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Abstract: Nontypeable Haemophilus influenzae (NTHi) is a leading causative organism of opportunistic
respiratory tract infections. However, there are currently no effective vaccination strategies, and
existing treatments are compromised by antibiotic resistance. We previously characterized Haemophilus
haemolyticus (Hh) strains capable of producing haemophilin (HPL), a heme-binding protein that
restricts NTHi growth by limiting its access to an essential growth factor, heme. Thus, these
strains may have utility as a probiotic therapy against NTHi infection by limiting colonization,
migration and subsequent infection in susceptible individuals. Here, we assess the preliminary
feasibility of this approach by direct in vitro competition assays between NTHi and Hh strains
with varying capacity to produce HPL. Subsequent changes in NTHi growth rate and fitness, in
conjunction with HPL expression analysis, were employed to assess the NTHi-inhibitory capacity
of Hh strains. HPL-producing strains of Hh not only outcompeted NTHi during short-term and
extended co-culture, but also demonstrated a growth advantage compared with Hh strains unable
to produce the protein. Additionally, HPL expression levels during competition correlated with
the NTHi-inhibitory phenotype. HPL-producing strains of Hh demonstrate significant probiotic
potential against NTHi colonization in the upper respiratory tract, however, further investigations
are warranted to demonstrate a range of other characteristics that would support the eventual
development of a probiotic.

Keywords: Haemophilus influenzae; Haemophilus haemolyticus; respiratory probiotic; respiratory
infection; heme; heme-binding protein; otitis media; chronic obstructive pulmonary disease

1. Introduction

The bacterium nontypeable Haemophilus influenzae (NTHi) is commonly associated with upper
respiratory tract (URT) colonization in healthy adults [1]. However, migration to other sites in the
respiratory tract frequently occurs in children, the elderly and individuals with underlying respiratory
diseases; making NTHi a leading cause of mucosal infections [2]. In particular, enormous global
morbidity is attributed to otitis media and exacerbations of chronic obstructive pulmonary disease,
which are accompanied by long-term health complications and considerable mortality, respectively [3,4].
NTHi has also gained attention as an increasingly important cause of invasive infections [5,6].

There are currently no effective vaccination strategies for the prevention of NTHi infections,
and treatment has been complicated by the rapid development of antibiotic resistance to first- and
second-line antibiotics. Resistance is predominantly mediated by β-lactamase production [7]; however,
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the emergence and spread of β-lactamase-negative, ampicillin-resistant strains in many regions
of the world is of substantial concern with treatment failure also being reported in response to
macrolides [8–10] and fluoroquinolones [11–13].

NTHi infection is preceded by successful colonization of the URT, and survival in this environment
relies on the bacterium’s ability to acquire the vital growth factor, heme [14]. There is also evidence to
suggest heme acquisition genes are important modulators of NTHi virulence factors [15], demonstrated
by the increased prevalence in disease-causing strains from the middle ear, compared with colonizing
throat strains [14]. Deletion of multiple genes related to heme-iron scavenging, utilization and
regulation has been shown to significantly reduce NTHi virulence, disease severity and duration in
animal models of otitis media [16,17]. Similarly, an isogenic mutant of two heme acquisition pathways
was unable to sustain bacteraemia or produce meningitis in a rat model of invasive disease [18]. Thus,
heme acquisition pathways represent potentially high value targets for the development of novel
therapies for the eradication of NTHi from the respiratory tract [19,20].

NTHi is particularly susceptible to heme restriction as it lacks the necessary enzymes for its
synthesis and relies solely on scavenging heme from the host, either in the form of free heme or
bound to host carrier molecules [16,21–23]. Evidence from our laboratory suggests that closely related
commensals may present a competitive challenge for heme acquisition in the URT. Previously, we
discovered Haemophilus haemolyticus (Hh) strains that exhibited inhibitory activity against NTHi [24,25].
Further investigation revealed this inhibition was mediated by the production of a heme-binding
protein, haemophilin (HPL), that restricted NTHi growth by limiting its access to heme [25]. Thus,
these strains may have utility as a probiotic therapy against NTHi infection by limiting colonization,
migration and subsequent infection in susceptible individuals. Hh strains with anti-NTHi properties
have other characteristics that support their potential use as probiotics. Firstly, they share the same
upper respiratory niche as NTHi [1] and more importantly, although they have occasionally been
reported as pathogens of sterile sites in immunocompromised patients [26], there is convincing evidence
that they are not opportunistic pathogens of the respiratory tract [27–29].

