
pathogens

Review

miRNAs: EBV Mechanism for Escaping Host’s
Immune Response and Supporting Tumorigenesis

Snježana Židovec Lepej 1,2, Maja Matulić 2, Paula Gršković 2, Mirjana Pavlica 2,
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Abstract: Epstein-Barr virus (EBV) or human herpesvirus 4 (HHV-4) is a ubiquitous human oncogenic
virus, and the first human virus found to express microRNAs (miRNAs). Its genome contains two
regions encoding more than 40 miRNAs that regulate expression of both viral and human genes.
There are numerous evidences that EBV miRNAs impact immune response, affect antigen presentation
and recognition, change T- and B-cell communication, drive antibody production during infection,
and have a role in cell apoptosis. Moreover, the ability of EBV to induce B-cell transformation and take
part in mechanisms of oncogenesis in humans is well known. Although EBV infection is associated
with development of various diseases, the role of its miRNAs is still not understood. There is abundant
data describing EBV miRNAs in nasopharyngeal carcinoma and several studies that have tried
to evaluate their role in gastric carcinoma and lymphoma. This review aims to summarize so far
known data about the role of EBV miRNAs in altered regulation of gene expression in human cells in
EBV-associated diseases.
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1. Introduction

Epstein-Barr virus (EBV) or human herpesvirus 4 (HHV-4) is a ubiquitous human oncogenic virus
that belongs to the family Herpesviridae, subfamily Gammaherpesvirinae, and genus Lymphocryptovirus [1].
Since its first description in 1964 and subsequent recognition of its ability to induce B-cell transformation
in vitro, EBV has been extensively used as a model for research focusing on fundamental mechanisms
of oncogenesis in humans. It is also used as a model in devising diagnostic, therapeutic, and prevention
strategies in malignant diseases [2–5]. Approximately 95% of the human population is infected with
EBV and will remain carriers of the virus for the rest of their lives. By modulating its own transcriptional
patterns during lytic and latent stages of infection, EBV establishes a lifelong persistence in both
immunocompetent and immunocompromised hosts and modifies the host’s immune system effector
mechanisms [6]. However, in the context of immunosuppression, regardless of the specific cause,
the immune system fails to efficiently control EBV replication [7]. Subsequently, latent infection
with EBV may be associated with development of various malignancies originating from epithelial
cells, lymphocytes, and mesenchymal cells, including posttransplant B-cell lymphomas, Hodgkin’s
and non-Hodgkin’s lymphomas, diffuse large B-cell lymphoma, Burkitt’s lymphoma, natural killer
(NK)/T-cell lymphoma, nasopharyngeal carcinoma (NPC), and gastric carcinoma (GC) [7,8].
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MicroRNAs (miRNA) are small, non-coding RNA molecules of cellular or viral origin that consist
of 18–22 nucleotides and play an important role in regulation of gene expression. Consequently, they
affect key events in cell biology such as proliferation, apoptosis, and lipid metabolism. By binding
to messenger RNAs (mRNAs), miRNAs induce degradation of mRNAs or inhibition of translation,
thus reducing levels of expression of target genes. Virus-encoded miRNAs (v-miRNAs) are considered
an important non-immunogenic tool for post-transcriptional regulation of both host and viral gene
expression in infected cells [9]. The majority of literature data on v-miRNAs, particularly in the context of
tumorigenesis, focuses on v-miRNAs in EBV, Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8),
human papillomaviruses (HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), and Merkel Cell
Polyomavirus (MCPyV) [9–11]. EBV was the first virus shown to express miRNAs [12]. EBV-encoded
miRNAs (EBV miRNAs) target both viral and cellular mRNAs in infected cells, extending their role
beyond regulating various stages of the EBV replication cycle. They influence cellular proliferation and
apoptosis and play a part in driving diverse molecular pathways of oncogenesis and evading innate
and adaptive immune responses. The aim of this review is to summarize current views on the role of
EBV miRNAs in altered gene expression associated with immune evasion and tumorigenesis.

