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Abstract: An emerging need for new classes of antibiotics is, on the one hand, evident as antimicrobial
resistance continues to rise. On the other hand, the awareness of the pros and cons of chemically
synthesized compounds’ extensive use leads to a search for new metabolites in already known
reservoirs. Previous research showed that Paenibacillus strain (P. alvei MP1) recovered from a buckwheat
honey sample presented a wide spectrum of antimicrobial activity against both Gram-positive and
Gram-negative pathogens. Recent investigation has confirmed that P. alvei MP1 (deposited at
DDBJ/ENA/GenBank under the accession WSQB00000000) produces a proteinaceous, heat-stable
compound(s) with the maximum antimicrobial production obtained after 18 h of P. alvei MP1 growth
in LB medium at 37 ◦C with continuous shaking at 200 RPM. The highest activity was found in the
40% ammonium sulfate precipitate, with high activity also remaining in the 50% and 60% ammonium
sulfate precipitates. Moderate to high antimicrobial activity that is insensitive to proteases or heat
treatment, was confirmed against pathogenic bacteria that included L. monocytogenes FSL – X1-0001
(strain 10403S), S. aureus L1 – 0030 and E. coli O157: H7. Further studies, including de novo sequencing
of peptides by mass spectrometry, are in progress.

Keywords: Paenibacillus alvei; antimicrobial activity; Staphylococcus aureus; Listeria monocytogenes;
Escherichia coli; antimicrobial compounds; antimicrobial peptides

1. Introduction

The Paenibacillus (the Latin adverb paene, meaning almost—almost Bacillus) genus are characterized
as rod-shaped, aerobic or facultatively anaerobic, and endospore formations. Previously within the
Bacillus group, Paenibacillus was reclassified as a separate genus in 1993. In 1997, Shida et al. [1] proposed
to identify members of the Paenibacillus cluster and its differentiation from other Bacillacae by 16s rRNA
gene amplification with purpose-designed primer PAEN515F. The presence of peritrichous flagella
in the Paenibacillus group was also described. The Paenibacillus genus is comprised of approximately
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211 [2] to 230 species according to the List of Prokaryotic Names with Standing in Nomenclature [3]
with 31 in human samples [4] and 11 newly detected species [2]

Paenibacillus species are ubiquitous and easily isolated from samples with various environmental
sources. Recent studies have indicated rhizosphere, soil, and water as the most common reservoirs
of Paenibacillus representatives. The abilities to promote plant growth, nitrogen fixation, phosphate
solubilization, antifungal metabolites production, and overall plant disease prevention are the most
outstanding Paenibacillus genus features beneficial for agricultural applications [4]. P. polymyxa
(previously known as B. polymyxa) strains are recognized as plant growth promoters for biotechnological
purposes, and there is an increasing interest and demand for its industrial production [5,6].
P. polymyxa is also known for producing peptide antibiotics—polymyxins [7,8], polypeptins, gavaserin,
saltavalin, or jolipeptin. P. polymyxa A26 extracellular matrix is an effective antagonist against
Fusarium graminearum, a predominant causative agent of Fusarium Head Blight (FHB), by producing
a mycotoxin known as deoxynivalenol [9]. Furthermore, Paenibacillus strains are recognized as
producers of antibiotics for medical applications with the potential for treating multidrug-resistant
(MDR) human pathogenic bacterial infections [10].

S. aureus belongs to the most frequently isolated pathogen in human clinics [11], associated both
with skin and respiratory infections and staphylococcal food poisoning (SFP) through enterotoxin
production [12]. This bacterium is also notorious for the capacity to acquire resistance to various
antibiotic classes [13]. Therefore, new antibacterial agents are required for effective staphylococcal
infection treatment. L. monocytogenes has a ubiquitous nature, and it is considered as a foodborne
pathogen. In terms of cross-contamination, L. monocytogenes has the highest mortality rate compared
to Escherichia coli, and Salmonella [14,15]. Naturally occurring antimicrobials, such as bacteriocins,
organic acids, essential oils, or chitosan, combined with other stress factors, represent a useful tool
against L. monocytogenes growth in food [16]. E. coli O157: H7 is a common foodborne pathogen that
became an increasing public health concern in Europe, as antibiotic resistance is spreading globally [17].
Moreover, the antibiotic treatments for E. coli O157: H7 infection may lead to unexpected side effects
such as induction of Shiga toxin [18].

