoter activity, resulting in decreased E6/E7 expression [61,62]. In addition, HPV16 E7-expressing
cells and tissue sections of HPV-positive squamous cervical carcinomas exhibit a reduction in global
levels of the repressive mark H3K27me3, which is mediated by the upregulation of H3K27-specific
KDM6A and KDM6B histones demethylases [80–83]. Interestingly, the formation of E2F6-containing
polycomb repressor complexes, which bind to the H3K27me3 mark in order to transcriptionally repress
chromatin, is also reduced in HPV16 E7-expressing cells [84]. Intriguingly, HPV-positive squamous
cervical lesions exhibit reduced H3K27me3 despite increased expression of PRC2 methyltransferase
EZH2 [81]. Furthermore, KDM6A epigenetically de-represses the cyclin-dependent kinase inhibitor
p21, which is required for high-risk E7-expressing cells to survive E7-induced replication stress [85].
Together, these studies provide evidence that reduced levels of H3K27me3 in HPV-positive cells
are mediated by combined activities of different histone-modifying enzymes. However, whether
E7’s ability to induce KDM6A/KDM6B expression alters epigenetic marks on HPV chromatin is
currently unclear.

In addition, human foreskin keratinocytes (HFKs) expressing HPV16 E7 exhibit increased levels of
activating marks such as H3K9 acetylation and H3K4 methylation, with both histone marks requiring
E7’s Rb- and HDAC-binding domains [86]. Using ChIP analysis, Zhang et al. showed that HPV16
E7 increases histone acetylation on the promoters of E2F1 and cdc25a, two E2F-responsive genes
that are increased in response to E7 expression [86]. The ability of E7 to increase histone acetylation
may be necessary to active E2F-responsive genes that facilitate cell cycle re-entry, contributing to an
extension of cellular life span, but also providing an environment conducive to viral replication in
differentiating cells.

5. DNA Repair-Induced Epigenetic Modifications of HPV Chromatin

5.1. The DNA Damage Response

Studies over the past decade have established a critical role for the DNA damage response
(DDR) in productive replication of high-risk HPV types (Figure 2) [15,87]. DDR pathways serve as an
important mechanism for cellular survival by ensuring the fidelity of replication and maintenance of
genomic stability [88]. In response to DNA damage, cells have evolved mechanisms to elicit various
intrinsic DDR pathways that are mainly regulated by Ataxia-Telangiectasia-Mutated (ATM), ATM and
Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK) kinases—all of which belong to the
PI3-Kinase (PIK) family of kinases [88]. The presence of DNA double-strand breaks (DSBs) activates
ATM and DNA-PKcs, which then facilitate repair through high-fidelity homologous recombination
(HR) or error-prone non-homologous end joining (NHEJ), respectively [89]. Conversely, ATR is
activated in response to single-stranded DNA generated upon replication stress as well as resection of
DSBs [90]. ATM and ATR are constitutively active in high-risk HPV-infected cells, and inhibition of
either ATM or ATR blocks productive viral replication [91–94]. Expression of high-risk E7 as well as the
E1 helicase of low- and high-risk HPV types is sufficient to induce DNA damage and activation of the
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ATM and ATR DDR pathways [91,95–97]. While high-risk HPVs employ ATM and ATR components
to ensure high fidelity of viral gene replication and amplification upon differentiation [15,87], it is
currently unclear whether low-risk HPV types also require activation of these DDR pathways.
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Figure 2. DNA repair-induced epigenetic regulation of the HPV viral life cycle. DDR components
shown to play a role in the HPV life cycle are highlighted in red. Upon DNA damage, DSBs can be
recognized by the MRN complex (MRE11/Rad50/Nbs1), which, together with TIP60 acetyltransferase,
promotes the activation of ATM through phosphorylation (depicted as P) and acetylation (depicted
as Ac), respectively. Activated ATM acts as a primary signal to induce a signaling cascade through
phosphorylation of histone H2AX on Ser139, forming γH2AX at DNA breaks (depicted as γ). γH2AX
promotes the recruitment of various DDR effectors in a highly regulated manner at sites of damage
via the binding of scaffolding protein MDC1. MDC1 also recruits the E3 ubiquitin ligase ring finger
8 (RNF8) to initiate K63-linked ubiquitin chains (depicted as U) on the histone linker H1, leading to
the recruitment of E3 ubiquitin RNF168. RNF168 specifically catalyzes ubiquitination of H2A/H2AX
on lysine 13/15 (H2AK13/15ub): a modification essential for accumulation of 53BP1 as well as the
RAP80–BRCA1 complex. High-risk HPV E7 proteins directly interact with RNF168. TIP60 has been
shown to block 53BP1 recruitment, which may in turn block NHEJ (non-homologous end-joining)
and promote HR repair through the recruitment of BRAC1 and Rad51 to viral chromatin. SIRT1
recruits Nbs1 and Rad51 to HPV chromatin. SCM1 is recruited to HPV genomes in association with
CTCF—both of which may contribute to productive replication through recruitment of HR factors.
SETD2 mediates trimethylation of histone H3K36 (H3K36me3, depicted as m) to recruit effector proteins
to regulate multiple cellular processes, including HR (homologous recombination) repair and alternative
splicing, which are processes critical to completion of the HPV life cycle. SETD2-mediated H3K36me3
may facilitate HR repair through the recruitment of LEDGF-CtIP and MRG15-PALB2-BRAC1 to viral
chromatin. Additionally, H3K36me3 regulates alternative splicing through recruitment of p52-SRSF1
and MRG15-PTB. ATM activity is also required for H3K36me3 maintenance on viral chromatin through
an unknown mechanism. Dashed lines represent links that have not been tested experimentally.