2. EBV miRNAs

EBV genome is a double-stranded DNA molecule that consists of 175 kbp containing nearly
100 genes and coding for 44 microRNAs [13–15]. It was first sequenced in 1984 by using M13 libraries
made from viral EcoR I and BamH I fragments gathered after sonification [16]. Today, after more than
100 EBV genomes from tumor cells samples and healthy individuals’ tissue have been sequenced, the
complete EBV genome can be found in the NCBI GeneBank [17]. In 2004, Pfeffer et al. first described
two clusters in the EBV genome responsible for production of EBV miRNAs [12]. The first cluster
was found in the sequence for BamH I fragment H rightward open reading frame 1 (BHRF1) mRNA.
It produces three miRNA precursors (ebv-miR-BHRF1-1, -2, and -3) and, subsequently, four mature
miRNAs [18]. The second cluster is BamH I-A region rightward transcript (BART) and it encodes 22
miRNA precursors (ebv-miR-BART1-22) of 40 mature miRNA molecules [12,19] (Figure 1).
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Expression of BHRF1 miRNAs is latency stage-dependent (they are mainly expressed in type
III latency), while BART miRNAs are transcribed in all latency stages [12]. Despite the coordinated
expression of each miRNA cluster, significant differences in the expression levels of individual EBV
miRNAs in the same type of human cells (as high as 50-fold) have been observed [12,22]. It has been
suggested that different genotypes as well as genomic variants of EBV could be associated with different
patterns of individual miRNA expression in infected cells [23–25]. A number of studies on EBV miRNA
biosynthesis (reviewed by Wang et al., 2018) suggest that EBV gene products are not necessary for
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v-miRNA production. This proposition indicates that the molecular mechanisms responsible for the
synthesis of v-miRNAs and cellular miRNAs in host cells are similar [20]. Analysis of EBV genomic
sequences in gastric carcinoma and EBV-associated lymphoma has showed that despite the genetic
diversity in almost the entire EBV genome, the regions encoding miRNAs are highly conserved [26,27].

3. The Role of EBV miRNAs in Immune Evasion

Alongside immune evasion strategies mediated by host miRNAs and viral glycoproteins,
EBV miRNAs are another means by which the virus successfully avoids effector mechanisms of
the host’s immune system [28]. The main strategies for immune evasion used by EBV miRNAs are
the following:

3.1. Pattern-Recognition Receptor-Mediated Signaling Pathways and Interferons

EBV interferes with efficient initiation of innate immune response at the very first step, e.g., by
targeting expression of pattern recognition receptors (PRR). The impaired expression of PRR affects
subsequent signal transduction as well as cytokine synthesis [29]. The two main targets for EBV
miRNAs are retinoic acid-inducible protein 1 (RIG-I) receptors (mediated by miR-BART6-3p) and
Toll-like receptors [20,30]. The lack of EBV molecular pattern recognition by PRR is associated with the
absence of the JAK (Janus kinase)-STAT (Signal Transducer and Activator of Transcription)-mediated
transduction pathway. The ineffectiveness of this signaling pathway leads to the impaired synthesis
of type I interferons (IFNs) and other pro-inflammatory cytokines that are essential for innate
immune responses [31]. Studies on nasal NK-cell lymphoma (NNL) cells showed that EBV miRNAs
(miR-BART20-5p and miR-BART8) impact the signal transduction pathway for IFN-γ by targeting
STAT1, which enables the virus to avoid antiviral activity of both type I and type II IFNs [32] (Figure 2).
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3.2. Natural Killer (NK) Cells

The role of EBV miRNAs in the evasion of NK-cell-mediated responses has been analyzed in
nasopharyngeal carcinoma cells in vitro. Interaction between the natural killer group 2 member D
(NKG2D) receptor on NK cells and major histocompatibility complex class I chain-related peptide A
(MICA) is considered the key step in the recognition and killing of cancer cells. Expression of MICA in
NPC is positively regulated by transforming growth factor β-1 (TGF-β1). Wong et al. (2018) showed
that miR-BART7 reduces the expression of TGF-β1 in NPC cells and impairs the NK-cell-mediated
recognition of virus-infected cells [33] (Figure 2).