Here, we aim to determine the potential of a future probiotic approach by assessing in vitro
competition between NTHi and Hh strains with varying capacity to produce HPL.

2. Results and Discussion

2.1. Validation of a Triplex Real-Time PCR for Quantification of NTHi, Hh and Detection of HPL

The HPL amplicon was confirmed to be specific and sensitive for the detection of the five previously
identified HPL sequence variants [25] by in silico investigations and by PCR. Specificity of the HypD
and SiatT targets was also confirmed by PCR. Complete results of PCR assay validation are detailed in
supplementary materials (S2.1.). The low limit of quantification values for the HypD and SiaT assays in
triplex format were 2× 10−5 ng and 2× 10−4 ng, corresponding to 10 and 100 GE, respectively. The lower
limit of detection for the HPL assay was 10 GE (Figure S1). The upper limits of detection/quantification
were not explicitly determined as expected DNA levels from sample were unlikely to exceed the
maximum 2 ng tested.

Given the high volume of samples generated from growth experiments, a cheap and
high-throughput gDNA extraction method was required to reliably distinguish and quantify NTHi
and Hh in co-culture. Extraction utilizing thermal lysis has previously been shown to be an efficient
and cost-effective method to harvest bacterial gDNA for quantitative real-time PCR from suspensions
of several bacterial species in a range of sample matrices [30–35]. Crude DNA extraction methods
are also prone to contamination with PCR inhibitors originating from sample matrices [33,36]. There
are also reports of intra- and inter-species differences in DNA extractions efficiencies [33,36,37]. PCR
quantification of gDNA extracted by thermal lysis was validated and found to be comparable to
quantification by OD600 and colony counts (Figure S4). Complete results of thermal extraction
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validation, including detection of PCR inhibitors (Figure S2) and extraction efficiency (Figure S3) are
available in supplementary materials (S2.2.).

2.2. Baseline NTHi-Inhibitory Activity of Hh Strains Containing the HPL ORF

We previously identified clinical isolates of Hh with several different HPL open reading frame
(ORF) sequences and variable inhibitory activities even between strains containing identical HPL ORF
sequences (Table S1) [25]. In order to determine the basis of this phenotypic variation and predict
inhibitory potential, selection of Hh strains (Hh-RHH122, Hh-NF4 and Hh-NF5) for investigation
was based on identical sequence similarity to the Hh-BW1 HPL ORF, previously identified as having
the highest NTHi-inhibitory activity [25]. Based on results from the well diffusion assay, isolates
Hh-BW1, Hh-RHH122 and Hh-NF5 were categorised as having the Hh-HPL+ phenotype; no inhibitory
activity was detected from Hh-NF4 broth supernatants, categorising it as Hh-HPL−. Hh strains that
did not possess the HPL ORF (Hh ATCC 33390 and Hh-BW1HPL-KO) were confirmed to be Hh-HPL−.
The degree of inhibitory activity varied between the Hh-HPL+ isolates and was comparably highest in
Hh-BW1 and Hh-RHH122, approximately twice the activity measured for Hh-NF5 (Figure S5).

2.3. HPL Expression Correlates with the Hh-HPL+ Phenotype

Given that HPL ORF sequence identity was not predictive of NTHi-inhibitory capacity, baseline
expression of HPL was investigated. The hypD target was validated as the housekeeper gene (Figure
S6A), and the optimal growth phase for HPL expression analysis was determined (Figure S6B). Baseline
expression of HPL was highest in Hh-BW1 and Hh-RHH122, significantly lower in Hh-NF5 (p < 0.0001),
and completely absent in Hh-NF4 (Figure 1). Expression patterns correlate with the NTHi-inhibitory
capacity of Hh strains, suggesting a connection between expression of HPL and the NTHI-inhibitory
phenotype resulting from production of the HPL protein.
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Figure 1. Baseline HPL expression. PCR-quantified expression of HPL for Haemophilus haemolyticus
(Hh) strains containing identical HPL open reading frames (ORFs) (relative to Hh-BW1HPL-KO). Data
points are represented as mean +/− SEM of four biological replicates, performed from duplicate
RNA extractions.