The strain P. alvei, previously isolated from buckwheat honey [19], was found to produce
a compound(s) with antimicrobial activity against important human pathogens, including S. aureus,
L. monocytogenes, and E. coli. In the present study, strain growth conditions were optimized to
achieve maximum antimicrobial production. Partial purification with ammonium sulfate precipitation,
solid-phase extraction, and the effect of temperature and enzymes on the active compound was
performed to characterize the nature of the antimicrobial compound produced by the strain.

2. Results

2.1. Strain Growth Condition Associated with an Active Compound Production

Scanning Electron Microscope (SEM) of the investigated strain is presented in Figure 1. Observation
of P. alvei MP1 illustrates rod-shaped bacterial cells with visible flagella. We also observed the ability
of P. alvei MP1 to form collective clusters, which might be explained by the production of lubricating
fluid for movement on hard surfaces [20].
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Figure 1. Scanning electron microscope examination of P. alvei MP1 cells at a magnification of 6500. Figure 1. Scanning electron microscope examination of P. alvei MP1 cells at a magnification of 6500.

The optimum growth conditions for the investigated strain were achieved in Luria Bertani Broth
(LB) medium at 37 ◦C with continuous shaking at 200 RPM. Growth of the strain and kinetics of
an active compound production is represented in Figure 2.
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Figure 2. Profile of P. alvei MP1 growth and antimicrobial compound production in LB medium at
37 ◦C, 200 RPM in 3 h intervals during 60 h of incubation.

The active compound was not produced by P.alvei MP1 during the first nine hours of growth
(until the bacteria are in the logarithmic growth phase). Its synthesis was induced after 12 h, with
a significant increase in active compound production from 18 to 21 h (in the stationary growth phase).
Between 21 to 24 h of P.alvei MP1 growth, the level of antimicrobial compound production remained
the same. After 24 h, a notable decrease in antimicrobial compound production was observed with no
detectable antimicrobial activity after 30 h of growth. A more detailed analysis of the antibacterial
activity of P. alvei MP1 cell-free supernatants against S. aureus L1-0030 was performed as two-fold
serial dilutions spotted onto TSA soft agar, with S. aureus as the indicator strain. An arbitrary unit (AU)
was defined as the reciprocal of the highest dilution that still produced a detectable zone of inhibition
and expressed as AU/mL is represented in Table 1.
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Table 1. Antibacterial activity of P. alvei MP1 cell-free supernatant against S. aureus L1-0030. The diameter
of each inhibition zone was measured.

Hours of Experiment
[h]

Two-fold Serial Dilutions of Cell-Free
Supernatant Spotted onto TSA Soft Agar,
with S. aureus L1- 0030 as Indicator Strain

Antibacterial Activity
[AU/mL]

Inhibition Zones Diameter Ø
[cm]

9
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The results confirm that the maximum antimicrobial activity level was reached between 18 and
21 h of strain growth calculated as 40 [AU/mL], and it was two times higher comparing to 15 and
24 h of growth. In the preliminary experiment, the growth of P.alvei MP1 in different media was
compared—TSB (Tryptic Soy Broth) and BHI (Brain Heart Infusion). The efficiency of the strain growth
in the LB medium was notability faster. Thus only LB medium was used for the optimization process of
active metabolite production presented in the current study.



Pathogens 2020, 9, 319 5 of 17

2.2. Inhibitory Spectrum of P. alvei MP1 Cell-Free Precipitates against Indicator Strains

The antibacterial activity of P. alvei MP1 cell-free precipitates with different ammonium sulfate
saturation was qualitatively and quantitatively assessed by the presence or absence of inhibition zones
as well as the determination of arbitrary unit per milliliter (AU/mL), defined as the reciprocal of the
highest dilution showing a clear zone of growth inhibition, Table 2.

Table 2. Antibacterial potential of P. alvei MP1 cell-free precipitates with different ammonium sulfate
saturation against S. aureus L1-0030 (the two-fold serial dilutions of solutions of precipitates were
spotted on agar medium in a clockwise direction. The diameter of each inhibition zone was measured).