Following induction of cellular DSBs, ATM is recruited to the break site and activated by the MRN
complex (MRE11/Rad50/Nbs1) as well as acetylation by TIP60 [98]. The MRN complex also functions
downstream of ATM activity to promote HR repair [88]. Upon activation, ATM phosphorylates the
histone variant H2AX on Serine 139, referred to as γH2AX [99]. γH2AX regulates chromatin dynamics
in response to DSBs by inducing the coordinated recruitment of DDR effectors through the binding
of histone readers at sites of damage [100]. γH2AX is bound by the scaffolding protein MDC1 [101],
which recruits the E3 ubiquitin ligase ring finger 8 (RNF8). RNF8 deposits polyubiquitin chains on the
linker histone H1, in turn recruiting the E3 ubiquitin ligase RNF168 [102–105]. RNF168 specifically
monoubiquitinates H2A/H2AX on lysine 13/15, which recruits the NHEJ promoting factor 53BP1 [102].
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RNF168 also deposits K63-linked polyubiquitin chains that promote recruitment of the HR factor
BRCA1 through the RAP80 ubiquitin-binding protein [102,106]. RNF168’s main function is to promote
NHEJ repair through 53BP1 recruitment. However, RNF168 can also contribute to HR repair in S/G2
phases through the direct recruitment of the PALB2/BRCA2 complex to resected DSBs, which facilitates
loading of the Rad51 recombinase [107]. In addition, 53BP1 has been shown to facilitate HR repair of
heterochromatin-associated DSBs specifically in G2 by promoting ATM-dependent phosphorylation
and inactivation of the heterochromatin building factor KAP1 [108].

5.2. The DNA Damage Response Promotes Productive Replication through Viral Chromatin Modifications

During the HPV life cycle, DDR activation is accompanied by significant alterations of viral
chromatin that allow access of DNA repair proteins required for viral replication (Figure 2) [109].
γH2AX localizes to sites of HPV replication and is bound to viral chromatin, indicating a direct role for
DNA repair factors in viral replication [110]. The DDR effectors 53BP1, Nbs1, BRCA1, and Rad51—all
of which rely on γH2AX for recruitment to DNA breaks—also localize to HPV replication foci [110,111],
supporting a role ofγH2AX as an assembly center for the recruitment of repair factors to viral replication
centers [109]. Indeed, Nbs1 and Mre11 of the MRN complex, along with the HR factors, Rad51 and
BRCA1, are required for productive replication, indicating that HPV utilizes ATM activity to direct
repair to HR on viral chromatin [112,113]. Additionally, a recent study by Sitz et al. demonstrated
a critical role for RNF168 in the productive replication of HPV31 [114]. RNF168 protein levels are
substantially upregulated in HPV31-positive cells, and transient depletion of RNF168 using small
hairpin RNAs blocks productive viral replication upon differentiation, while having minimal effect
on episomal maintenance in undifferentiated cells [114]. Importantly, this study also showed that
high-risk, but not low-risk, E7 proteins directly interact with RNF168 via E7’s CR3 domain, hindering
the function of RNF168 at cellular DSBs, resulting in decreased 53BP1 recruitment and an increase in
HR repair [114]. Interestingly, recent studies from the Laimins lab demonstrated that breaks in the
HPV31 genome are preferentially repaired at the expense of cellular DNA upon differentiation [115].
In unpublished studies, we have found that RNF168 and ubiquitin conjugates localize to large γH2AX
domains that are used as surrogate markers of sites of productive replication (Huang and Moody,
unpublished), indicating that RNF168 is active on viral chromatin. The localization of 53BP1 and BRCA1
to sites of productive HPV31 replication further supports RNF168 recruitment to viral chromatin
and suggests E7 may titrate RNF168 away from cellular DSBs to direct host ubiquitin machinery
to viral chromatin in response to ATM activity. RNF168 recruitment may, in turn, facilitate histone
modifications that promote preferential recruitment of HR repair factors to allow for rapid repair of
viral DNA during productive replication. Whether 53BP1 also plays a proviral role in productive
replication is currently unclear.