2.4. The Hh-HPL+ Phenotype Confers a Competitive Advantage against NTHi

A co-culture assay was used to test the ability of Hh with different levels of HPL production to
compete with NTHi. The growth rate of NTHi was significantly impaired during competition with all
Hh-HPL+ strains, compared with growth without competition (p < 0.0001) (Figure 2A). This inhibitory
effect was more pronounced during competition with strains Hh-BW1 and Hh-RHH122, compared
with Hh-NF5, replicating inhibitory patterns observed in the well diffusion assay. The growth rate of
NTHi during competition with Hh-HPL− was not significantly affected (Figure 2A), suggesting that
the inhibitory effect observed was a unique characteristic of Hh-HPL+ strains. Loss of the Hh-HPL+
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phenotype in Hh-BW1HPL-KO, compared with the wild-type Hh-BW1, is evidence for a causative effect
of the HPL gene on competition. Correlation between competition outcomes and HPL gene expression
in Hh-BW1, Hh-RH122, Hh-NF5 and Hh-NF4 strains is also consistent with a hypothesis that strains
with higher HPL expression compete with NTHi more effectively.

For commensals and pathogens living in or invading human tissues, iron-containing heme is
often a limiting nutrient, particularly in the respiratory tract where concentrations are considered to
be low [38]. This is particularly true for heme auxotrophs including NTHi and Hh; for these species’
survival in the URT niche is dependent on their ability to outcompete host proteins and co-existing
bacterial populations for heme [16]. We previously demonstrated that the NTHi-inhibitory mechanism
of HPL is associated with it’s ability to bind heme in a form inaccessible to NTHi and that inhibitory
activity is lost in conditions where heme concentration exceeds the binding capacity of HPL [25]. While
levels of heme/iron are considered to be low in the respiratory tract, there is indirect evidence for
increased levels in airways of smokers, chronic obstructive pulmonary disease and cystic fibrosis, which
may contribute to increased susceptibility to infection in these individuals [38]. Thus, it was important
to assess the effectiveness of HPL with varying concentrations of heme to ensure inhibitory effect in a
range of in vitro conditions reflecting possible in vivo scenarios. The NTHi-inhibitory capacity of HPL
was maintained even in conditions of high heme availability (15 µg mL−1), albeit to a lesser degree than
lower heme concentrations (0.0–3.8 µg mL−1) (Figure 2A). This suggests that levels of HPL produced
by Hh are sufficient to limit NTHi’s access to heme in a dynamic in vitro system, even under excess
heme conditions unlikely to be encountered in vivo [38].
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Figure 2. Short-term competition between Haemophilus influenzae (NTHi) and Hh. Calculated growth
rates of NTHi in response to competition with (A) Hh-HPL+ or (B) Hh-HPL−. The growth rate for
each (C) Hh-HPL+ and (D) Hh-HPL− strain was also determined. Data points represented as mean
+/− SEM of three separate experiments, performed in triplicate; p < 0.05 *, p < 0.005 **, p < 0.0005 ***,
p < 0.0001 ****.

2.5. The Hh-HPL+ Phenotype is Associated with a Growth Advantage

Interestingly, all Hh-HPL+ strains exhibited a pattern of enhanced growth in response to NTHi
competition (p < 0.0001) (Figure 2C). This effect was maintained across all heme concentrations and
was more pronounced for Hh-BW1 and Hh-RHH122. The converse was observed in Hh-HPL− strains
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that appeared to experience poorer growth in response to competition with NTHi (Figure 2D). This
indicates that NTHi is able to outcompete Hh only in the absence of the Hh-HPL+ phenotype, which
may be a reflection of the highly efficient set of heme-scavenging systems possessed by NTHi.

Given the correlation between competition outcomes and HPL gene expression, expression
analysis was performed on Hh during competition with NTHi, relative to growth without competition.
Upregulation of HPL was observed in all Hh-HPL+ in response to competition with NTHi, an effect that
was more pronounced in Hh-BW1 and Hh-RHH122 (Figure 3). This may explain the enhanced growth
rate of Hh-HPL+ strains in response to NTHi during the short-term competition assays (Figure 2C).
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Figure 3. HPL expression during competition. PCR-quantified expression of HPL during competition
with NTHi relative to individual growth. Data points are represented as mean +/− SEM of four
biological replicates, performed from duplicate RNA extractions.

These results show that expression of HPL has a significant impact on the NTHi-inhibitory
capacity of Hh-HPL+ strains and eventual therapeutic utility in an in vivo setting. Therefore, the
huge differential expression of HPL amongst Hh-HPL+ strains must be considered in the future when
selecting a potential probiotic candidate for further evaluation. However, our understanding of HPL
regulation is still rudimentary. Further investigation into potential upstream regulatory components
or post-translational modification is needed to elucidate the inter-strain differences in HPL production
and/or biological activity despite complete ORF sequence identity.