3.3. Inflammasome

Immune evasion strategies employed by EBV also target NLR family pyrin domain-containing 3
(NLRP3) inflammasomes, which are responsible for inflammatory responses mediated by IL-1β and
IL-18 upon recognition of viral antigens. The activity of inflammasomes is targeted directly at the
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level of NLRP3 expression (via miR-BART15), or indirectly, by targeting the IL-1 receptor itself (via
miR-BHRF1-2-5p) [34,35] (Figure 2).

3.4. Cytokines and Chemokines

miR-BART1, miR-BART2, miR-BART10, and miR-BART22 suppress efficient CD8+ T-cell-mediated
antiviral immune response by targeting IL-12, a pro-inflammatory cytokine responsible for
differentiation of naive type 1 helper T-cell (Th1 cells) to mature Th1 cells, increased synthesis
of IFN-γ, activation of NK- and T-cells as well as inhibition of angiogenesis [36,37]. In addition,
miR-BART6-3p interferes with biological activity of IL-6 by targeting expression of the IL-6 receptor [38].
EBV miRNAs also enable the virus to evade Th1-mediated antiviral immunity by modulating
expression of chemokines. For example, miR-BHRF1-3 targets an IFN-inducible chemokine CXCL11
(CXC-chemokine ligand 11) responsible for the selective homing of Th1 effector cells and NK-cells to
the sites of infection [20,39] (Figure 2).

3.5. Antigen Presentation

EBV miRNAs impair mechanisms of specific immunity by affecting adequate antigen recognition
at the level of antigen processing (reduced expression of lysosomal enzymes), transport of processed
antigenic peptides to major histocompatibility complex (MHC) molecules (by targeting peptide
transporter subunit TAP2), and antigen presentation (reduction of lymphocyte antigen 75 expression
on dendritic cells) [20,37,40–42] (Figure 2).

3.6. Specific Cellular Immunity

T-cell-mediated immunity can maintain long term immune control over EBV replication (for
>50 years in some individuals) while clinical consequences associated with EBV infection in persons
with impairment of T-cell development or function are shown to be very severe. This suggests that
virus-specific T-cell responses represent the main means of protective immunity in EBV infection [37].
EBV miRNAs specifically target host genes coding for key regulators of T-cell responses including
T-bet (miR-BART20-5p), Mucosa-associated lymphoid tissue lymphoma transport protein 1 (MALT1)
(miR-BHRF1-2-5p), and C type lectin superfamily 2 member D (CLEC2D) (miR-BART1-3p and
miR-BART3-3p) [43] (Figure 2).

T-bet belongs to the T-box family of transcription factors that are the main enhancers of the Th1
differentiation pathway and subsequent Th1 cell-specific IFN-γ synthesis, which are important for
efficient antiviral immunity. Inhibition of T-bet translation (with subsequent suppression of p53) by
EBV miRNAs, originally shown in invasive nasal NK/T-cell lymphoma cells, is supposedly associated
with the inhibition of Th1 differentiation pathways. As a result, the control of EBV replication is less
efficient [43].

However, T-bet also regulates transcriptional networks that are common among other types of
immune cells (including dendritic cells and innate lymphoid cells) and is currently considered to have
an important role in bridging innate and adaptive immunity (for review see Lazarevic et al., 2017) [44].

In addition, T-bet acts as a selective repressor of transcriptional pathways associated with type I
IFNs subsequent to IFN-γ-induced signaling [44,45]. Therefore, EBV miRNAs-mediated inhibition of
T-bet’s biological activity may have a significantly broader effect on the evasion of antiviral immunity
in EBV infection than originally thought.

4. The Role of EBV miRNAs in Tumorigenesis

EBV association with development and progression of malignant tumors is well known, especially
its frequent infection of lymphoma and carcinoma cells. Nevertheless, the role of EBV miRNAs in
tumorigenesis has only recently come into focus.
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4.1. EBV miRNAs in Lymphoma

EBV miRNAs have been linked to development and progression of various types of lymphoma,
such as acquired immunodeficiency syndrome-related diffuse large B-cell lymphoma (AIDS-related
DLBCL), EBV-positive DLBCL, Burkitt lymphoma (BL), nasal NK/T-cell lymphoma (NNL), Hodgkin’s
lymphoma (HL), posttransplant lymphoproliferative disorder (PTLD), and others [23].

miR-BHRF1-3 was found to be highly expressed in AIDS-related DLBCL compared to EBV-positive
BL and EBV-negative DLBCL [39]. miR-BHRF-1-1 was detected in all samples of EBV-associated
primary central nervous system PTLD (pCNS PTLD) and mir-BHRF-1-2 was found in about 50% of the
same pCNS PTLD patients [46].