Two-fold Serial Dilutions – 50 µL Spots Inhibition Zone Diameter Ø [cm]
20% (NH4)2SO4
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ammonium sulfate. The antimicrobial activity of the cell-free precipitates was also evaluated against
L.monocytogenes FSL – X1-0001 and E. coli O157: H7, Table 3.

Table 3. The antimicrobial potential of P.alvei MP1 cell-free precipitates with 40% saturation of
ammonium sulfate evaluated against L.monocytogenes FSL – X1-0001 and E. coli O157: H7 after 24 h of
incubation. The diameter of each inhibition zone was measured.

Indicator Strain

Two-fold serial dilutions – 50 µL spots

L. monocytogenes FSL – X1-0001 E. coli O157: H7
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Table 5. The effects of proteinase K on antimicrobial activity of P.alvei MP1 cell-free precipitates with
different ammonium sulfate saturation against S. aureus L1-0030.

Proteinase K Test
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antimicrobial compound produced by the P. alvei MP1 strain. This is an important advantage of the
compound, with potential applications in antimicrobial protection of thermally processed food or the
treatment of human and animal bacterial infections.

2.4. Solid Phase Extraction (SPE)

The SPE method was applied for further purification of the active metabolite of P. alvei MP1
using a silica-based cartridge column, Waters Sep-Pak tC18. The metabolites with a growing level of
hydrophobicity were eluted from the resin with an increasing concentration of methanol. The optimal
concentration of methanol for extracting the antimicrobial activity of interest was 100% (Figure 3).
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This result suggests the hydrophobic nature of active compounds. Interestingly, the UV-VIS spectrum
(Figure 4) of the purified fraction (100% methanol) suggested the proteinaceous nature of the active
component, which is surprising in light of the results of the previous assays (treatment with proteases and
high temperatures). The theoretical protein concentration in the chosen fraction was 21.786 mg/ mL.
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In the gel, we observed two interesting bands (in lines 2 and 4) corresponding to the proteins/
peptides with molecular weights ranging from 3.5 to 6 kDa according to Mark12 Unstained Standard.
This result could suggest the coexistence of two active compounds or partial hydrolysis of the active
compound and, first of all, finally confirmed the proteinaceous nature of this compound.

The antimicrobial activity of the sample after SDS–PAGE was evaluated against three bacterial
indicator strains, Table 7; the assay was performed according to the methodology presented in Section 4.5
(material and methods).

Table 7. Inhibition zones observed on the SDS-GELS against bacterial indicator strains after seven and
24 h of incubation (Gel 1 - 8 µL of the samples with a final concentration of 5.49 mg/mL and Bio-Rad
Precision Plus Protein™ Dual Color Standards ranging from 10 to 250 kDa).

Incubation Time [h] Indicator Strain

L. monocytogenes
FSL – X1 - 0001 S. aureus L1 - 0030 E. coli O157: H7

7
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The chosen sample exhibited a wide spectrum of antimicrobial activity. However, results indicated
that S. aureus L1 – 0030 was the most sensitive strain, which is confirmed by the fact that the growth
inhibition zone for this strain was visible even after 24 h of incubation. In the case of two other strains,
L. monocytogenes FSL – X1 – 0001 and E. coli O157: H7, respectively, the growth inhibition zones were
visible only at the early stages of bacteria growth within the structure of agar medium (up to 7–12 h).
It can be assumed that in the volume of the agar where the active component was present (as a result of
diffusion from the gel), the process of bacterial cell dividing was partially inhibited (but not completely
inhibited) and not all bacteria were killed. As a result of longer incubation, the growth inhibition
zones for the aforementioned strains disappeared. In our opinion, results with this assay using Tricine
SDS-PAGE gels (observation of growth inhibition zones) finally confirm the proteinaceous nature of
the active agent produced by the P. alvei MP1 isolate. However, it is resistant to the activity of several
proteolytic enzymes (including Proteinase K) and also heat treatment.

2.6. High-Performance Liquid Chromatography (HPLC)

The total number of peaks of interest monitored with column effluent monitored at 216 nm is
presented in Figure 6.
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Three fractions with retention times as follow: 27.0–27.7 (fraction 1), 27.7–28.5 (fraction 2) and
28.5–29.5 min (fraction 3), were collected.