2.6. NTHi Fitness Dramatically Decreases during Extended Co-Culture with Hh-HPL+

Short-term competition may highlight the potency of HPL-mediated inhibition but is not
representative of in vivo competition dynamics. Thus, a longer-term study was employed to assess the
competition between NTHi and Hh-HPL+ over a period of 6 days (12 generations). The competitive
advantage of Hh-HPL+ strains was evident within the 2nd generation (24 h) for Hh-BW1 and
Hh-RHH122 and 4th generation (48 h) for Hh-NF5 (Figure 4A). Speculatively, the stunted inhibitory
activity exhibited by Hh-NF5 may be due to the lower HPL expression levels exhibited by this
strain, resulting in slower accumulation of HPL over the course of the assay. The fitness of NTHi
over subsequent generations decreased significantly until complete loss of fitness during the final
generations. Competition with Hh-HPL− strains did not significantly affect the overall fitness of any of
the NTHi strains over the 6 day period. However, a small decrease in NTHi fitness was observed after
24 h, followed by complete recovery (Figure 4A). This may have arisen from competition for heme
prior to the onset of maximum HPL production.

To show that loss of fitness of NTHi was not unique to NTHi strain ATCC 49247, additional
reference strains NCTC 11315 and ATCC 49766 were tested in competition with Hh-BW1. All three
NTHi strains responded in the same manner, culminating in a total loss of NTHi fitness at the end of
the 6 day period (Figure 4B).
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3. Materials and Methods

3.1. Bacterial Growth Conditions

3.1.1. Bacterial Strains

Hh strains used in this study (BW1, RHH122, NF1, NF4 and NF5) have previously been isolated
and screened for the HPL open reading frame (ORF) [24,25]. An HPL knockout (BW1HPL-KO) of the
model HPL-producing strain of Hh (Hh-BW1), constructed using insertional inactivation as previously
described [25], and Hh ATCC 33390 (PCR negative for the HPL ORF) were included as noninhibitory
controls. NTHi strains were ATCC 49247, ATCC 49766 and NCTC 11315.

NTHi and Hh isolates were propagated from liquid nitrogen frozen glycerol stock, followed by
two overnight passages on chocolate agar (CA) at 37 ◦C with 5–10% CO2 prior to experimentation.
Strains were grown in supplemented Tryptone Soy Broth (sTSB), which consisted of tryptone soy
broth (TSB) (Oxoid Ltd., Basingstoke, UK) supplemented with 2% (v/v) Vitox® (Oxoid Ltd.) and 15 µg
mL−1 of porcine hematin (ferriprotoporphyrin IX hydroxide, Sigma-Aldrich). Exposure to nongrowth
conditions was minimized by maintaining suspensions and diluents at 37 ◦C.

3.1.2. Propagation of Heme-Replete Populations for Growth Experiments

Strains were propagated under heme-replete conditions prior to use in competition experiments
to replenish bacterial heme stores and minimise external stressors that may influence the outcome of
competitive growth [25,39,40]. Bacterial suspensions of ~1.0 OD600 were made in TSB from 8–10 h
growth on CA and diluted 1:10 in pre-warmed sTSB (5 mL). Broths were incubated for 12 h at 37 ◦C
aerobically with shaking (220 RPM), centrifuged at 4000 × g for 5 min at 37 ◦C and resuspended in
fresh, pre-warmed TSB to an OD600 of 1.0 prior to use in growth experiments.

3.2. Determination of NTHi-Inhibitory Activity

A well diffusion assay of broth supernatants was used to categorise Hh strains containing the HPL
ORF as either inhibitory to NTHi (Hh-HPL+) or noninhibitory (Hh-HPL–), as previously described [24].
This assay was also used to establish the relative inhibitory activity of each strain. Testing was conducted
on two indicator NTHi strains (ATCC 49427 and clinical isolate NTHi-L15). Media supernatants from
strains negative for the HPL ORF (Hh ATCC 33390 and Hh-BW1HPL– KO) were included as controls.