EBV-miRNAs belonging to BART clusters were found in pCNS PTLD, but with varying
expression of different BART miRNAs [46]. Furthermore, miR-BART7, miR-BART22, miR-BART10,
miR-BART11-5p, and miR-BART16 were found to be most prominently expressed in EBV-positive
DLBCL not associated with AIDS [47]. Only EBV miRNAs from BART clusters were found in endemic
BL (eBL) [48]. miR-BART7, miR-BART5, miR-BART11-5p, miR-BART1-5p, and miR-BART19-3p
were found in NNL, as well as miR-BART21 and miR-BART22, previously found in EBV-positive
carcinomas [49,50]. Expression of BART miRNAs have also been observed in HL [12].

The presence of diverse EBV miRNAs in different types of lymphoma was analyzed not only in
patient samples, but it was also researched through cell line-based studies. In BL41/95 cell line, derived
from BL, BHRF miRNAs were detected [12]. The study by Ambrosio et al. in which BL-derived cell
line Akata was used as a model, revealed that the expression of PTEN and IL6 receptor subunits
was lower in the presence of miR-BART6-3p and was restored if the cells were simultaneously
transfected with miR-BART6-3p inhibitor [48]. Zhou et al. found that Ramos cell line (derived from
EBV-negative BL) transfected simultaneously with oligonucleotides mimicking cellular miRNA-142 and
miBART6-3p, displayed lower expression of PTEN compared to negative control and cells transfected
with the same oligonucleotides separately. This suggests that miR-BART6-3p downregulates PTEN,
a tumor suppressor that regulates the PI3K/Akt pathway, in cooperation with cellular miRNA-142 [51].
Moreover, in two cell lines derived from lymphomas of NK cell origin (YT and NK92), it was shown
that miR-BART20-5p was responsible for downregulation of T-bet, and therefore p53, and IFN-γ [43].

4.2. EBV miRNAs in Carcinoma

EBV is also known to be associated with the development of NPC and GC. Recently, the role
of EBV miRNAs was thoroughly studied in these malignancies. BART miRNAs were first found in
NPC, xenografted and propagated in nude mice [52,53], and subsequently in NPC patient biopsies [54].
They were found to be highly expressed in NPC and GC, but BHRF1 miRNAs were generally not
present in those entities. At least 105 host genes were shown to be regulated by BART miRNAs during
carcinoma development [55], but genes recognized as EBV miRNAs’ targets in B-cell lymphomas were
not confirmed in carcinomas. Increased expression of BART miRNA clusters and individual BART
miRNAs correlated with higher tumor grade and poor patient survival in NPC and GC.

Generally, it is believed that BART miRNAs in carcinoma act in synergy or obtain significant effects
by combining their individual activities, in cooperation or competition with cellular miRNAs. It was
shown that BART miRNAs target numerous transcripts of different genes, thus deregulating various
downstream molecules and signaling pathways [56]. Consequently, BART miRNAs allow infected
cells to avoid apoptosis by inactivating different pro-apoptotic molecules, influence cell proliferation,
inhibit the expression of regulatory tumor suppressors, mediate cancer metabolism, stimulate cell
migration and metastasis, inhibit cell differentiation, and manage immune evasion and regulation of
the virus latency through coordination of cellular and viral signaling pathways [49,57,58] (Table 1).
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Table 1. Targets of BART miRNAs and processes affected by their interactions in carcinoma cells.