The acetonitrile in the samples was evaporated under vacuum. An agar-overlay inhibition assay
with SDS-PAGE gel of the collected fractions against S. aureus L1-0030 was performed. Fraction 2 with
the retention time of 27.82 min and a peak of 23.67 mAU exhibited antibacterial activity on SDS–PAGE
gel in the total loading volume of 4 µL (total 1:3 ratios with buffer) against the most sensitive strain S.
aureus L1-0030, Figure 7.
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time of 27.82 min against S. aureus L1-0030.

This fraction was the subject of our further research aiming in the final characterization of the
active component produced by P. alvei MP1 strain.

3. Discussion

Several publications have confirmed that microorganisms naturally occurring in the environment
and food are an abundant source of compounds with antimicrobial activity [21–24].

Recent studies show that, despite a negative opinion about Paenibacillus group members, mainly
as a result of P. larvae being recognized as the causative agent of American Foulbrood, bacteria
belonging to this genus are a rich source of metabolites with promising antimicrobial activity [25–27].
P. alvei AN5 [28] was detected as a producer of an antimicrobial compound against both Gram-positive
and Gram-negative bacterial strains, including S. aureus and E. coli ATCC 29522. The compound
subjected to SDS–PAGE was also characterized as proteinaceous, similarly as the active substance
produced by P. alvei MP1 investigated in this study.

Two different antimicrobial peptides characterized as Paenibacillin N and P with potent
antimicrobial activity against many clinical pathogens were produced by P. alvei NP75 [29]. Interestingly,
compounds were differentially synthesized—Paenibacillin N was non-ribosomally synthesized,
whereas Paenibacillin P was synthesized ribosomally. Moreover, the aforementioned strain produced
an extracellular protease defending itself from Paenibacillin P.

Discovered to date, Paenibacillus species are producers of two of the three classes of bacteriocins,
being lantibiotics and pediocins, whereas the search within the group of pediocins is less extensive.
The lantibiotic, called Paenibacillin, presented a wide range of antimicrobial activity, and heat stability
was first reported in 2007 [4]. The investigation of recently discovered Paenibacillin discovered from
P. polymyxa OSY – DF revealed unique features in its biosynthesis [30]. The authors determined
that the production of Paenibacillin is eliminated by the disruption of the gene PaeB, encoding for
lantibiotic dehydratase.

Bacteria of the genus Paenibacillus are also known to produce several peptides (exhibiting
antimicrobial activity), which are not ribosomally synthesized and do not belong to bacteriocins,
but they are classified as secondary metabolites. Among them, lipopeptides are particularly attractive to
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medical applications as antimicrobial agents. The enzymes, called Non-Ribosomal Peptide Synthetases
(NRPS) [10,28], are crucial for their production in bacterial cells. Lipopeptides produced by Paenibacillus
species were in 2016 named by Cochrane et al. [10] as the “gold mine for antibiotic candidates.”
Polymyxins are so far the most studied of them and constitute about 15 variants [31]. They also
represent the oldest known group of lipopeptides after their discovery in 1947. The antimicrobial
and antifungal activity of lipopeptides varies according to the lipid group length and carbon atom
content [32]. According to Wu et al. [33] and Qian et al. [34], residues from di-amino butyric acid (Dab)
and a C6-C7 N-terminal fatty acyl chain are at a high percentage in most of the described lipopeptide
antibiotics within the Paenibacillus group. Variations within the peptide composition, the polar head,
or the fatty acid tail with different degrees of branching and oxidation lead to the structural diversity
and complexity of the lipopeptides [35].

The agent produced by P. alvei MP1 also seems to be very hydrophobic—it was eluted from
the chromatography column (SPE step of purification) with the mobile phases composed of only
methanol. It can suggest that the agent of interest also belongs to lipopeptides. Moreover, SDS-PAGE
analysis revealed the existence of two substances in active fractions (two bands on the gels are
observed). These may suggest two variants of the agent lipopeptide, with and without the lipid moiety.
Determining the exact nature and structure of the active metabolite of P. alvei MP1 is the subject of our
current investigation.