3.3. Triplex Real-Time PCR for the Quantification of NTHi, Hh and Detection of HPL

A real-time quantitative triplex PCR assay was designed to quantify NTHi, Hh and detect the
HPL ORF. The targets used for discrimination of Hh (hypD) and NTHi (siaT) have previously been
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described and validated [41]. For detection of the HPL ORF, primers were designed based on the
HPL ORF of Hh-BW1 (GenBank MN720274) [25]. The FAM, HEX and TET channels were used for
simultaneous fluorescence detection of siaT, hypD and HPL, respectively. Primer and probe sequences
are detailed in Table 1. Primer specificity was confirmed by discontiguous megaBLAST analysis and
PCR of a panel of Haemophilus spp. and multiple genera representing common URT flora. PCR assays
were extensively optimised and evaluated for detection/quantification limits in triplex format.

Table 1. Summary of primer and LNA probe sequences, and expected amplicon size for the hypD, siaT
and HPL targets.

Primers and Probes Sequence Amplicon Size (bp)

hypD Forward 5′- GGCAATCAGATGGTTTACAACG

187hypD Reverse 5′- CAGCTTAAAGYAAGYAGTGAATG

hypD LNA-probe /5HEX/CCA+C+AA+C+GA+G+AATTAG/3IABkFQ/

siaT Forward 5′- AATGCGTGATGCTGGTTATGAC

138siaT Reverse 5′- AATGCGTGATGCTGGTTATGAC

siaT LNA-probe /56-FAM/A+GA+A+GCAGC+A+G+TAATT/3IABkFQ/

HPL Forward 5′- TATTCCTAATGATCCCGCT

120HPL Reverse 5′ - TCTTTTTTCGCTACCCCT

HPL LNA-probe /5Cy5/AT+CCATTTA+TCGG+CACGTTCT/3IAbRQSp/

PCRs were performed using the CFX96 TouchTM real-time PCR system (Bio-Rad) in 96-well optical
plates. Polymerase activation was performed at 95 ◦C for 3 min, followed by 40 amplification cycles
of denaturation at 95 ◦C for 15 s, and annealing at 62 ◦C for 1 min. Each reaction contained 0.25 µM
of hypD, siaT and HPL primers, 0.1 µM LNA probes, 1× PrimeTime master mix (Integrated DNA
Technologies) and 5 µL gDNA and molecular-grade water, to a total volume of 20 µL. Template gDNA
was prepared by a thermal extraction protocol and tested in duplicate. Each run included a positive
control for the HPL ORF (Hh-BW1), negative control (H. parainfluenzae ATCC 7901), no-template control
and 10-fold dilutions of a standard containing 2 × 10−8 ng NTHi ATCC 49247 and Hh ATCC 33390
gDNA. Quantification of NTHi and Hh was expressed as genome equivalents (GE) calculated from the
standard, as previously described [41]. Bacterial quantification from thermally extracted gDNA was
validated against conventional bacterial quantification by optical density and colony counts.

Complete details of PCR primer design, assay optimisation and gDNA extraction protocol
evaluation are available in supplementary material (S1.).

3.4. Competition Assays

3.4.1. Short-Term Broth Competition

Culture mixes were prepared by adding 100 µL of heme-replete preparations of a single Hh strain
(Hh-BW1, Hh-BW1HPL-KO, Hh-RHH122, Hh-NF4, Hh-NF5 or ATCC33390) together with 100 µL of
NTHi ATCC 49247 to 5 mL pre-warmed sTSB containing 0.0, 0.9, 3.8 or 15.0 ug mL−1 porcine hematin.
Broths containing single strains were also prepared in parallel to determine baseline growth. Broths
were incubated aerobically on an incubator shaker at 37 ◦C (220 RPM) for 16 h. At different time
intervals, aliquots of 50 µL were taken for thermal gDNA extraction and subsequent triplex PCR
quantification of GE. Aliquots of 500 µL were taken at 8 h for quantification of HPL expression. Purity
of broth growth was checked by plating on CA after 16 h incubation.
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Statistical comparisons were made between strains grown with a competitor and baseline growth
by calculating the change in the number of cells per hour (growth rate) using the following formula:

ln
Nt

N0
= α(t− t0)

where Nt is the number of cells (measured as GE) at time t, N0 is the number of cells at time zero (t0),
and α is the growth rate where units are determined by the units of t.