5.3. TIP60 Acetyltransferase and SIRT1 Deacetylase Are Required for Productive Viral Replication

Although TIP60 acetyltransferase has been implicated in negatively regulating HPV gene
expression [61,62], TIP60 levels are increased in an E7- and STAT5-dependent manner in HPV31-positive
cells and is required for viral replication [116]. TIP60 may contribute to productive replication through
facilitating ATM activation. However, TIP60-dependent H4 acetylation at cellular DNA breaks
promotes recruitment of HR factors by blocking 53BP1 chromatin association [117]. TIP60 may
similarly modify viral chromatin to promote the recruitment of HR factors to sites of productive
viral replication. SIRT1 deacetylase is also involved in chromatin modifications connected to the
DDR [109,117–119]. In response to DNA damage, SIRT1 localizes to sites of DSBs and facilitates the
recruitment of DNA repair factors to these regions. SIRT1 is increased in HPV31-positive cells in an E6-
and E7-dependent manner and is required for episomal maintenance in undifferentiated cells as well
as for productive replication and late gene expression upon differentiation [111,120]. SIRT1 depletion
results in increased acetylation of H1K26 and H4K16 on HPV31 chromatin, corresponding with a block
in Rad51 and Nbs1 recruitment to HPV31 DNA [111]. Whether SIRT1 modification of viral chromatin
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is required for the recruitment of Rad51 and Nbs1 to viral chromatin is unclear. However, SIRT1
modifies acetylation of non-histone proteins involved in DNA repair, including Nbs1 as well as the
Werner DNA helicase, which regulates the fidelity of HPV16 E1-E2 replication in transient replication
assays and may influence Rad51 and Nbs1 recruitment to viral DNA [121–123].

5.4. SMC1 and CTCF May Influence DNA Repair Factor Recruitment to Viral Chromatin

The Structural Maintenance of Chromosomes family protein SMC1 is phosphorylated by ATM in
response to DNA damage and plays a central role in recruitment of HR repair factors to DSBs [124,125].
SMC1 is constitutively active in HPV31-positive cells and is required for productive replication [126].
In HPV31-positive cells, SMC1 is recruited to viral chromatin and forms a complex with the insulator
transcription factor CTCF, which is important for DNA looping and three-dimensional chromatin
interactions, but has also recently been shown to play a role in HR repair [127,128]. CTCF promotes HR
repair through direct interaction with the CtIP endonuclease, which along with Mre11 mediates the
initial end resection of DSBs required to initiate HR repair [129–131]. Depletion of CTCF or mutation
of the conserved CTCF-binding sites in the L2 ORF of HPV31 blocks productive replication [126].
Whether SMC1 and/or CTCF contribute to productive replication through recruitment of HR factors
to HPV chromatin is currently unclear. However, recent studies from the Parish lab demonstrated
that CTCF epigenetically regulates the levels of high-risk E6 and E7 [42,132]. High-risk HPV types
contain an additional conserved CTCF-binding site in the E2 ORF, with mutation of this site in the
context of the HPV18 genome as well as CTCF depletion resulting in increased abundance of unspliced
E6E7 transcripts and E6 and E7 protein levels [132]. The Parish group further showed that CTCF
epigenetically represses E6/E7 expression through formation of a chromatin loop between the HPV18
E2 ORF and the LCR that is mediated through CTCF’s interaction with YY1 [42]. As mentioned,
YY1 facilitates PRC1/2 recruitment and deposition of repressive H3K27me3 on the HPV18 LCR [42].
The decrease in YY1 upon differentiation disrupts the LCR-E2 ORF chromatin loop, leading to enhanced
E6/E7 expression that supports productive viral replication [42]. These seminal studies were the first
to identify a role for CTCF-dependent DNA looping in epigenetic regulation of the HPV life cycle,
which may impact viral replication through regulation of E6/E7 gene expression, but also through
recruitment of necessary HR repair factors to drive efficient viral DNA synthesis.