A broad range of the spectrum, high thermal stability as well as resistance to the activity of
proteases of high proteolytic activity (including proteinase K which can digest keratine—a component
of hairs and nails) should be considered as important advantages of the investigated agent from the
point of view of possibilities of its application for antimicrobial protection of food products and/or
clinical settings. The newly described metabolite of P. alvei MP1 exhibited considerable activity against
all three species of bacteria used as indicatory strains, namely E. coli, L. monocytogenes, and S. aureus.
All of them are classified as both important human and animal pathogens and leading etiological
factors of bacterial foodborne illness (foodborne infections, in the case of E. coli and L. monocytogenes
and toxoinfections in the case of S. aureus). S. aureus, which exhibited the highest susceptibility,
is recognized as pathogenic bacteria that quickly develop mechanisms of resistance to a plethora of
antibiotics currently used in clinical practice. Thus new agents effective against these bacteria are
urgently needed. Because of high resistance to temperature and proteolysis, the P. alvei MP1 metabolite
could be used for the elimination of pathogenic bacteria from food raw materials that contain proteases
(e.g., meat or fish) and undergo thermal processing with relatively high temperatures of about 100 ◦C.

As the development of an innovative strategy for antimicrobial-resistant microorganisms
remains inevitable, many articles present species of Paenibacillus as a source of new compounds
with antimicrobial activity that are not covered with currently existing mechanisms of resistance.
New antimicrobial compounds produced by food and environment-associated microorganisms were
the aim of the research by Gao et al. [5] and Huang et al. [36]. As a result, two members of the
Paenibacillus group were isolated. A new strain of Paenibacillus -P. OSY-SE was isolated from soil
and exhibited activity against Gram-positive and Gram-negative bacteria, including L. monocytogenes,
and E. coli O157: H7. The active compound was determined to be a cyclic lipopeptide, Paenibacterin.
Huang et al. [37] also isolated two cyclic lipopeptides antibiotics from Paenibacillus strain (named B7)
isolated from dairy waste that was found to produce antimicrobial agents active against S. aureus, E. coli,
and pan-drug-resistant P. aeruginosa clinical isolate. The isolated rod-shaped, spore-forming, motile,
Gram-positive strain was identified after the DNA–DNA hybridization as a member of P. ehimensis.
The researchers highlighted the importance of further studying of these two peptides.

An innovative strategy for novel antimicrobial search should certainly take into account the
genomic information of bacteria. Within the Paenibacillus group, the genomic information remains
insufficient [38]. The potential of Paenibacillus spp. to produce a variety of compounds are identified
in the previously known clusters; however, discovering new clusters such as the novel lasso peptide
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tailored by a new class of kinases in P. dendritiformis C454 suggests that several antimicrobial compounds
of potential use are yet to be characterized [39].

Further studies, including de novo sequencing of peptides produced by P. alvei strain MP1 by
mass spectrometry, are in progress.

The findings of our previous investigation [19], as well as the results presented by other authors [40,41],
revealed that bacteria isolated from honey show the ability to produce a wide range of antimicrobial
metabolites. All these producing strains were likely brought to the hive with nectar or pollen that
have been collected by bees from flowers of various species. Plants, like other living organisms,
have developed numerous mechanisms of protection against the invasion of pathogenic microorganisms,
mainly bacteria. Among them, production of different plant antimicrobial peptides (e.g., thionins,
defensins, cyclotides [42,43]), and secondary metabolites of plants including terpenoids (polymeric isoprene
derivatives and biosynthesized from acetate via the mevalonic acid pathway), phenolics (biosynthesized
from shikimate pathways, containing one or more hydroxylated aromatic ring), and alkaloids (non-protein
nitrogen-containing compounds, biosynthesized from amino acids, such as tyrosine) are recognized as
the most important [44,45]. Besides the plant surface, plant tissues are also inhabited by bacteria and
fungi (natural, beneficial microflora) that produce a broad spectrum of antimicrobial agents to protect
the host plant against infection [46]. Most of these bacteria, when transferred to the hive, are not able
to survive in the environment of matured honey primarily because of high sugar content (about 80%)
and low pH (around 4.0). Most of the producing strains isolated by our group and other authors belong
to spore-forming bacteria, mainly to the spore-forming bacteria of the genus Bacillus spp. that were not
killed by harsh conditions of mature honey. Therefore, most of the bacterial strains isolated from honey
as producers of antimicrobial substances were classified as Bacillus spp. [19,40,41,46]. In our opinion,
honey, but also pollen and bee bread, deserve more attention as a potential reservoir of bacteria interesting
for both pharmaceutical and biotechnological applications.