3.4.2. Fitness Assay

Culture mixes were prepared by adding 100 µL of heme-replete preparations of each of the Hh
strains and 100 µL of NTHi (ATCC 49247, ATCC 49766 or NCTC 11315) to 5 mL of pre-warmed sTSB
containing 0.0, 0.9, 3.8 or 15.0 µg mL−1 porcine hematin. Broths were incubated aerobically on an
incubator shaker at 37 ◦C (220 RPM) for 12 h prior to subculture (200 µL) in fresh sTSB (2 mL) containing
the same concentration of heme as the inoculum. The process of 12 hourly incubation followed by
subculture into fresh broth was repeated until 6 days had elapsed. After each 12 h incubation, aliquots
of 50 µL were taken for boiled gDNA extraction and subsequent triplex PCR quantification of GE.
Purity of broth growth was confirmed by plating on CA after each 12 h incubation. Fitness of NTHi at
each time point was determined using the following equation [42]:

w =
ln( At

At0
)

ln( Bt
Bt0

)

where w is fitness, A and B are the population sizes of the two competitors, subscripts t0 and t indicate
the initial and final time points in the assay. Growth after the first 12 h culture was used as baseline for
fitness determination (t0).

3.5. Expression Analysis

3.5.1. RNA Extraction, Purification and Quantification

Aliquots taken from broth growth were immediately added to two volumes of RNAprotect
Bacteria Reagent (Qiagen) for immediate stabilization of bacterial RNA. Stabilized aliquots were
normalized to an OD600 of 0.05 (approximately 5 × 107 cells), pelleted by centrifugation for 10 min at
5000 × g and stored at −20 ◦C overnight. Bacterial lysates were prepared by resuspending pellets in
100 µL TE buffer (30mM Tris-Cl, 1 mM EDTA, pH 8.0) containing 15 mg mL−1 lysozyme and 20 µL
proteinase K, vortexed and incubated at room temperature in an incubator shaker (1000 RPM) for 1 h.
Following addition of 350 µL buffer RLT, samples were vortexed and centrifuged at 20000 × g for 2 min.
The supernatant was purified following the manufacturers protocol for RNeasy Plus Mini Kit, which
was semiautomated by the QIAcube (Qiagen). The iScriptTM cDNA Synthesis Kit (Bio-Rad) was used
to produce cDNA for subsequent PCR. The validated triplex PCR was used to determine expression of
HPL ORF in Hh strains, using hypD as the housekeeper gene.

3.5.2. Expression Validation

Expression analysis was employed to determine baseline expression and suitability of prospective
competitive test conditions for HPL expression. Given the kinetics of bacterial growth and the
heme-binding capacity of HPL, time and heme availability were targeted as factors that may influence
HPL expression. The hypD target was selected as a potential housekeeper gene and validated for
test conditions.

To validate expression analysis, heme-replete preparations of Hh-BW1 and the Hh-BW1HPL-KO

(100 µL) were added to 5 mL pre-warmed sTSB containing either 0.0 or 15.0 µg ml−1 of porcine
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hematin. Broths were incubated for 8 h, and aliquots of 500 µL were removed for RNA extraction
and purification at 0, 4 and 8 h. Following validation, baseline HPL expression was quantified for
isolates Hh-BW1, Hh-RHH122, Hh-NF4 and Hh-NF5 relative to Hh-BW1HPL-KO from 8 h growth in
sTSB without porcine hematin.

3.6. Statistical Analysis

Statistical analysis was performed using GraphPad Prism V7.04, 2017. Statistical significance
was determined by comparison of growth data (growth rate or fitness) between strains grown with a
competitor and baseline growth. Data were tested for normality using the Shapiro–Wilk test, followed
by a two-way ANOVA with Dunnett’s multiple comparison test. Expression ratios and statistical
significance were calculated with 2000 iterations by the Relative Expression Software Tool (REST; v 1.0,
2009) [43,44].

4. Conclusions

Previously, we identified an uncharacterized hemophore (designated HPL) produced by Hh which
was able to inhibit NTHi growth by heme starvation [25]. Here, we aimed to further test the inhibitory
capacity of Hh-HPL+ strains by direct in vitro competition with NTHi, for the purpose of determining
their probiotic potential. These results provide a strong link between the NTHi-inhibitory phenotype,
HPL expression and favourable outcomes during competitive growth with NTHi in vitro. Thus,
Hh-HPL+ strains exhibit promising probiotic potential against NTHi colonization in the URT. Reduction
or elimination of NTHi carriage from the URT proposes an effective means of limiting migration
and subsequent infection in susceptible individuals. However, significant further investigation is
required to determine if the inhibitory capacity demonstrated in this study extends to more complex
models of NTHi colonisation and infection, such as cell culture systems and animal models. Further,
studies investigating the safety profile of Hh-HPL+ strains and their ability to colonise the host are
also required before the probiotic potential of such strains can be advanced.
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