5.5. SETD2 and H3K36me3 Are Required for Productive Replication

Recent studies have shown that the HPV life cycle is also epigenetically regulated by SETD2
methyltransferase [133]. SETD2 interacts with the phosphorylated C-terminal domain of RNA
polymerase II (RNAPII) and places the trimethyl mark on H3K36 (H3K36me3) during transcription
elongation [134–136]. SETD2-mediated H3K36me3 recruits effector proteins to regulate multiple cellular
processes, including alternative splicing as well as HR repair, mismatch repair, and the response to
replication stress (Figure 2) [137–141]. SETD2 is elevated in high-risk HPV-positive cells through an
E7-dependent increase in protein stability, and SETD2 depletion leads to defects in productive HPV31
replication as well as alternative splicing of late viral RNAs, specifically L1 [133]. SETD2 activity is
required to maintain H3K36me3 on HPV31 chromatin, suggesting that SETD2 regulates the viral life
cycle by recruiting H3K36me3 effectors to viral chromatin [133]. This is supported by the finding
that overexpression of an H3K36me3 dominant negative mutant blocks productive replication [133].
Interestingly, ATM activity is also required for H3K36me3 maintenance on viral chromatin as well as
splicing of late viral RNAs, identifying an additional role for ATM in the epigenetic regulation of the
HPV life cycle [133]. While these findings support a significant role for SETD2-mediated H3K36me3 in
epigenetic regulation of the HPV life cycle, the H3K36me3 readers that are recruited to viral chromatin
have yet to be identified. However, H3K36me3 regulates multiple cellular processes that are critical
for viral gene expression and replication, including HR factor recruitment through the binding of
LEDGF, which in turn recruits CtIP and Rad51, as well as alterative splicing through recruitment
of the Psip1 short isoform (p52) and MRG15, which in turn recruit the splicing factors SRSF1 and
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PTB, respectively (Figure 2) [137,140,141]. Interestingly, both SRSF1 and PTB have been shown to
play a role in alternative splicing of HPV RNAs, with PTB facilitating splicing of L1 RNAs upon
differentiation [142]. SETD2-mediated H3K36me3 may therefore regulate multiple aspects of the HPV
life cycle.

5.6. Utilization of DDR Pathways during HPV Replication May Promote Viral Genome Integration and
Genomic Instability

Even though high-risk HPVs utilize DDR pathways to facilitate viral replication, genomic
instability is a hallmark of HPV-associated cancers, indicating that disruption of DNA damage repair
mechanisms contribute to the initiation and progression of cancer [143]. HPV-induced genomic
instability is driven by the expression of high-risk E6 and E7 oncoproteins, which induce replication
stress and DNA damage, leading to the accumulation of chromosomal abnormalities [144,145]. In many
HPV-associated cancers, the viral genome is found integrated into the host chromatin. Integration
results in aberrant E6 and E7 expression that is thought to fuel cancer progression through increased
genomic instability [146]. Viral genome integration is often found near common fragile sites [147], which
are specific chromosomal regions susceptible to replication stress and chromosome breakage [148].
Interestingly, aberrant expression of E6 and E7 is in part controlled by epigenetic modifications at the
HPV16 integrated loci such as the enrichment of activating marks H3K4me3 and H3K27ac [149,150].
HPV E2, in complex with cellular Brd4 proteins, is associated with viral replication foci that present
adjacent to fragile regions [139]. This association conveniently provides access to DNA repair factoring
for amplifying viral DNA; however, replication near fragile sites may increase the chance of viral
integration, in turn driving carcinogenesis [151].

6. Summary and Outlook

Recent studies in HPV pathogenesis have revealed critical roles for epigenetic modifications in
HPV infection and cervical carcinogenesis. Epigenetic modifications of HPV DNA are important for
establishment replication, genome maintenance, and productive replication during the viral life cycle.
It is clear that chromatin remodeling surrounding areas containing damaged DNA is required to allow
access to DNA repair proteins that are necessary for HPV replication. Future investigation may focus on
studying the specific histone marks that correlate with distinct DNA damage response pathways. As the
incidence of HPV-associated oropharyngeal carcinoma continues to rise, expanding our knowledge of
epigenetic drivers that regulate HPV pathogenesis in the oropharyngeal epithelium is an important
area of future research. Even though epigenetic modifications in HPV-associated oropharyngeal
cancers, including DNA methylation and histone modifications, have been reported [152], the role
of the DNA damage response in the epigenetic regulation of the viral life cycle in oropharyngeal
epithelium remains uncharacterized. This is especially important, as recent studies indicate that the
viral genome is episomal in a large number of head and neck cancers [153]. Importantly, due to the
reversible nature of epigenetic modifications, continued research may focus on investigating the role of
epigenetic markers as biomarkers, their prognostic values, and therapeutic targets for HPV-associated
cancers by using associated inhibitors. Further understanding of how epigenetic modifications regulate
the HPV life cycle will provide insights for developing reliable targeted therapies for patients with
HPV-associated lesions and cancers.
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