4. Materials and Methods

4.1. Strain Growth Conditions Associated with an Active Compound Production

Optimization of the growth conditions of P. alvei MP1 was evaluated using commercially available
liquid broths—Luria Bertani Broth (LB), Tryptic Soy Broth (TSB), and Brain Heart Infusion (BHI) (Becton,
Dickinson, and Company (BD), USA). The period of incubation varied from 0 to 60 h with a temperature
of 30 and 37 ◦C. This preliminary investigation revealed the highest level of antimicrobial activity
in LB medium at 37 ◦C at 200 RPM between 18–21 h of growth. Only this medium was used for
further investigation.

P. alvei MP1 cells were also examined using a Scanning Electron Microscope (SEM) according to
the following protocol [47], except for 5% glutaraldehyde used instead of Karnovsk’s fixative in step 2.

The second objective was to establish the lowest concentration expressed in terms of arbitrary units
per milliliter (AU/mL) of the serially diluted P. alvei MP1 cell-free supernatant and precipitates against
the most sensitive strain, at which bacterial growth is still inhibited. One arbitrary unit (AU) against
an individual indicator strain was defined as the reciprocal of the highest dilution that still produced
a minimal but detectable zone of inhibition and expressed as AU/mL. Flasks containing 150 mL of LB
broth were inoculated with 1.5 mL of P. alvei MP1 pre-culture inoculum and were incubated in a shaker
at 200 RPM with continuous shaking. The kinetics of antibacterial production was conducted at 37 ◦C
for 60 h in LB medium. The growth was followed by measuring the optical density at 600 nm (OD600).
Samples were withdrawn at desired time intervals by centrifugation at 12,000 × g for 15 min, and the
supernatants and precipitates were tested for an active compound activity against indicator strains.
Antimicrobial activity was initially assessed by direct spotting on an agar plate and was performed
multiple times during the current study. Briefly, 50 µL of tested substance was aseptically spotted on
the surface of the LA plate and air-dried aseptically in a biosafety cabinet. Next, 7 mL of soft agar
(0.75% agar, w/v) with the suspension of 70 µL of an overnight culture of the indicator strain was
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overlaid on the surface of the plate and allowed to dry. The plates were incubated for 24 h at 37 ◦C.
The presence of inhibition zones was observed, and the results were reported in AU/mL.

4.2. Partial Purification of the Bioactive Compound with Ammonium Sulfate

P. alvei MP1 strain was grown in 150 mL of LB medium at 37 ◦C in a rotary shaker at 200 RPM for
18 h. Cells were removed by centrifugation at 12,000 RPM for 20 min. The supernatant was heated at
72 ◦C for 30 min to inactivate bacterial cells, then chilled to 4 ◦C and sequentially precipitated by stepwise
addition of solid ammonium sulfate of saturation degree as follows: 20%, 40%, 50%, 60%, 70% and 80%
with continuous stirring at 4 ◦C for 24 h. The precipitated proteins were collected by centrifugation
(12,000 RPM for 20 min) and dissolved in dH2O sufficient to dissolve it completely. Aliquots of
precipitated fractions were analyzed for their protein concentration and antimicrobial activity.

4.3. Effects of Proteolytic enzymes and Temperature on Antimicrobial Activity of the Compound

The compound produced by P. alvei MP1 strain was assessed for its sensitivity to proteases—
Pepsin, Chymotrypsin, Pronase E, and Proteinase K (Sigma-Aldrich, St. Louis, MO) and its thermal
stability. Fifty microliters of a P.alvei MP1 cell-free culture with different ammonium sulfate saturation
was sterilely spotted on the surface of the LA plate and air-dried aseptically in a biosafety cabinet.
Next, 10 µL or 5 µL of proteinases were spotted and allowed to dry. Next, 7 mL of soft agar
(0.75% agar, w/v) with the suspension of 70 µL of an overnight culture of the indicator strain was
overlaid on the surface of the plate and allowed to dry. The plates were incubated for 24 h at 37 ◦C.
The presence of inhibition zones was observed. The antibacterial activity was determined against
S. aureus L1-0030. Untreated samples, buffer, and enzyme solutions served as controls.