BART BART Target Affected Process Study Method

1 PTEN migration,
signaling

Cai et al. 2015a, Cai et al.
2015b [59,60] reporter assay

1-5p α1subunit AMPK metabolism Lyu et al. 2018 [61] reporter assay, biopsies, cell
culture

1-5p LMP1 viral latency Lo et al. 2007 [62] reporter assay

3 DICE1 apoptosis Kang et al. 2015, Lei et al.
2013 [63,64] reporter assay, PAR-CLIP

3 CASZ1a apoptosis Kang et al. 2015 [63] PAR-CLIP, reporter assay

4-5p BID apoptosis Shinozaki-Ushiku et al.
2015 [65] reporter assay, biopsies

5 PUMA apoptosis Choy et al. 2008 [66] reporter assay
5-3p p53 apoptosis Zheng et al. 2018 [67] reporter assay
5-5p ATM DNA repair Lung et al. 2018 [68] reporter assay
6-3p LOC353103 RNA anti-migration He et al. 2016 [69] cell culture, reporter assay

6 OCT1 apoptosis Kang et al. 2015 [63] PAR-CLIP, reporter assay

6 Dicer apoptosis Kang et al. 2015, Iizasa et al.
2010 [63,70] PAR-CLIP, reporter assay

7-3p PTEN migration,
signaling

Cai et al. 2015a, Cai et al.
2015b [59,60] reporter assay

7-3p ATM DNA repair Lung et al. 2018 [68] reporter assay

8-3p RNF38 signaling,
migration Lin et al. 2018 [71] biopsy sequencing, reporter

assay
8 ARID2 unknown Kang et al. 2015 [63] PAR-CLIP, reporter assay

9 E CAD migration Tsai et al. 2017, Hsu et al.
2014 [24,72] reporter assay, biopsies

9-3p ATM DNA repair Lung et al. 2018 [68] reporter assay

10 BTRC signaling,
migration

Zeng et al. 2014, Yan et al.
2015 [57,73] reporter assay, biopsies

10-3p DKK1 signaling,
migration Min et al. 2019 [74] reporter assay

11 trFOXP1 immune evasion,
differentiation Song et al. 2016 [75] reporter assay, biopsies

13 NKIRAS2 signaling Xu et al. 2019 [76] biopsies, cell culture
14-3p ATM DNA repair Lung et al. 2018 [68] reporter assay
15-3p BRUCE anti-apoptosis Choy et al. 2013 [77] reporter assay, WB

16 CRBBP apoptosis Kang et al. 2015 [63] PAR-CLIP, reporter assay
16 SH2B3 apoptosis Kang et al. 2015 [63] PAR-CLIP, reporter assay
16 TOMM22 apoptosis Kang et al. 2015 [63] PAR-CLIP, reporter assay
16 LMP1 viral latency Lo et al. 2007 [62] reporter assay

17-5p LMP1 viral latency Lo et al. 2007 [62] reporter assay
22 PAK2 apoptosis Kang et al. 2015 [63] PAR-CLIP, reporter assay
22 TP53INP1 apoptosis Kang et al. 2015 [63] PAR-CLIP, reporter assay

22 and cluster II NDRG1 metastasis,
differentiation Kanda et al. 2015 [78] microarray reporter assay

BART miRNAs also modulate host cell pathways by mimicking cellular miRNAs. Although this
feature is still not explored enough, several BART miRNAs were shown to have “seed” sequences
similar to those of cellular miRNAs: miR-BART5 compared to miR-18a and miR-18b [66,79], miR-BART9
to miR-200a and miR-141 [72], miR-BART15-3p to miR-223-3p, and miR-BART18-5p to miR-26a [35,80].

Overall, BART miRNAs are highly expressed in NPC and GC types associated with EBV infection
where they act synergistically and have redundant activities, but also possibly differ in their target
genes in different intracellular milieus.

5. Conclusions

We envision that further detection of cellular processes affected and regulated by EBV miRNAs
will contribute to better understanding of the role of viral non-coding RNAs in the development of
virus-induced cancers in humans. In case of EBV, despite extensive research, there are currently no
antiviral drugs or EBV-vaccines approved for use in humans. In years to come, better evaluation
and understanding of the viral miRNA mechanisms might reveal new biomarkers and potential
therapeutic targets.
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