To analyze thermal stability, aliquots of active compounds were incubated at different temperatures
in the range of 60, 80, and 100 ◦C for 30 min. After cooling to room temperature, antimicrobial activity
against S. aureus L1-0030 was determined according to the method described above.

4.4. Solid-Phase Extraction with tC18 Column

Solid-phase extraction was carried out with a Sep-Pak tC18 column (Waters) with methanol as
a solvent in gradient concentration as follows: 0% (control sample), 20%, 40%, 60%, 80% and 100%
from P. alvei MP1 precipitates with demonstrated antimicrobial activities. The extracted phases were
evaporated from methanol residues using vacufuge at 45 ◦C for 1 h. After evaporation, the pellet was
dissolved in dH2O, and theoretical protein concentration was measured on NanoDrop (Thermo Fischer
Scientific, USA). The antimicrobial activity of collected extracts against S. aureus L1-0030 was assessed.

4.5. Agar-Overlay Inhibition Assay on SDS-PAGE Gels

Two SDS-PAGE gels were prepared as follows:
Gel 1: This gel was used for direct detection of the antimicrobial activity against L. monocytogenes

FSL – X1 – 0001, S. aureus L1 – 0030, and E. coli O157: H7 and was washed with distilled water after
fixation step. Eight microliters of the sample with a final concentration of 5.49 mg/mL and 3 µL of
molecular-weight standard (Bio-Rad Precision Plus Protein™ Dual Color Standards – Bio-Rad, USA)
ranging from 10 to 250 kDa were loaded to Mini-PROTEAN precast gels for polyacrylamide gel
electrophoresis (PAGE) (Bio-Rad Mini-PROTEAN®TGX Stain-Free™ Precast Gels, Bio-Rad, USA).
Electrophoresis conditions and protein visualization with Coomassie Blue Staining were conducted
according to the following protocol [48].

Gel 2: The gel was prepared for band visualization in agreement with the standards set by
the Cornell Biotechnology Resource Center (BRC) in 12% Bis-Tris gel/ MES buffer system/ colloidal
Coomassie stain.



Pathogens 2020, 9, 319 14 of 17

4.6. High-Performance Liquid Chromatography (HPLC)

HPLC was performed in the Food Science Department, Cornell AgriTech Geneva, Cornell
University. Samples with the highest antimicrobial activity after SPE were selected for HPLC analysis
with fraction collection and evaluation of antimicrobial activity against S. aureus L1-0030. The presence
or absence of growth inhibition zones was recorded. Next, active fractions with the highest concentration
(measured on NanoDrop) were chosen for the second round of HPLC to confirm its purity.

The column was Varian LiChrosper C18 (Agilent Technologies, Santa Clara, CA), (Diameter 4.6 mm,
Length 250.0 mm, Particle Size 5 µm). The elution condition was 0–10 min mobile phase A (0.05% TFA
in water); 10–40 min a gradient of 0–100% mobile phase B (acetonitrile + 0.05% TFA); and 40–50 min
mobile phase B with a flow rate of 1 mL/min. The injection volume was 10 µL. All HPLC solvents were
prepared fresh daily, and all aqueous solutions were prepared with ultrapure water. The column effluent
was monitored at 216, 218, 220, and 280 nm. Collected fractions were checked for antimicrobial activity
against the most sensitive strain.

5. Conclusions

Our previous studies revealed the high antimicrobial potential of bee products collected in Polish
apiaries [49–51]. The current research confirms that honey also should be considered as a reliable
source of bacteria producing new antimicrobial agents with promising activity. The P. alvei MP1 strain
isolated from buckwheat honey produces metabolite or metabolites of proteinaceous nature active
against important human pathogens, with particularly high activity against S. aureus. The conditions
of efficient production of the active compound, as well as an easy method of its purification, have been
developed. The research aiming in the determination of the chemical structure of this agent is a subject
of our current research.
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